

CS-E4530 Computational Complexity Theory

Lecture 15: Circuit Complexity

Aalto University School of Science Department of Computer Science

Spring 2019

Agenda

- Boolean circuits
- Polynomial circuits
- Uniform circuits
- Turing machines with advice
- Circuit lower bounds
- Circuits and parallel computation

 Boolean circuits are a model of computing modelling the computation of a Boolean function

$$f: \{0,1\}^n \to \{0,1\}$$

in terms of elementary Boolean operations

- Motivation: modelling physical circuits
- Motivation: understanding non-uniform computation
 - Circuits are purely combinatorial objects
 - Possibly easier to analyse?

Definition (Boolean circuits)

A *Boolean circuit* C with n inputs and 1 output is a directed acyclic graph with n sources (vertices with no incoming edges) and 1 sink (vertex with no outgoing edges) such that

- all non-source vertices are labelled with either \lor , \land , or \neg ,
- vertices labelled with \lor or \land have in-degree 2,
- vertices labelled with ¬ have in-degree 1, and
- the *n* sources are labelled with integers 1, 2, ..., *n*.
- Vertices are called gates
- Source vertices are called inputs
- The sink vertex is called output
- Fan-in and fan-out refer to the in-degree and out-degree

Definition (Value of a Boolean circuit)

Given an input $x \in \{0,1\}^n$, the value $v_g(x)$ of a gate g is defined as follows:

- if g is an input labelled with *i*, then $v_g(x) = x_i$, and
- if g is a non-input gate, then value of g is defined naturally in terms of the label of g.

The *value* of the circuit C(x) is defined as the value of the output gate.

• A circuit *C* computes a function $f: \{0,1\}^n \to \{0,1\}$ if for all $x \in \{0,1\}^n$, we have that C(x) = f(x)

Definitions are robust in terms of small modifications

- We can allow ∧ and ∨ gates to have unbounded fan-in, as a gate with fan-in k ≥ 3 can be simulated with a binary tree
- We can define circuits with multiple output gates
- We can allow constant gates 0 and 1

Circuits and Boolean Formulas

• Boolean formulas can be seen as special type of circuits

- Only input gates can have fan-out large than one
- Alternatively: duplicated input gates
- All Boolean functions $f\colon \{0,1\}^n\to \{0,1\}$ can be described by a CNF of size at most $n2^n$
 - All functions have circuits of size n2ⁿ
 - ► This is pretty close to optimal: O(2ⁿ/n) suffices

Circuits and Boolean Formulas

Example

$$\phi = (x_1 \land (x_1 \lor x_2)) \lor \neg (x_1 \lor x_2)$$

CS-E4530 Computational Complexity Theory / Lecture 15 Department of Computer Science 8/32

Languages and Circuits

• Size |C| of a circuit C is the number of vertices in C

Definition (Family of circuits)

Let $T: \mathbb{N} \to \mathbb{N}$. A T(n)-size circuit family is a sequence $\{C_n\}_{n \in \mathbb{N}}$ of circuits such that C_n has n inputs and one output, and $|C_n| \leq T(n)$ for all n.

Definition (Size classes)

We define SIZE(T(n)) as the set of languages $L \subseteq \{0,1\}^*$ for which there exists a T(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$ such that for all $x \in \{0,1\}^n$, we have $x \in L$ if and only $C_n(x) = 1$.

Polynomial Circuits

Definition

The class $\mathsf{P}_{/\mathsf{poly}}$ is the set of languages with polynomial-sized circuits, that is,

$$\mathsf{P}_{\mathsf{/poly}} = \bigcup_{d=1}^{\infty} \mathsf{SIZE}(n^d).$$

Circuits from Turing Machines

Theorem

 $\mathsf{P}\subseteq\mathsf{P}_{/\mathsf{poly}}$

- Proof: apply the reduction from Cook-Levin theorem
 - ► The proof can be modified to show that for any *n*, there is a CNF of size O(T(n)²) that 'computes' the output of T(n)-time Turing machine M on an input of length n
 - ► Alternatively, one can transform *M* into an *oblivious* Turing machine with running time O(T(n) log T(n))
 - A more careful construction shows that an oblivious Turing machine can be simulated by a linear-size circuit
- General observation: polynomial-time TM can be simulated by a circuit family of polynomial size

Undecidable Languages

Theorem

P/poly contains undecidable languages.

