

CS-E4530 Computational Complexity Theory

Lecture 14: Other Approaches to Intractable Problems

Aalto University School of Science Department of Computer Science

Spring 2019

Agenda

- Case studies: MinVC and MaxIS
- Parameterisation
- Exact exponential algorithms
- Other approaches

Solving Hard Problems: Parameterisation

• There are intractable problems that we don't know how to solve in polynomial time

How to deal with such problems in practice?

Today we look at various approaches to this question:

- Parameterised algorithms
- Faster exact exponential algorithms
- Restricted subproblems
- Heuristics

Case 1: MinVC on Trees

Minimum Vertex Cover (MinVC)

- Instance: Graph G = (V, E), an integer $k \ge 1$.
- **Question:** Is there a set of vertices *C* such that $|C| \le k$ and for all $\{u, v\} \in E$, either $v \in C$ or $u \in C$ (or both)?

Trivial algorithm for finding minimum vertex cover:

- Try all possible sets $C \subseteq V$
- Check if C is a vertex cover
- Running time: $2^n \operatorname{poly}(n)$

Consider finding minimum vertex cover on trees

- A graph G = (V, E) is a tree if G does not contain cycles
- Arbitrarily choose one vertex as the root

Case 1: MinVC on Trees

• Greedy algorithm finds an optimal vertex cover on trees:

- Any parent u of a leaf v can always be selected to be in an optimal vertex cover
 - Edge {*u*, *v*} needs to be covered, so either *u* or *v* is in any optimal cover
 - v does not cover other edges, so we can always replace it with u
- We can thus greedily select all parents of the leaves, and remove covered edges
- Running time is polynomial in the size of input
- Minimum vertex cover on trees is in polynomial time

Case 2: Parameterised MinVC

- Another perspective on VC: how does the complexity depend on parameter *k*?
 - ► the NP-completeness proof roughly says that the problem is difficult if k ≈ 6 |V| /7
 - What if e.g. $k = O(\log |V|)$?

• Trivial algorithm for a small minimum vertex cover:

- Try all possible sets $C \subseteq V$ with $|C| \leq k$
- Check if C is a vertex cover
- Running time: roughly $O(n^k)$

Case 2: Parameterised MinVC

Decision algorithm for vertex cover

Input: graph G = (V, E), k

- If k = 0 and G has an edge, reject. If k = 0 and G has no edges, accept.
- Select an arbitrary edge $e = \{u, v\}$ from the graph.
- Try adding one of the endpoints of *e* to the vertex cover and recursively call the algorithm to determine if either of the cases can be completed to a vertex cover of size *k*:
 - Call this algorithm recursively on $(G \setminus v, k-1)$
 - Call this algorithm recursively on $(G \setminus u, k-1)$
- Accept if one of the recursive calls accepts; otherwise reject.

Case 2: Parameterised MinVC

• Algorithm finds a vertex cover of size k if one exists:

Since any vertex cover contains at least one endpoint of each edge, the recursion will have a branch corresponding to any vertex cover of size k

• Algorithm runs in time $2^k poly(n)$:

- Since the parameter k decreases by one each time the algorithm is called, the depth of the recursion tree is at most k
- Total size of the recursion tree is thus at most 2^k

Maximum Independent Set (MaxIS)

- Instance: Graph G = (V, E), an integer $k \ge 1$.
- **Question:** Is there a set of vertices *I* such that $|I| \ge k$ and for all $u, v \in I$, we have that $\{u, v\} \notin E$?
- Trivial algorithm for finding a MaxIS:
 - Try all possible sets $C \subseteq V$
 - Check if C is an independent set
 - Running time: 2ⁿ poly(n)
 - Can we do better?

