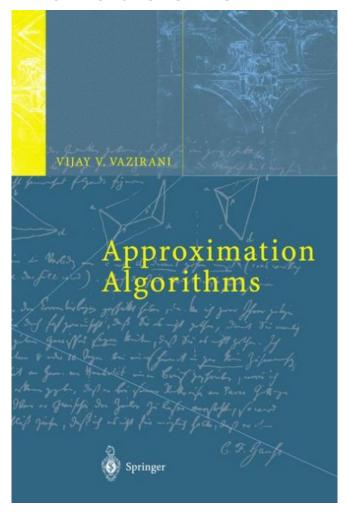


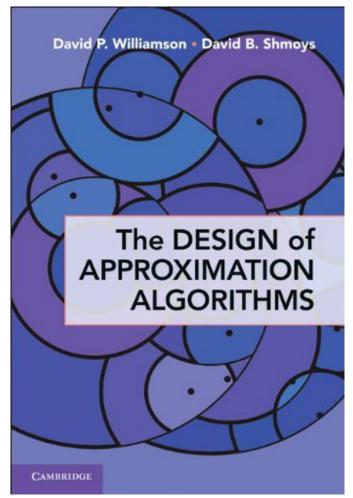
Lecture 1: Introduction & Vertex Cover

Joachim Spoerhase

Textbooks



Vijay V. Vazirani Approximation Algorithms Springer-Verlag 2003



http://www.designofapproxalgs.com/
D. P. Williamson, D.B. Shmoys
The Design of
Approximation Algorithms
Cambridge-Verlag 2011

"All exact science is dominated by the idea of approximation."

Bertrand Russell

Overview of Possible Topics

Combinatorial Algorithms

- Introduction
- Set Cover
- Steiner Tree and TSP
- Multiway Cut
- *k*-Center
- Shortest Superstring
- Knapsack
- Bin Packing
- Minimum Makespan Scheduling
- Euclidean TSP

LP-Based Algorithms

- Introduction to LP-Duality
- Set Cover via Dual Fitting
- Rounding Applied to Set Cover
- Set Cover via the Primal–Dual Schema
- Maximum Satisfiability
- Facility Location

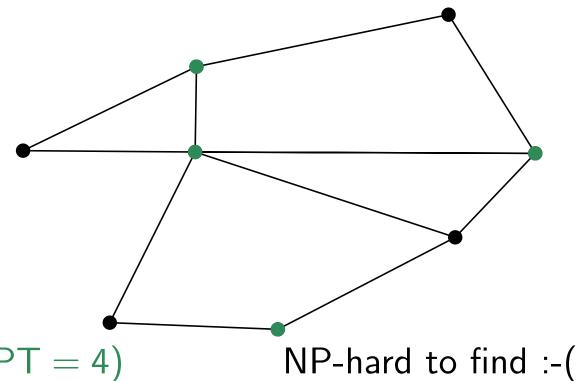
• . . .

- Many optimization problems are NP-hard (e.g. the travelling salesman problem)
- → an optimal solution cannot be efficiently computed unless P=NP.
- However, good approximate solutions can often be found efficiently!
- Techniques for the design and analysis of approximation algorithms arise (currently) mostly from studying specific optimization problems.

VERTEX COVER (cardinality)

Input Graph G = (V, E)

Output a minimum vertex cover: a minimum vertex set $V' \subseteq V$, such that every edge is **covered** by V' (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).

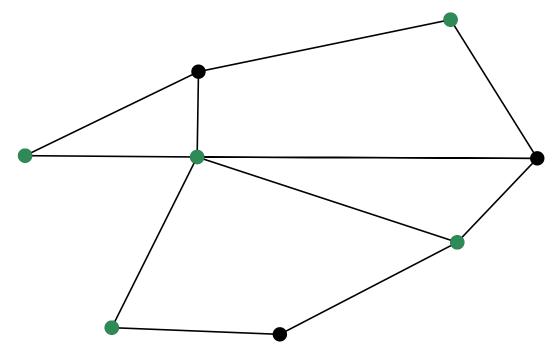


Optimum (OPT = 4)

VERTEX COVER (cardinality)

Input Graph G = (V, E)

Output a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$, such that every edge is **covered** by V' (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



"good" approximate solution (5/4-Approximation)

NP-Optimization Problem

An NP-optimization problem Π is given by:

- A set D_{Π} of **instances**. We use |I| to denote the size of an instance $I \in D_{\Pi}$.
- For each instance $I \in D_{\Pi}$ there is a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I where:
 - For each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|.
 - There is a polynomial time algorithm to decide for each pair (s,I), whether $s \in S_{\Pi}(I)$
- A polynomial time computable objective function obj_{Π} , which assigns a positive objective value $\operatorname{obj}_{\Pi}(I,s)$ to a given pair (I,s).
- \bullet Π is either a minimization or maximization problem.

Vertex Cover NP-Optimization Problem

Exercise

What are the *instances*?

