
CS-E4530 Computational Complexity Theory

Lecture 14: Other Approaches to Intractable Problems

Aalto University
School of Science
Department of Computer Science

Spring 2019

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

2/26

Agenda

Case studies: MinVC and MaxIS

Parameterisation

Exact exponential algorithms

Other approaches

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

3/26

Solving Hard Problems: Parameterisation

There are intractable problems that we don’t know how to
solve in polynomial time

I How to deal with such problems in practice?

Today we look at various approaches to this question:
I Parameterised algorithms
I Faster exact exponential algorithms
I Restricted subproblems
I Heuristics

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

4/26

Case 1: MinVC on Trees

Minimum Vertex Cover (MinVC)

Instance: Graph G = (V,E), an integer k ≥ 1.

Question: Is there a set of vertices C such that |C| ≤ k and for
all {u,v} ∈ E, either v ∈ C or u ∈ C (or both)?

Trivial algorithm for finding minimum vertex cover:
I Try all possible sets C ⊆ V
I Check if C is a vertex cover
I Running time: 2n poly(n)

Consider finding minimum vertex cover on trees
I A graph G = (V,E) is a tree if G does not contain cycles
I Arbitrarily choose one vertex as the root

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

5/26

Case 1: MinVC on Trees

Greedy algorithm finds an optimal vertex cover on trees:
I Any parent u of a leaf v can always be selected to be in an optimal

vertex cover
• Edge {u,v} needs to be covered, so either u or v is in any optimal

cover
• v does not cover other edges, so we can always replace it with u

I We can thus greedily select all parents of the leaves, and remove
covered edges

Running time is polynomial in the size of input

Minimum vertex cover on trees is in polynomial time

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

6/26

Case 2: Parameterised MinVC

Another perspective on VC: how does the complexity
depend on parameter k?

I the NP-completeness proof roughly says that the problem is
difficult if k ≈ 6 |V|/7

I What if e.g. k = O(log |V|)?

Trivial algorithm for a small minimum vertex cover:
I Try all possible sets C ⊆ V with |C| ≤ k
I Check if C is a vertex cover
I Running time: roughly O(nk)

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

7/26

Case 2: Parameterised MinVC

Decision algorithm for vertex cover

Input: graph G = (V,E), k

If k = 0 and G has an edge, reject. If k = 0 and G has no edges,
accept.

Select an arbitrary edge e = {u,v} from the graph.
Try adding one of the endpoints of e to the vertex cover and
recursively call the algorithm to determine if either of the cases
can be completed to a vertex cover of size k:

I Call this algorithm recursively on (G\ v,k−1)
I Call this algorithm recursively on (G\u,k−1)

Accept if one of the recursive calls accepts; otherwise reject.

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

8/26

Case 2: Parameterised MinVC

Algorithm finds a vertex cover of size k if one exists:
I Since any vertex cover contains at least one endpoint of each

edge, the recursion will have a branch corresponding to any vertex
cover of size k

Algorithm runs in time 2k poly(n):
I Since the parameter k decreases by one each time the algorithm

is called, the depth of the recursion tree is at most k
I Total size of the recursion tree is thus at most 2k

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

9/26

Case 3: Exact Algorithm for MaxIS

Maximum Independent Set (MaxIS)

Instance: Graph G = (V,E), an integer k ≥ 1.

Question: Is there a set of vertices I such that |I| ≥ k and for all
u,v ∈ I, we have that {u,v} /∈ E?

Trivial algorithm for finding a MaxIS:
I Try all possible sets C ⊆ V
I Check if C is an independent set
I Running time: 2n poly(n)
I Can we do better?

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

10/26

Case 3: Exact Algorithm for MaxIS

In the following, N[v] denotes the closed neighbourhood of v,
that is,

N[v] = {v}∪{u ∈ V : {u,v} ∈ E}

An algorithm for independent set

Input: graph G = (V,E), Output: size of maximum IS

If |V|= 0, return 0.
Select the vertex v ∈ V with smallest degree.

I Recursively compute the size su of the maximum independent set
for G\N[u] for all u ∈ N[v]

I Return 1+minu∈N[v] su

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

11/26

Case 3: Exact Algorithm for MaxIS

Algorithm finds the size of the maximum IS:
I Recursion tries all possible choices
I For any vertex v, at least one vertex in N[v] is in any maximum

independent set

Complexity analysis:
I Size of the recursion tree is given by the recurrence

T(n)≤ T(n−deg(v)−1)+ ∑
u∈N[v]

T(n−deg(u)−1) ,

where v is the vertex chosen by the algorithm

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

12/26

Case 3: Exact Algorithm for MaxIS

Analysis of the recurrence:
I Since the algorithm picks the vertex with smallest degree, we have

deg(v)≤ deg(u) for all u ∈ N[v]
I Thus, we have T(n)≤ (deg(v)+1)T(n−deg(v)−1)
I Writing s = deg(v)+1, we have

T(n)≤ sT(n− s)≤ 1+ s+ s2 + · · ·+ sn/s

≤ 1− sn/s+1

1− s
= sn/s poly(n,s)

I sn/s is maximised by s = 3 (for integers)

MaxIS can be solved in time 3n/3 poly(n)≈ 1.44n poly(n)

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

13/26

Parameterised Problems

Definition
Parameterisation and parameterised problems

A parameterisation is a polynomial-time computable function
k : {0,1}∗→ N.

A parameterised problem is a pair (L,k), where L⊆ {0,1}∗ is a
language and k is a parameterisation.