• In the following, *N*[*v*] denotes the closed neighbourhood of *v*, that is,

$$N[v] = \{v\} \cup \{u \in V \colon \{u, v\} \in E\}$$

An algorithm for independent set

Input: graph G = (V, E), Output: size of maximum IS

- If |V| = 0, return 0.
- Select the vertex $v \in V$ with smallest degree.
 - ► Recursively compute the size s_u of the maximum independent set for G \ N[u] for all u ∈ N[v]
 - Return $1 + \min_{u \in N[v]} s_u$

• Algorithm finds the size of the maximum IS:

- Recursion tries all possible choices
- ► For any vertex v, at least one vertex in N[v] is in any maximum independent set
- Complexity analysis:
 - Size of the recursion tree is given by the recurrence

$$T(n) \leq T(n - \deg(v) - 1) + \sum_{u \in N[v]} T(n - \deg(u) - 1),$$

where v is the vertex chosen by the algorithm

Analysis of the recurrence:

- Since the algorithm picks the vertex with smallest degree, we have deg(v) ≤ deg(u) for all u ∈ N[v]
- ▶ Thus, we have $T(n) \leq (\deg(v) + 1)T(n \deg(v) 1)$
- Writing $s = \deg(v) + 1$, we have

$$T(n) \le sT(n-s) \le 1+s+s^2+\dots+s^{n/s}$$
$$\le \frac{1-s^{n/s+1}}{1-s} = s^{n/s}\operatorname{poly}(n,s)$$

• $s^{n/s}$ is maximised by s = 3 (for integers)

• MaxIS can be solved in time $3^{n/3} \operatorname{poly}(n) \approx 1.44^n \operatorname{poly}(n)$

Parameterised Problems

Definition

Parameterisation and parameterised problems

- A *parameterisation* is a polynomial-time computable function $k: \{0,1\}^* \to \mathbb{N}.$
- A *parameterised problem* is a pair (*L*,*k*), where *L* ⊆ {0,1}* is a language and *k* is a parameterisation.

Parameter can describe any aspect of the instance

- Simple examples: number of vertices, number of edges
- Define parameter to be e.g. 0 for non-valid instances
- Basic approach of parameterised complexity: *study complexity in terms of different parameters*

Parameterised Problems

Natural parameter for optimisation-style problems:

► size of the solution

Parameterised Vertex Cover

- Instance: Graph G = (V, E), an integer $k \ge 1$.
- Parameter: k.
- **Question:** Is there a set of vertices *C* such that $|C| \le k$ and for all $\{u, v\} \in E$, either $v \in C$ or $u \in C$ (or both)?

Fixed-parameter Tractability

Definition

A parameterised problems (L,k) is *fixed-parameter tractable (FPT)* if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, polynomial p and a Turing machine M such that M decides L and runs in time

 $f(k(x)) \cdot p(|x|)$

for all $x \in \{0,1\}^*$

• Fixed-parameter algorithm isolates the non-polynomial behaviour to the parameter

For constant parameter, the problem is polynomial-time solvable

Fixed-parameter Tractability

Some fixed-parameter tractable problems

- Vertex cover parameterised by the solution size
- *k-path* parameterised by k
- CNF-SAT parameterised by the number of variables
- Not FPT unless P = NP
 - Colouring parameterised by the number of colours
- What about *independent set* (parameterised by solution size)?

FPT Reductions

Definition

An *FPT reduction* from a parameterised problem (L,k) to a parameterised problem (L',k') is a mapping $R: \{0,1\}^* \to \{0,1\}^*$ such that

- $x \in L$ if and only if $R(x) \in L'$,
- *R* is computable in time f(k(x)) poly(*n*), and
- there is a computable function $g \colon \mathbb{N} \to \mathbb{N}$ such that $k'(R(x)) \leq g(k(x))$ for all $x \in \{0,1\}^*$.

