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Boolean Circuits

@ Boolean circuits are a model of computing modelling the
computation of a Boolean function

f:{0,1}" = {0,1}
in terms of elementary Boolean operations

@ Motivation: modelling physical circuits
@ Motivation: understanding non-uniform computation

» Circuits are purely combinatorial objects
» Possibly easier to analyse?
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Boolean Circuits

Definition (Boolean circuits)

A Boolean circuit C with n inputs and 1 output is a directed acyclic
graph with n sources (vertices with no incoming edges) and 1 sink
(vertex with no outgoing edges) such that

@ all non-source vertices are labelled with either Vv, A, or —,
vertices labelled with VV or A have in-degree 2,
vertices labelled with — have in-degree 1, and

the n sources are labelled with integers 1,2,....n

Vertices are called gates
Source vertices are called inputs
The sink vertex is called output

Fan-in and fan-out refer to the in-degree and out-degree
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Boolean Circuits

Definition (Value of a Boolean circuit)
Given an input x € {0, 1}", the value v,4(x) of a gate g is defined as
follows:
e if g is an input labelled with i, then v,(x) = x;, and
@ if g is a non-input gate, then value of g is defined naturally in
terms of the label of g.
The value of the circuit C(x) is defined as the value of the output gate.

@ A circuit C computes a function f: {0,1}" — {0,1} if for all
x € {0,1}", we have that C(x) = f(x)

Aalto University CS-E4530 Computational Complexity Theory / Lecture 15
A School of Science Department of Computer Science
532



Boolean Circuits

@ Definitions are robust in terms of small modifications

» We can allow A and V gates to have unbounded fan-in, as a gate
with fan-in £ > 3 can be simulated with a binary tree

» We can define circuits with multiple output gates

» We can allow constant gates 0 and 1
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Circuits and Boolean Formulas

@ Boolean formulas can be seen as special type of circuits

» Only input gates can have fan-out large than one
» Alternatively: duplicated input gates

@ All Boolean functions f: {0,1}" — {0, 1} can be described
by a CNF of size at most 2"

» All functions have circuits of size n2"
» This is pretty close to optimal: O(2"/n) suffices
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Circuits and Boolean Formulas
Example

(I) = (x1 A (x1 V)Q)) V—\(xl \/XQ)
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Languages and Circuits

@ Size |C| of acircuit C is the number of vertices in C

Definition (Family of circuits)

Let T: N — N. A T(n)-size circuit family is a sequence {C, },en of
circuits such that C,, has n inputs and one output, and |C,,| < T'(n) for
all n.

Definition (Size classes)

We define SIZE(T'(n)) as the set of languages L C {0, 1}* for which
there exists a T'(n)-size circuit family {C, },en such that for all
x € {0,1}", we have x € L if and only Cy,(x) = 1.
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Polynomial Circuits

Definition
The class P, is the set of languages with polynomial-sized circuits,
that is,

P /poty = |J SIZE(n?).
d=1
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Circuits from Turing Machines

Theorem

P C P /poy

@ Proof: apply the reduction from Cook-Levin theorem

» The proof can be modified to show that for any n, there is a CNF
of size O(T'(n)?) that ‘computes’ the output of 7'(n)-time Turing
machine M on an input of length n

» Alternatively, one can transform M into an oblivious Turing
machine with running time O(T'(n)log T (n))

» A more careful construction shows that an oblivious Turing
machine can be simulated by a linear-size circuit

@ General observation: polynomial-time TM can be simulated by a
circuit family of polynomial size
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Undecidable Languages

Theorem
P /poly CONtains undecidable languages. J

@ Proof:
> P/poly cONtains all unary languages L C {1": ne N}

e |f 1" € L, then the circuit C,, is an AND of all variables
e If 1" ¢ L, then the circuit C, is a circuit that outputs always 0

» The unary language
{1": nin binary encodes a TM that halts on empty input}

is undecidable and in P/,
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Uniform Circuits

@ Nonuniform circuits are very powerful, as P, contains
undecidable languages

» What happens if we want a degree of uniformity for our circuit
families?

Definition
A circuit family {C,, },en is P-uniform if there is a polynomial-time
Turing machine that on input 1" outputs a description of circuit C,,.
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Uniform Circuits

Theorem
A language L C {0, 1}* is in P if and only if it is decided by a P-uniform
circuit family.

@ Proof:
» If L has a P-uniform circuit family, we can compute the circuit
corresponding to input length and simulate it in polynomial time
» If L € P, we can modify the proof of the Cook-Levin theorem to
obtain an algorithm that outputs the circuit in polynomial time

o If we add uniformity requirement, P, collapses to P
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Uniform Circuits

@ Same thing happens if we impose the even stricter
constraint of logspace-uniformity

Definition
A circuit family {C, }nen is logspace-uniform if the mapping from 1” to
a description of circuit C,, is implicitly logspace-computable.

Theorem
A language L C {0,1}* is in P if and only if it is decided by a
logspace-uniform circuit family.