Parameter can describe any aspect of the instance
I Simple examples: number of vertices, number of edges
I Define parameter to be e.g. 0 for non-valid instances

Basic approach of parameterised complexity: study
complexity in terms of different parameters

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

14/26

Parameterised Problems

Natural parameter for optimisation-style problems:
I size of the solution

Parameterised Vertex Cover

Instance: Graph G = (V,E), an integer k ≥ 1.

Parameter: k.

Question: Is there a set of vertices C such that |C| ≤ k and for
all {u,v} ∈ E, either v ∈ C or u ∈ C (or both)?

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

15/26

Fixed-parameter Tractability

Definition
A parameterised problems (L,k) is fixed-parameter tractable (FPT) if
there is a computable function f : N→ N, polynomial p and a Turing
machine M such that M decides L and runs in time

f (k(x)) ·p(|x|)

for all x ∈ {0,1}∗

Fixed-parameter algorithm isolates the non-polynomial
behaviour to the parameter

I For constant parameter, the problem is polynomial-time solvable

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

16/26

Fixed-parameter Tractability

Some fixed-parameter tractable problems
I Vertex cover parameterised by the solution size
I k-path parameterised by k
I CNF-SAT parameterised by the number of variables

Not FPT unless P = NP
I Colouring parameterised by the number of colours

What about independent set (parameterised by solution
size)?

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

17/26

FPT Reductions

Definition
An FPT reduction from a parameterised problem (L,k) to a
parameterised problem (L′,k′) is a mapping R : {0,1}∗→{0,1}∗
such that

x ∈ L if and only if R(x) ∈ L′,

R is computable in time f (k(x))poly(n), and

there is a computable function g : N→ N such that
k′(R(x))≤ g(k(x)) for all x ∈ {0,1}∗.

FPT reductions preserve fixed-parameter tractability
I Theory of fixed-parameter intractability is based on FPT

reductions

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

18/26

W[1] and W[2]

There is a hierarchy of classes W[1],W[2], . . . of
parameterised problems believed not to be FPT

Exact definition of class W[t] is somewhat technical
Complete problems for W[1] under FPT reductions:

I Independent set parameterised by the solution size
I Deciding if a nondeterministic single-tape Turing machine accepts

the empty string in k steps, parameterised by k

Complete problems for W[2] under FPT reductions:
I Dominating set parameterised by the solution size
I Deciding if a nondeterministic multi-tape Turing machine accepts

the empty string in k steps, parameterised by k

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

19/26

XP

Definition
A parameterised problems (L,k) is in class XP if there is a computable
function f : N→ N, a constant c and a Turing machine M such that M
decides L and runs in time c · |x|f (k(x)) for all x ∈ {0,1}∗

Problems in XP have polynomial-time solutions for constant
parameter

I The degree of the polynomial can grow very quickly

FPT⊆W[1]⊂W[2]⊆ ·· · ⊆ XP

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

20/26

Exact Exponential Algorithm

Assuming P 6= NP, we cannot solve certain problems in
polynomial time

I Can we still solve them fast enough?
I 1.0001n is better than n100 in practice
I Warning: many ‘fast’ exact algorithms are not really practical

Exact exponential algorithmics studies less bad exponential
algorithms

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

21/26

Exact Exponential Algorithm

Examples of exact exponential algorithms:
I Maximum independent set can be solved in time O(1.1996n)
I Undirected Hamiltonian cycle can be solved in time O(1.657n)
I TSP can be solved in time O(2nn2)

Typical questions:
I What is the best δ such that we can solve a given problem in time

O(δn)?
I Can we solve a given problem in subexponential time? (taken to

mean 2o(1) in this context)

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

22/26

Exponential Time Hypotheses

For CNF-SAT, the best algorithm has complexity about
2n poly(n,m) (n variables, m clauses)

I Is there an O
(
(2− ε)n

)
algorithm?

I Is there a subexponential algorithm?

This gives raise to two hypotheses:
I Exponential time hypothesis (ETH):

no 2o(n) algorithm for CNF-SAT
I Strong exponential time hypothesis (SETH):

no O
(
(2− ε)n

)
algorithm for CNF-SAT for any ε > 0

I Not necessarily widely believed
I Can still be used to prove lower bounds for other problems via

fine-grained reductions

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

23/26

Restricted Subproblems

For understanding NP-hard problem, a common solution is
to look at restricted subproblems

I Example: TSP, Metric TSP, Euclidean TSP
I Subproblems may be easier than the problem itself

For graph problems, this often means considering restricted
input graphs:

I Trees: many common problems are polynomial-time solvable on
trees, but not everything

I Planar graphs: graphs that can be drawn on a plane without
edges crossing

I Bounded treewidth graphs: generalisation of trees, important in
fixed-parameter complexity

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

24/26

Heuristics

Heuristics are algorithmic techniques without theoretical
guarantees

I Common outside theoretical computer science
I However, often useful in practice

Heuristics can fail in many ways:
I No running time guarantees
I May not find an optimal solution, just a feasible one
I No approximation guarantees
I May fail to find a solution when one exists, or fail to detect that

solution does not exist

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

25/26

Heuristics

Heuristics are not necessarily incompatible with theory
I Ideally: theoretical guarantees + heuristics

Case: SAT solvers for CNF-SAT
I Modern SAT solvers use heuristic algorithms to find a solution

quickly if one exists
I Since a solutions can be verified, yes-instances can often be

solved very quickly
I Does not necessarily help with no-instances

This makes SAT solvers a powerful tool in practical
algorithmics when a reduction to CNF-SAT is feasible

CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science

26/26

Lecture 14: Summary

Fixed-parameter tractability

W[1]-hard and W[2]-hard problems

Exact Exponential Algorithms

Restricted subproblems

Heuristics