What are the *feasible solutions*?

What is the *objective function*?

Optimum, and optimal objective value.

Let Π be a minimization (maximization) problem and $I \in D_{\Pi}$ be an instance of Π . A feasible solution $s^* \in S_{\Pi}(I)$ is **Optimal** when $\operatorname{obj}_{\Pi}(I, s^*)$ is the minimum (maximum) among objective values attained by the feasible solutions of I.

The optimal value $\operatorname{obj}_{\Pi}(I, s^*)$ of the objective function is also denoted by $\operatorname{OPT}_{\Pi}(I)$ or simply OPT in context.

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$. A factor- α -approximation algorithm for Π is an efficient algorithm that provides a feasible solution $s \in S_{\Pi}(I)$ for any instance $I \in D_{\Pi}$ such that:

$$\frac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}_{\Pi}(I)} \leq \alpha.$$

maximization

 $\alpha:\mathbb{N}\to\mathbb{Q}$

Let Π be a minimization problem and $Q \in \mathbb{Q}^+$.

A factor- α -approximation algorithm for Π is an efficient algorithm that provides a feasible solution $s \in S_{\Pi}(I)$ for any instance $I \in D_{\Pi}$ such that:

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}_{\Pi}(I)} \stackrel{\geq}{\sim} \alpha(|I|)$$

Approximation Alg. for VERTEX COVER

Ideas?

- Edge-Greedy
- Vertex-Greedy (see Exercises)
- Inclusion-wise minimal vertex cover

How can we measure the quality of a feasible solution?

Problem: How can we estimate $\frac{obj_{\Pi}(I,s)}{OPT}$ when it is hard to calculate OPT?

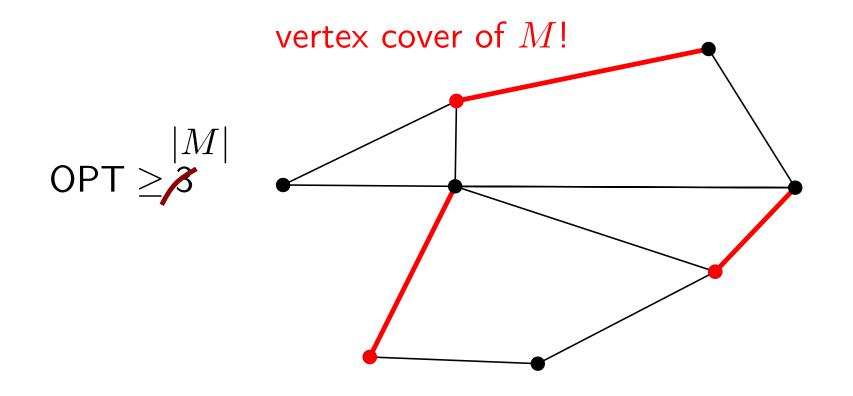
Idea: Find a "good" lower bound $L \leq \mathsf{OPT}$ for OPT and compare it to our approximate solution.

$$\frac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}} \leq \frac{\mathsf{obj}_{\Pi}(I,s)}{L}$$

Lower Bound by Matchings

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** when no vertex of G is incident to two edges in M.

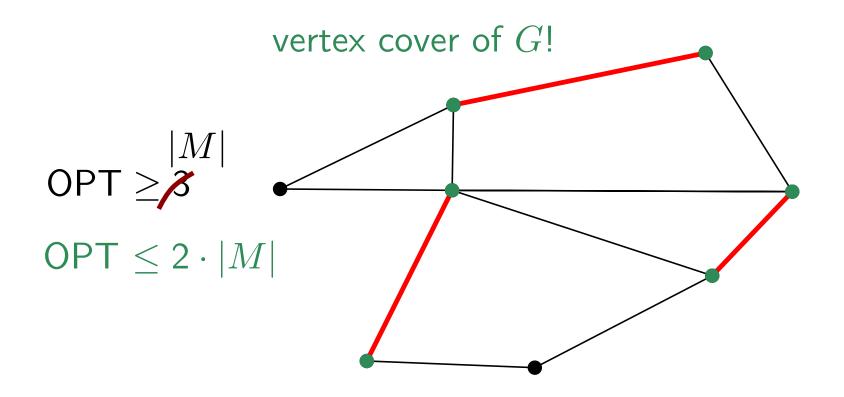
M is **maximal** when there is no matching M' with $M' \supseteq M$.



Lower Bound by Matchings

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** when no vertex of G is incident to two edges in M.

M is **maximal** when there is no matching M' with $M' \supseteq M$.



Approximation Alg. for VERTEX COVER

```
Algorithm for Vertex Cover (G)
M \leftarrow \emptyset
foreach e \in E(G) do

if e is not adjacent to an edge in M then

M \leftarrow M \cup \{e\}
return \{u, v \mid uv \in M\}
```

Thm 1.1 The above algorithm is a factor-2 approximation algorithm for VERTEX COVER

Next week: Set Cover