A

Aalto University
School of Science

CS-E4530 Computational Complexity Theory

Lecture 14: Other Approaches to Intractable Problems

Aalto University
School of Science
Department of Computer Science

Spring 2019

Agenda

@ Case studies: MinVC and MaxIS
@ Parameterisation

@ Exact exponential algorithms

@ Other approaches

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
2/26

Solving Hard Problems: Parameterisation

@ There are intractable problems that we don’t know how to
solve in polynomial time

» How to deal with such problems in practice?

o Today we look at various approaches to this question:

» Parameterised algorithms

Faster exact exponential algorithms
Restricted subproblems

Heuristics

vV vVvYyy

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
3126

Case 1: MinVC on Trees

Minimum Vertex Cover (MinVC)
@ Instance: Graph G = (V,E), an integer k > 1.

@ Question: Is there a set of vertices C such that |C| < k and for
all {u,v} € E, either v € C or u € C (or both)?

@ Trivial algorithm for finding minimum vertex cover:

» Try all possible sets C C V
» Check if C is a vertex cover
» Running time: 2" poly(n)

@ Consider finding minimum vertex cover on frees

» Agraph G = (V,E) is a tree if G does not contain cycles
» Arbitrarily choose one vertex as the root

School of Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
Department of Computer Science
4/26

Case 1: MinVC on Trees

@ Greedy algorithm finds an optimal vertex cover on trees:

» Any parent u of a leaf v can always be selected to be in an optimal
vertex cover

e Edge {u,v} needs to be covered, so either u or v is in any optimal
cover
e v does not cover other edges, so we can always replace it with u

» We can thus greedily select all parents of the leaves, and remove
covered edges

@ Running time is polynomial in the size of input
@ Minimum vertex cover on trees is in polynomial time

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
School of Science Department of Computer Science
5/26

Case 2: Parameterised MinVC

@ Another perspective on VC: how does the complexity
depend on parameter k?
» the NP-completeness proof roughly says that the problem is
difficult if k = 6|V /7
» Whatife.g. k = O(log|V|)?

@ Trivial algorithm for a small minimum vertex cover:
» Try all possible sets C C V with |C| <k
» Check if C is a vertex cover
» Running time: roughly O(r*)

School of Science epartment of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
D
6/26

Case 2: Parameterised MinVC

Decision algorithm for vertex cover
Input: graph G = (V,E), k
@ If k=0 and G has an edge, reject. If k = 0 and G has no edges,
accept.

@ Select an arbitrary edge e = {u,v} from the graph.

@ Try adding one of the endpoints of e to the vertex cover and
recursively call the algorithm to determine if either of the cases
can be completed to a vertex cover of size k:

» Call this algorithm recursively on (G\v,k—1)
» Call this algorithm recursively on (G \ u,k—1)

@ Accept if one of the recursive calls accepts; otherwise reject.

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
School of Science Department of Computer Science
7/26

Case 2: Parameterised MinVC

o Algorithm finds a vertex cover of size k if one exists:
» Since any vertex cover contains at least one endpoint of each
edge, the recursion will have a branch corresponding to any vertex
cover of size k

@ Algorithm runs in time 2* poly(n):
» Since the parameter k decreases by one each time the algorithm
is called, the depth of the recursion tree is at most &
» Total size of the recursion tree is thus at most 2¢

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
School of Science Department of Computer Science
8/26

Case 3: Exact Algorithm for MaxIS

Maximum Independent Set (MaxIS)
@ Instance: Graph G = (V,E), an integer k > 1.

@ Question: Is there a set of vertices I such that |I| > k and for all
u,v € I, we have that {u,v} ¢ E?

@ Trivial algorithm for finding a MaxIS:
» Try all possible sets C C V

Check if C is an independent set

Running time: 2" poly(n)

Can we do better?

vV vy

School of Science Department of Computer Sci

Aalto University CS-E4530 Computation: al Comple ty'rheo y/Lec(ureH
9 25

Case 3: Exact Algorithm for MaxIS

@ In the following, N|v] denotes the closed neighbourhood of v,
that is,
Np]={v}U{ueV: {uv} cE}

An algorithm for independent set
Input: graph G = (V,E), Output: size of maximum IS
e If [V| =0, return 0.

