
CS-E4530 Computational Complexity Theory

Lecture 15: Circuit Complexity

Aalto University
School of Science
Department of Computer Science

Spring 2019

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

2/32

Agenda

Boolean circuits

Polynomial circuits

Uniform circuits

Turing machines with advice

Circuit lower bounds

Circuits and parallel computation

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

3/32

Boolean Circuits

Boolean circuits are a model of computing modelling the
computation of a Boolean function

f : {0,1}n→{0,1}

in terms of elementary Boolean operations

Motivation: modelling physical circuits
Motivation: understanding non-uniform computation

I Circuits are purely combinatorial objects
I Possibly easier to analyse?

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

4/32

Boolean Circuits
Definition (Boolean circuits)
A Boolean circuit C with n inputs and 1 output is a directed acyclic
graph with n sources (vertices with no incoming edges) and 1 sink
(vertex with no outgoing edges) such that

all non-source vertices are labelled with either ∨, ∧, or ¬,

vertices labelled with ∨ or ∧ have in-degree 2,

vertices labelled with ¬ have in-degree 1, and

the n sources are labelled with integers 1,2, . . . ,n.

Vertices are called gates

Source vertices are called inputs

The sink vertex is called output

Fan-in and fan-out refer to the in-degree and out-degree

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

5/32

Boolean Circuits

Definition (Value of a Boolean circuit)

Given an input x ∈ {0,1}n, the value vg(x) of a gate g is defined as
follows:

if g is an input labelled with i, then vg(x) = xi, and

if g is a non-input gate, then value of g is defined naturally in
terms of the label of g.

The value of the circuit C(x) is defined as the value of the output gate.

A circuit C computes a function f : {0,1}n→{0,1} if for all
x ∈ {0,1}n, we have that C(x) = f (x)

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

6/32

Boolean Circuits

Definitions are robust in terms of small modifications
I We can allow ∧ and ∨ gates to have unbounded fan-in, as a gate

with fan-in k ≥ 3 can be simulated with a binary tree
I We can define circuits with multiple output gates
I We can allow constant gates 0 and 1

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

7/32

Circuits and Boolean Formulas

Boolean formulas can be seen as special type of circuits
I Only input gates can have fan-out large than one
I Alternatively: duplicated input gates

All Boolean functions f : {0,1}n→{0,1} can be described
by a CNF of size at most n2n

I All functions have circuits of size n2n

I This is pretty close to optimal: O(2n/n) suffices

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

8/32

Circuits and Boolean Formulas
Example

φ = (x1∧ (x1∨ x2))∨¬(x1∨ x2)

6 ∨

∧ ¬5

3 ∨

1 2x1 x2

4

x1 x2x1 x2x1

∨ ∨

∨

¬∧

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

9/32

Languages and Circuits

Size |C| of a circuit C is the number of vertices in C

Definition (Family of circuits)

Let T : N→ N. A T(n)-size circuit family is a sequence {Cn}n∈N of
circuits such that Cn has n inputs and one output, and |Cn| ≤ T(n) for
all n.

Definition (Size classes)

We define SIZE(T(n)) as the set of languages L⊆ {0,1}∗ for which
there exists a T(n)-size circuit family {Cn}n∈N such that for all
x ∈ {0,1}n, we have x ∈ L if and only Cn(x) = 1.

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

10/32

Polynomial Circuits

Definition
The class P/poly is the set of languages with polynomial-sized circuits,
that is,

P/poly =
∞⋃

d=1

SIZE(nd) .

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

11/32

Circuits from Turing Machines

Theorem

P⊆ P/poly

Proof: apply the reduction from Cook-Levin theorem
I The proof can be modified to show that for any n, there is a CNF

of size O(T(n)2) that ‘computes’ the output of T(n)-time Turing
machine M on an input of length n

I Alternatively, one can transform M into an oblivious Turing
machine with running time O(T(n) logT(n))

I A more careful construction shows that an oblivious Turing
machine can be simulated by a linear-size circuit

General observation: polynomial-time TM can be simulated by a
circuit family of polynomial size

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

12/32

Undecidable Languages

Theorem
P/poly contains undecidable languages.