@ Proof: Cook-Levin reduction can be done in implicit logspace
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Turing Machines with Advice

Definition

Let T,a: N — N. The class of languages decidable in time T (n) with
a(n) bits of advice, denoted by DTIME(T'(n)) /a(n), is the class of
languages L C {0, 1}* such that there exists

@ a sequence of strings {0, } nen With o, € {0,134, and
@ a Turing machine M,

such that for all x € {0, 1}", we have x € L if and only if M (x,0t,) = 1
and M runs in time O(T(|x|)) on input (x, 0, ).
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P/poly as Advice Class

Theorem
Pooy = | DTIME(n)/n?
d,c>0
@ Proof:
> P ooty C U0 DTIME(n®) /n: give a description of circuit C, as
advice

> Uge0 DTIME(n€) /n? C P 54t construct a circuit simulating
execution of the Turing machine M on input x (inputs of the circuit)
and o, (hardwired into the circuit)
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NP and P/poly

@ Even if P £ NP, it is in principle possible that all problems in
NP have polynomial circuits
» For example, maybe CNF-SAT has circuits of size n>?
» This just requires that the circuits cannot be constructed in
polynomial time

@ However, there is evidence suggesting this is not the case
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NP and P/poly

Theorem
IfNP C P /1, then PH = X5, J

@ Proof idea:
> If CNF-SAT has polynomial-size circuits, then there is also a
polynomial-size circuit that oufputs a satisfying assignment of an
input CNF
» This can be used to show that a Hg-complete problem is in Z’z’: we
can use the existential quantifier to guess the above circuit, and
use it to replace the second quantifier in I'Ig
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EXP and P/poly

@ Similar result shows that EXP is unlikely to have polynomial
circuits

Theorem
IFEXP C P poly, then EXP = X5. J

@ Note that this implies that if P = NP, then EXP ¢ P /poly*

> If P =NP, then P =X}
> Ifalso EXP C P 4y, then P = EXP, which is impossible by the
time hierarchy theorem

@ Upper bounds can imply circuit lower bounds!
» Used in a fairly recent breakthrough result by Williams
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Circuit Lower Bounds?

o Proving NP ¢ P, would imply P 7 NP
» The hope is that since circuits are much more explicit than Turing
machines, they might be mathematically easier to handle
» So far, this has not proven very successful

@ However, it is very easy to show that some functions are
difficult to compute with circuits
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Counting Arguments

Theorem

For every n > 1, there exists a functionf: {0,1}"* — {0, 1} that cannot
be computed by a circuit of size 2" /10n.

@ Proof:
» The number of functions f: {0,1}" — {0,1} is 2*"
Circuit of size at most S can be represented with, say, 95log S bits
Thus, there are at most 2°51°¢5 circuits of size S
Setting S = 2"/10n, the number of circuits of size S is at most

v vy

29S10gS < 22"9n/10n < 22”

v

Thus, there are more functions than circuits of size S
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Nonuniform Time Hierarchy

@ Using a similar counting argument, one can prove a
hierarchy theorem for circuit size classes

Theorem

For any functions Ty, T>: N — N with 2" /n > T»(n) > T1(n) > n, we
have
SIZE(T\(n)) C SIZE(T»(n)).
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Circuits and Parallel Computation

@ Circuits can be viewed as a massively parallel computer
» Each node has its own processor computing the function at the

gate
» Messages are passed along the edges when computation at a

gate completes

@ Relevant complexity measure: depth
» The depth of a circuit is the length of the longest path from an

input gate to the output gate
» Total parallel computing time corresponds to the depth of the

circuit

@ We next look at two circuit complexity classes meant to
model this type of parallelism
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The Class NC

Definition
Let d > 1 be fixed. The class NC is the class of languages
L C {0,1}* that can be decided by a circuit family {C,, },en such that
each C, has size polynomial in n and depth O((logn)?). The class
NC is defined as -
NC = [ JNC?.
d=1

@ Uniform NC is defined by requiring the circuits to be
logspace-uniform
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The Class AC

Definition
Letd > 1 be fixed. The class AC is defined similarly to NC?, but the
AND and OR gates are allowed to have unbounded fan-in. The class
AC is defined as -
AC = | JAC?.
d=1

@ Uniform AC is again defined by requiring the circuits to be
logspace-uniform
@ Note that
Ncé C AC? C NC¥H! |
since simulating unbounded fan-in adds at most logn factor
to depth
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Problems in NC

Example

@ Some example problems in NC:
> Parity (input has an odd number of 1s)
» Integer operations addition, multiplication and division
» Matrix multiplication and related problems
» Maximal matching
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NC and Parallel Computation

@ NC captures parallel computation as follows:
» Consider NC circuit family {C,, },eny with width N = O(n?) and
depth D = O((logn)?)
» Consider a parallel computer with N interconnected processors
» Assing one gate from each /ayer of circuit to one machine
> At each step of parallel computation:
e Each machine computes the output of their gate
e Each machine sends their output to the machines that need it on
the next step

@ More formally: NC is equivalent to logtime PRAMs
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P-completeness

@ Do all problems in P have an efficient parallel algorithm?

» Can be formalised as the question whether P = NC
» Believed: no
» Motivates the study of P-completeness

Definition
A language L C {0,1}* is P-complete if L € P and for any language
L' € P, there is a logspace reduction from L' to L.
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P-completeness

Theorem
IfL C{0,1}* is P-complete, then
@ L & NC ifandonly ifP = NC, and
@ L e L ifandonly ifP =L, where L is logarithmic space.

@ P-complete problems don’t have efficient parallel algorithm if
P #NC
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P-completeness

Circuit value
@ Instance: A circuit C with n inputs and x € {0, 1}*
@ Question: Does it hold that C(x) = 1?

@ Circuit value is P-complete:
» Circuit value is clearly in P
» Hardness follows from the proof that all problems in P have
logspace-uniform circuits
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Lecture 15: Summary

Boolean Circuits

Class P poly

P /poly @nd uniform complexity classes
Counting arguments for circuit lower bounds
NC, AC and P-completeness
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