@ Select the vertex v € V with smallest degree.

» Recursively compute the size s, of the maximum independent set
for G\ Nu] for all u € N[v]
> Return 1+ min,eypy) su

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
10126

Case 3: Exact Algorithm for MaxIS

@ Algorithm finds the size of the maximum IS:

» Recursion tries all possible choices
» For any vertex v, at least one vertex in N[v] is in any maximum
independent set

@ Complexity analysis:
» Size of the recursion tree is given by the recurrence

T(n) <T(n—deg(v)—1)+ Z[]T(n —deg(u)—1),
UEN|V,

where v is the vertex chosen by the algorithm

School of Science Department of Computer Sci

Aalto University CS-E4530 Computation: al Comple ty'rheo y/Lec(ureH
11 26

Case 3: Exact Algorithm for MaxIS

@ Analysis of the recurrence:
» Since the algorithm picks the vertex with smallest degree, we have
deg(v) < deg(u) for all u € N[v]
» Thus, we have T(n) < (deg(v) +1)T(n —deg(v) — 1)
» Writing s = deg(v) + 1, we have

T(n) <sT(n—s) < 145454+
1 —s/st1
= 1-s

= 5"/ poly(n, s)

» s"/% is maximised by s = 3 (for integers)
@ MaxIS can be solved in time 3"/ poly(n) ~ 1.44" poly(n)

School of Science Department of Computer Sci

Aalto University CS-E4530 Computation: al Comple ty'rheo y/Lec(ureH
12 26

Parameterised Problems

Definition
Parameterisation and parameterised problems
@ A parameterisation is a polynomial-time computable function
k: {0,1}* — N.
@ A parameterised problem is a pair (L,k), where L C {0,1}* is a
language and k is a parameterisation.

@ Parameter can describe any aspect of the instance
» Simple examples: number of vertices, number of edges
» Define parameter to be e.g. 0 for non-valid instances
@ Basic approach of parameterised complexity: study
complexity in terms of different parameters

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
A School of Science Department of Computer Science
13/26

Parameterised Problems

@ Natural parameter for optimisation-style problems:
> size of the solution

Parameterised Vertex Cover
@ Instance: Graph G = (V,E), an integer k > 1.
@ Parameter: k.

@ Question: Is there a set of vertices C such that |C| < k and for
all {u,v} € E, either v € C or u € C (or both)?

School of Science Department of Computer Sci

Aalto University CS-E4530 Computation: al Comple ty'rheo y/Lec(ureH
14/ 26

Fixed-parameter Tractability

Definition

A parameterised problems (L, k) is fixed-parameter tractable (FPT) if
there is a computable function f: N — N, polynomial p and a Turing
machine M such that M decides L and runs in time

f(k(x)) - p(|x])

forallx € {0,1}*

@ Fixed-parameter algorithm isolates the non-polynomial
behaviour to the parameter
» For constant parameter, the problem is polynomial-time solvable

Aalto University CS-E4530 Computational Complexi tyTheo y/Lec(ureH
School of Science Department of Computer Sci
15 26

Fixed-parameter Tractability

@ Some fixed-parameter tractable problems

» Vertex cover parameterised by the solution size
> k-path parameterised by k
» CNF-SAT parameterised by the number of variables

@ Not FPT unless P = NP
» Colouring parameterised by the number of colours

@ What about independent set (parameterised by solution
size)?

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
16126

FPT Reductions

Definition

An FPT reduction from a parameterised problem (L, k) to a
parameterised problem (L',k) is a mapping R: {0,1}* — {0,1}"
such that

@ x € Lifandonly if R(x) € L,
@ R is computable in time f(k(x)) poly(n), and

@ there is a computable function g: N — N such that
K (R(x)) < g(k(x)) forall x € {0, 1}*.