FPT reductions preserve fixed-parameter tractability

 Theory of fixed-parameter intractability is based on FPT reductions

W[1] and W[2]

- There is a hierarchy of classes *W*[1], *W*[2], ... of parameterised problems believed not to be FPT
- Exact definition of class *W*[*t*] is somewhat technical
- Complete problems for *W*[1] under FPT reductions:
 - Independent set parameterised by the solution size
 - Deciding if a nondeterministic single-tape Turing machine accepts the empty string in k steps, parameterised by k
- Complete problems for W[2] under FPT reductions:
 - Dominating set parameterised by the solution size
 - Deciding if a nondeterministic *multi-tape* Turing machine accepts the empty string in k steps, parameterised by k

Definition

A parameterised problems (L,k) is in *class XP* if there is a computable function $f: \mathbb{N} \to \mathbb{N}$, a constant c and a Turing machine M such that M decides L and runs in time $c \cdot |x|^{f(k(x))}$ for all $x \in \{0,1\}^*$

Problems in XP have polynomial-time solutions for constant parameter

• The *degree* of the polynomial can grow very quickly

•
$$\mathsf{FPT} \subseteq W[1] \subset W[2] \subseteq \cdots \subseteq \mathsf{XP}$$

Exact Exponential Algorithm

• Assuming $P \neq NP$, we cannot solve certain problems in polynomial time

- Can we still solve them fast enough?
- 1.0001^n is better than n^{100} in practice
- Warning: many 'fast' exact algorithms are not really practical
- Exact exponential algorithmics studies *less bad* exponential algorithms

Exact Exponential Algorithm

• Examples of exact exponential algorithms:

- *Maximum independent set* can be solved in time $O(1.1996^n)$
- Undirected Hamiltonian cycle can be solved in time $O(1.657^n)$
- *TSP* can be solved in time $O(2^n n^2)$

Typical questions:

- What is the best δ such that we can solve a given problem in time O(δⁿ)?
- Can we solve a given problem in subexponential time? (taken to mean 2^{o(1)} in this context)

Exponential Time Hypotheses

- For CNF-SAT, the best algorithm has complexity about $2^n \operatorname{poly}(n,m)$ (*n* variables, *m* clauses)
 - ► Is there an $O((2-\epsilon)^n)$ algorithm?
 - Is there a subexponential algorithm?

• This gives raise to two hypotheses:

- Exponential time hypothesis (ETH): no 2^{o(n)} algorithm for CNF-SAT
- Strong exponential time hypothesis (SETH): no O((2 − ε)ⁿ) algorithm for CNF-SAT for any ε > 0
- Not necessarily widely believed
- Can still be used to prove lower bounds for other problems via fine-grained reductions

Restricted Subproblems

- For understanding NP-hard problem, a common solution is to look at *restricted subproblems*
 - Example: TSP, Metric TSP, Euclidean TSP
 - Subproblems may be easier than the problem itself
- For graph problems, this often means considering restricted input graphs:
 - Trees: many common problems are polynomial-time solvable on trees, but not everything
 - Planar graphs: graphs that can be drawn on a plane without edges crossing
 - Bounded treewidth graphs: generalisation of trees, important in fixed-parameter complexity

Heuristics

Heuristics are algorithmic techniques without theoretical guarantees

- Common outside theoretical computer science
- However, often useful in practice

• Heuristics can fail in many ways:

- No running time guarantees
- May not find an optimal solution, just a feasible one
- No approximation guarantees
- May fail to find a solution when one exists, or fail to detect that solution does not exist

Heuristics

Heuristics are not necessarily incompatible with theory

Ideally: theoretical guarantees + heuristics

• Case: SAT solvers for CNF-SAT

- Modern SAT solvers use heuristic algorithms to find a solution quickly if one exists
- Since a solutions can be verified, yes-instances can often be solved very quickly
- Does not necessarily help with no-instances
- This makes SAT solvers a powerful tool in practical algorithmics when a reduction to CNF-SAT is feasible

Lecture 14: Summary

- Fixed-parameter tractability
- W[1]-hard and W[2]-hard problems
- Exact Exponential Algorithms
- Restricted subproblems
- Heuristics