Proof:
I P/poly contains all unary languages L⊆ {1n : n ∈ N}

• If 1n ∈ L, then the circuit Cn is an AND of all variables
• If 1n /∈ L, then the circuit Cn is a circuit that outputs always 0

I The unary language

{1n : n in binary encodes a TM that halts on empty input}

is undecidable and in P/poly

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

13/32

Uniform Circuits

Nonuniform circuits are very powerful, as P/poly contains
undecidable languages

I What happens if we want a degree of uniformity for our circuit
families?

Definition
A circuit family {Cn}n∈N is P-uniform if there is a polynomial-time
Turing machine that on input 1n outputs a description of circuit Cn.

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

14/32

Uniform Circuits

Theorem
A language L⊆ {0,1}∗ is in P if and only if it is decided by a P-uniform
circuit family.

Proof:
I If L has a P-uniform circuit family, we can compute the circuit

corresponding to input length and simulate it in polynomial time
I If L ∈ P, we can modify the proof of the Cook-Levin theorem to

obtain an algorithm that outputs the circuit in polynomial time

If we add uniformity requirement, P/poly collapses to P

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

15/32

Uniform Circuits

Same thing happens if we impose the even stricter
constraint of logspace-uniformity

Definition
A circuit family {Cn}n∈N is logspace-uniform if the mapping from 1n to
a description of circuit Cn is implicitly logspace-computable.

Theorem
A language L⊆ {0,1}∗ is in P if and only if it is decided by a
logspace-uniform circuit family.

Proof: Cook-Levin reduction can be done in implicit logspace

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

16/32

Turing Machines with Advice

Definition
Let T,a : N→ N. The class of languages decidable in time T(n) with
a(n) bits of advice, denoted by DTIME(T(n))/a(n), is the class of
languages L⊆ {0,1}∗ such that there exists

a sequence of strings {αn}n∈N with αn ∈ {0,1}a(n), and

a Turing machine M,

such that for all x ∈ {0,1}n, we have x ∈ L if and only if M(x,αn) = 1
and M runs in time O(T(|x|)) on input (x,αn).

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

17/32

P/poly as Advice Class

Theorem

P/poly =
⋃

d,c>0

DTIME(nc)/nd

Proof:
I P/poly ⊆

⋃
d,c>0 DTIME(nc)/nd: give a description of circuit Cn as

advice
I

⋃
d,c>0 DTIME(nc)/nd ⊆ P/poly: construct a circuit simulating

execution of the Turing machine M on input x (inputs of the circuit)
and αn (hardwired into the circuit)

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

18/32

NP and P/poly

Even if P 6= NP, it is in principle possible that all problems in
NP have polynomial circuits

I For example, maybe CNF-SAT has circuits of size n2?
I This just requires that the circuits cannot be constructed in

polynomial time

However, there is evidence suggesting this is not the case

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

19/32

NP and P/poly

Theorem

If NP⊆ P/poly, then PH = Σ
p
2.

Proof idea:
I If CNF-SAT has polynomial-size circuits, then there is also a

polynomial-size circuit that outputs a satisfying assignment of an
input CNF

I This can be used to show that a Π
p
2-complete problem is in Σ

p
2: we

can use the existential quantifier to guess the above circuit, and
use it to replace the second quantifier in Π

p
2

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

20/32

EXP and P/poly

Similar result shows that EXP is unlikely to have polynomial
circuits

Theorem

If EXP⊆ P/poly, then EXP = Σ
p
2.

Note that this implies that if P = NP, then EXP * P/poly:
I If P = NP, then P = Σ

p
2

I If also EXP⊆ P/poly, then P = EXP, which is impossible by the
time hierarchy theorem

Upper bounds can imply circuit lower bounds!
I Used in a fairly recent breakthrough result by Williams

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

21/32

Circuit Lower Bounds?