- Proof:
 - ▶ $\mathsf{P}_{\mathsf{/poly}}$ contains all unary languages $L \subseteq \{1^n \colon n \in \mathbb{N}\}$
 - If $1^n \in L$, then the circuit C_n is an AND of all variables
 - If $1^n \notin L$, then the circuit C_n is a circuit that outputs always 0
 - The unary language

 $\{1^n: n \text{ in binary encodes a TM that halts on empty input}\}$

is undecidable and in $\mathsf{P}_{/\mathsf{poly}}$

Uniform Circuits

 Nonuniform circuits are very powerful, as P_{/poly} contains undecidable languages

What happens if we want a degree of uniformity for our circuit families?

Definition

A circuit family $\{C_n\}_{n \in \mathbb{N}}$ is P-*uniform* if there is a polynomial-time Turing machine that on input 1^n outputs a description of circuit C_n .

Uniform Circuits

Theorem

A language $L \subseteq \{0,1\}^*$ is in P if and only if it is decided by a P-uniform circuit family.

- Proof:
 - If L has a P-uniform circuit family, we can compute the circuit corresponding to input length and simulate it in polynomial time
 - If L ∈ P, we can modify the proof of the Cook-Levin theorem to obtain an algorithm that outputs the circuit in polynomial time

• If we add uniformity requirement, P_{/poly} collapses to P

Uniform Circuits

• Same thing happens if we impose the even stricter constraint of *logspace-uniformity*

Definition

A circuit family $\{C_n\}_{n \in \mathbb{N}}$ is *logspace-uniform* if the mapping from 1^n to a description of circuit C_n is implicitly logspace-computable.

Theorem

A language $L \subseteq \{0,1\}^*$ is in P if and only if it is decided by a logspace-uniform circuit family.

• Proof: Cook-Levin reduction can be done in implicit logspace

Turing Machines with Advice

Definition

Let $T, a: \mathbb{N} \to \mathbb{N}$. The class of languages *decidable in time* T(n) *with* a(n) *bits of advice*, denoted by $\mathsf{DTIME}(T(n))/a(n)$, is the class of languages $L \subseteq \{0,1\}^*$ such that there exists

- a sequence of strings $\{ \alpha_n \}_{n \in \mathbb{N}}$ with $\alpha_n \in \{0,1\}^{a(n)}$, and
- a Turing machine M,

such that for all $x \in \{0,1\}^n$, we have $x \in L$ if and only if $M(x,\alpha_n) = 1$ and M runs in time O(T(|x|)) on input (x,α_n) .

P/poly as Advice Class

Theorem

$$\mathsf{P}_{/\mathsf{poly}} = \bigcup_{d,c>0} \mathsf{DTIME}(n^c)/n^d$$

Proof:

- ► $P_{\text{/poly}} \subseteq \bigcup_{d,c>0} \text{DTIME}(n^c)/n^d$: give a description of circuit C_n as advice
- ► $\bigcup_{d,c>0} \mathsf{DTIME}(n^c)/n^d \subseteq \mathsf{P}_{/\mathsf{poly}}$: construct a circuit simulating execution of the Turing machine M on input x (inputs of the circuit) and α_n (hardwired into the circuit)

NP and P/poly

- Even if $P \neq NP$, it is in principle possible that all problems in NP have polynomial circuits
 - For example, maybe CNF-SAT has circuits of size n^2 ?
 - This just requires that the circuits cannot be constructed in polynomial time
- However, there is evidence suggesting this is not the case

NP and P/poly

Theorem

If $NP \subseteq P_{\text{poly}}$, then $PH = \Sigma_2^p$.

