PHYS-E0436 — Modern Optics (Fundamentals of photonics)

Topics:

Fourier optics
Electromagnetic optics
Polarization optics
Statistical optics
Nonlinear optics
Ultrafast optics
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AN NENENENRN

11 meetings: 1 hour exercise session + 1 hour lecture

Home work: Reading the book (~30 pages) and solving 4 problems
[~8 hours per week]

On the exercise sessions, the students explain solutions of two home
exercises each [must be checked in 1162, Micronova, each Wednesday]

Grading: Exercise solution presentations — max 15 points
Home exercises — max 35 points
Final exam — max 70 points 1
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Syllabus

Date Topics
1.3 Introduction to the course
Introduction to Fourier optics |
8.3 Exercises to Fourier optics |
Introduction to Fourier optics 11
15.3 Exercises to Fourier optics Il
Introduction to Electromagnetic optics |
223 Exercises to Electromagnetic optics |
Introduction fo Electromagnetic optics Il
Introduction to Polarization optics |
29.3 Exercises to Electromagnetic optics Il and Exercises to Polarization optics |
Introduction to Polarization optics Il
54 Exercises to Polarization optics I
Introduction fo Statistical optics
12.4 Exercises to Statistical optics
Introduction to Nonlinear opfics |
19.4 Easter
26.4 Exercises to Nonlinear optics |
Introduction to Nonlinear optics Il
3.5 Exercises to Nonlinear optics Il
Introduction to Ultrafast optics |
10.5 Exercises to Ultrafast optics |
Introduction to Ultrafast optics Il
17.5 Exercises to Ultrafast optics Il




Chapter 4

FOURIER OPTICS |



The principle of Fourier optics
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2D picture: An arbitrary function f(x, y) may be analyzed as a sum of harmonic functions of
different spatial frequencies and complex amplitudes.

F(x, Y, Z) = Ae_jzn(x/Ax+Y/Ay+Z/Az)

S
Q-
S il

an arbitrary wave in free space can be analyzed
as a superposition of plane waves.



What type of problems can Fourier optics solve?
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Three-step solution: (1) Expand the input field into plane waves as

f(x,y) = jy F(yvlw)exp[hij(Vxx-Fvyy)]dvxdvy,

—

IFT(F) FT(f) \s/;)atial frequency v.=1/A,
N

i.e, calculate two-dimensional FT(f), (2) propagate the obtained plane
waves to the output plane, and (3) sum the propagated waves to obtain
the output field. If the system is free space, the field atany z is

g(x,y,z) = ff F(v,,v,) exp[—j(Zﬂ-vxx 1 2~n-vyy)] exp( —jk,z) dv, dv,
FT(F)  FT(g)



Two-dimensional FT and IFT

In rectangular coordinates
FT: F(v,,v,) = ff f(x,y)exp[qur(vxx +vyy)]dxdy,

IFT: f(x,y) = ff F(v,,v,) exp[—*jZﬂ'(vxx + vyy)] dv,dv,,

(spatial frequencies)

In polar coordinates for circularly symmetric field profiles

(0]

FT: G(p) = j g(r) 2nr Jo(2mrp) dr, r=4x*+y?
0

co

FT: 90) = [ G 2mpfoCuroydp,  p= [vE 4]

0 (radial spatial frequency)
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Propagation in free space (diffraction)

Any linear system can be Eg
characterized either byan 5
impulse-response function 5 S
5

h(x, y) b
S
or by a transfer function S :
N
H(v, ) §°
Q
<
o
Q

glx,y) = H h(x—x",y—vy") f(x',y)dx'dy" - convolution h = f
The intensity is 1(X, y) = |g(X, ¥)|?

= G(vx,vy) = H(vx, vy)F(vx,vy).

The transfer function of free space is



Diffraction in Fresnel approximation

For small propagation angles (4d? >> a*/4), the Taylor expansion yields

kE+ks
2k

= H(vy,v,) = e k4 ~ exp[—jkd + jrAd(vZ + v2)]

The IFT of H(vy, vy) is the impulse-response function

h(x,y) = exp [—]k (d +Z +y )]

a paraboI0|daI wave instead of spherical,

e—jkr

The diffracted field g (X, y) is found from

glx,y) = U F(vx, vy)H(vx, vy)exp[—jZn(vxx + vyy)dvxdvy]

or directly from the convolution integral (Fresnel diffraction integral)

. Y N2
9C6) =)L]_d ﬂ exp [_jk <d+(x x)ztz(y y') )]f(x,,y,)dx,dy,_




Diffraction in Fraunhoffer approximation

If in addition, we have d >> a?/4, then

.2 Y. N2
9(6) =)L]_dﬂ exp [_jk<d+(x x)2+d(y y') )]f(x,,y,)dx,dy,

/{de —Jjkd _]Zd(x +y%) ﬂf(x y'exp IJZH(EJC +— )] dx'dy’

- )
Xy
F (Ad ’ Ad)

Neglecting also the quadratic phase factor, we obtain

9607) =~ hof (5.39)

where hgy = /,l]—de"j"d.

FRAUNHOFFER

i = ?Ef}}%>

FRESNEL




Fourier transform using a lens
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A, Af

Hence, the lens maps the spatial frequencies of the field to the coordinates (X, y), i.e.,

g(x,y) « F(%%)

K (v2iy2
The transmission coefficient of the lensis t; = ejzf(x Y ). The Fresnel approximation

. _ £ 2 2
gives g(x,y) = /,l]—fe sz(x 4 )U( y) Due to propagation over the distance d,

Af’Af
. (x%+y2)(d-f)

U(%%) =F(A’; M)Hd (ﬁ ﬁ) = g(x,y) = WOHD a7 F(%%)
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Examples of diffraction patterns

Fraunhoffer diffraction in free space

Diffraction
pattern

Diffraction
pattern

Aperture

Dy , .
T 1(0, y) i d/ﬁiry pattern
Dy~ = D~ p
0 v 0, = 1.22—=

D

Fresnel diffraction of focused light (Fourier transform by a lens)

Ditfraction
pattern
e
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