Proving NP * P/poly would imply P 6= NP
I The hope is that since circuits are much more explicit than Turing

machines, they might be mathematically easier to handle
I So far, this has not proven very successful

However, it is very easy to show that some functions are
difficult to compute with circuits

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

22/32

Counting Arguments

Theorem
For every n > 1, there exists a function f : {0,1}n→{0,1} that cannot
be computed by a circuit of size 2n/10n.

Proof:
I The number of functions f : {0,1}n→{0,1} is 22n

I Circuit of size at most S can be represented with, say, 9S logS bits
I Thus, there are at most 29S logS circuits of size S
I Setting S = 2n/10n, the number of circuits of size S is at most

29S logS ≤ 22n9n/10n < 22n

I Thus, there are more functions than circuits of size S

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

23/32

Nonuniform Time Hierarchy

Using a similar counting argument, one can prove a
hierarchy theorem for circuit size classes

Theorem
For any functions T1,T2 : N→ N with 2n/n > T2(n)> T1(n)> n, we
have

SIZE(T1(n))(SIZE(T2(n)) .

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

24/32

Circuits and Parallel Computation

Circuits can be viewed as a massively parallel computer
I Each node has its own processor computing the function at the

gate
I Messages are passed along the edges when computation at a

gate completes

Relevant complexity measure: depth
I The depth of a circuit is the length of the longest path from an

input gate to the output gate
I Total parallel computing time corresponds to the depth of the

circuit

We next look at two circuit complexity classes meant to
model this type of parallelism

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

25/32

The Class NC

Definition

Let d ≥ 1 be fixed. The class NCd is the class of languages
L⊆ {0,1}∗ that can be decided by a circuit family {Cn}n∈N such that
each Cn has size polynomial in n and depth O

(
(logn)d

)
. The class

NC is defined as

NC =
∞⋃

d=1

NCd .

Uniform NC is defined by requiring the circuits to be
logspace-uniform

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

26/32

The Class AC

Definition

Let d ≥ 1 be fixed. The class ACd is defined similarly to NCd, but the
AND and OR gates are allowed to have unbounded fan-in. The class
AC is defined as

AC =
∞⋃

d=1

ACd .

Uniform AC is again defined by requiring the circuits to be
logspace-uniform

Note that
NCd ⊆ ACd ⊆ NCd+1 ,

since simulating unbounded fan-in adds at most logn factor
to depth

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

27/32

Problems in NC

Example
Some example problems in NC:

I Parity (input has an odd number of 1s)
I Integer operations addition, multiplication and division
I Matrix multiplication and related problems
I Maximal matching

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

28/32

NC and Parallel Computation

NC captures parallel computation as follows:
I Consider NC circuit family {Cn}n∈N with width N = O(nd) and

depth D = O
(
(logn)d

)
I Consider a parallel computer with N interconnected processors
I Assing one gate from each layer of circuit to one machine
I At each step of parallel computation:

• Each machine computes the output of their gate
• Each machine sends their output to the machines that need it on

the next step

More formally: NC is equivalent to logtime PRAMs

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

29/32

P-completeness

Do all problems in P have an efficient parallel algorithm?
I Can be formalised as the question whether P = NC
I Believed: no
I Motivates the study of P-completeness

Definition
A language L⊆ {0,1}∗ is P-complete if L ∈ P and for any language
L′ ∈ P, there is a logspace reduction from L′ to L.

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

30/32

P-completeness

Theorem
If L⊆ {0,1}∗ is P-complete, then

L ∈ NC if and only if P = NC, and

L ∈ L if and only if P = L, where L is logarithmic space.

P-complete problems don’t have efficient parallel algorithm if
P 6= NC

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

31/32

P-completeness

Circuit value

Instance: A circuit C with n inputs and x ∈ {0,1}∗
Question: Does it hold that C(x) = 1?

Circuit value is P-complete:
I Circuit value is clearly in P
I Hardness follows from the proof that all problems in P have

logspace-uniform circuits

CS-E4530 Computational Complexity Theory / Lecture 15
Department of Computer Science

32/32

Lecture 15: Summary

Boolean Circuits

Class P/poly

P/poly and uniform complexity classes

Counting arguments for circuit lower bounds

NC, AC and P-completeness