@ FPT reductions preserve fixed-parameter tractability

» Theory of fixed-parameter intractability is based on FPT
reductions

Aalto University CS-E4530 Computation: al Comple ty'rheo y/Lec(ureH
School of Science Department of Computer Sci
17 26

W[1] and W[2]

@ There is a hierarchy of classes W|[1],W[2],... of
parameterised problems believed not to be FPT

e Exact definition of class W[r| is somewhat technical
@ Complete problems for W[1] under FPT reductions:

» Independent set parameterised by the solution size
» Deciding if a nondeterministic single-tape Turing machine accepts
the empty string in k steps, parameterised by k

@ Complete problems for W[2] under FPT reductions:

» Dominating set parameterised by the solution size
» Deciding if a nondeterministic multi-tape Turing machine accepts
the empty string in k steps, parameterised by k

Aalto University CS-E4530 Computational Comple tyTheo y/Lec(ureM
A School of Science Department of Cot
18 2()

XP

Definition

A parameterised problems (L, k) is in class XP if there is a computable
function f: N — N, a constant ¢ and a Turing machine M such that M
decides L and runs in time ¢-]xV(k(x)) forallx € {0,1}*

@ Problems in XP have polynomial-time solutions for constant
parameter
» The degree of the polynomial can grow very quickly

o FFTC W[I]C W[2] C--- C XP

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
School of Science Department of Computer Science
19/26

Exact Exponential Algorithm

@ Assuming P = NP, we cannot solve certain problems in
polynomial time
» Can we still solve them fast enough?
» 1.0001” is better than n'% in practice
» Warning: many ‘fast’ exact algorithms are not really practical

@ Exact exponential algorithmics studies less bad exponential
algorithms

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
School of Science Department of Computer Science
20/26

Exact Exponential Algorithm

@ Examples of exact exponential algorithms:
» Maximum independent set can be solved in time O(1.1996")
» Undirected Hamiltonian cycle can be solved in time O(1.657")
» TSP can be solved in time O(2"n?)

@ Typical questions:
» What is the best & such that we can solve a given problem in time
o(8")?
» Can we solve a given problem in subexponential time? (taken to
mean 2°() in this context)

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
21/26

Exponential Time Hypotheses

@ For CNF-SAT, the best algorithm has complexity about
2"poly(n,m) (n variables, m clauses)
> Is there an O((2 —¢)") algorithm?
> Is there a subexponential algorithm?

@ This gives raise to two hypotheses:

» Exponential time hypothesis (ETH):
no 2°(") algorithm for CNF-SAT

» Strong exponential time hypothesis (SETH):
no O((2—¢)") algorithm for CNF-SAT for any € > 0

> Not necessarily widely believed

» Can still be used to prove lower bounds for other problems via
fine-grained reductions

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
School of Science Department of Computer Science
22/26

Restricted Subproblems

@ For understanding NP-hard problem, a common solution is
to look at restricted subproblems
» Example: TSP, Metric TSP, Euclidean TSP
» Subproblems may be easier than the problem itself

@ For graph problems, this often means considering restricted
input graphs:

» Trees: many common problems are polynomial-time solvable on
trees, but not everything

» Planar graphs: graphs that can be drawn on a plane without
edges crossing

» Bounded treewidth graphs: generalisation of trees, important in
fixed-parameter complexity

School of Science epartment of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
D
23/26

Heuristics

@ Heuristics are algorithmic techniques without theoretical
guarantees

» Common outside theoretical computer science
» However, often useful in practice

@ Heuristics can fail in many ways:
» No running time guarantees
May not find an optimal solution, just a feasible one
No approximation guarantees
May fail to find a solution when one exists, or fail to detect that
solution does not exist

vV vy

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
School of Science Department of Computer Science
2426

Heuristics

@ Heuristics are not necessarily incompatible with theory
» ldeally: theoretical guarantees + heuristics
@ Case: SAT solvers for CNF-SAT
» Modern SAT solvers use heuristic algorithms to find a solution
quickly if one exists
» Since a solutions can be verified, yes-instances can often be
solved very quickly
» Does not necessarily help with no-instances
@ This makes SAT solvers a powerful tool in practical
algorithmics when a reduction to CNF-SAT is feasible

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
School of Science Department of Computer Science

25/26

Lecture 14: Summary

Fixed-parameter tractability
WI[1]-hard and W[2]-hard problems
Exact Exponential Algorithms
Restricted subproblems

Heuristics

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 14
26/26