- Proof idea:
 - If CNF-SAT has polynomial-size circuits, then there is also a polynomial-size circuit that *outputs* a satisfying assignment of an input CNF
 - This can be used to show that a Π₂^p-complete problem is in Σ₂^p: we can use the existential quantifier to guess the above circuit, and use it to replace the second quantifier in Π₂^p

EXP and P/poly

 Similar result shows that EXP is unlikely to have polynomial circuits

Theorem

If $\mathsf{EXP} \subseteq \mathsf{P}_{/\mathsf{poly}}$, then $\mathsf{EXP} = \Sigma_2^p$.

- Note that this implies that if P = NP, then EXP $\nsubseteq P_{/poly}$:
 - If P = NP, then $P = \Sigma_2^p$
 - If also EXP ⊆ P_{/poly}, then P = EXP, which is impossible by the time hierarchy theorem

• Upper bounds can imply circuit lower bounds!

Used in a fairly recent breakthrough result by Williams

Circuit Lower Bounds?

• Proving NP $\nsubseteq \mathsf{P}_{/\mathsf{poly}}$ would imply $\mathsf{P} \neq \mathsf{NP}$

- The hope is that since circuits are much more explicit than Turing machines, they might be mathematically easier to handle
- So far, this has not proven very successful

However, it is very easy to show that *some* functions are difficult to compute with circuits

Counting Arguments

Theorem

For every n > 1, there exists a function $f : \{0,1\}^n \to \{0,1\}$ that cannot be computed by a circuit of size $2^n/10n$.

- Proof:
 - The number of functions $f \colon \{0,1\}^n \to \{0,1\}$ is 2^{2^n}
 - Circuit of size at most S can be represented with, say, $9S \log S$ bits
 - Thus, there are at most 2^{9SlogS} circuits of size S
 - Setting $S = 2^n/10n$, the number of circuits of size S is at most

$$2^{9S \log S} \le 2^{2^n 9n/10n} < 2^{2^n}$$

Thus, there are more functions than circuits of size S

Nonuniform Time Hierarchy

 Using a similar counting argument, one can prove a hierarchy theorem for circuit size classes

Theorem

For any functions $T_1, T_2 \colon \mathbb{N} \to \mathbb{N}$ with $2^n/n > T_2(n) > T_1(n) > n$, we have

 $SIZE(T_1(n)) \subsetneq SIZE(T_2(n)).$

Circuits and Parallel Computation

• Circuits can be viewed as a massively parallel computer

- Each node has its own processor computing the function at the gate
- Messages are passed along the edges when computation at a gate completes

Relevant complexity measure: depth

- The depth of a circuit is the length of the longest path from an input gate to the output gate
- Total parallel computing time corresponds to the depth of the circuit
- We next look at two circuit complexity classes meant to model this type of parallelism

The Class NC

Definition

Let $d \ge 1$ be fixed. The class NC^d is the class of languages $L \subseteq \{0,1\}^*$ that can be decided by a circuit family $\{C_n\}_{n \in \mathbb{N}}$ such that each C_n has size polynomial in n and depth $O((\log n)^d)$. The class NC is defined as

$$\mathsf{NC} = \bigcup_{d=1}^{\infty} \mathsf{NC}^d.$$

• Uniform NC is defined by requiring the circuits to be logspace-uniform

The Class AC

Definition

Let $d \ge 1$ be fixed. The class AC^d is defined similarly to NC^d , but the AND and OR gates are allowed to have unbounded fan-in. The class AC is defined as

$$\mathsf{AC} = igcup_{d=1}^\infty \mathsf{AC}^d$$
 .

- Uniform AC is again defined by requiring the circuits to be logspace-uniform
- Note that

$$\mathsf{NC}^d \subseteq \mathsf{AC}^d \subseteq \mathsf{NC}^{d+1}$$
,

since simulating unbounded fan-in adds at most $\log n$ factor to depth

Problems in NC

Example

• Some example problems in NC:

- Parity (input has an odd number of 1s)
- Integer operations addition, multiplication and division
- Matrix multiplication and related problems
- Maximal matching

NC and Parallel Computation

- NC captures *parallel computation* as follows:
 - Consider NC circuit family {C_n}_{n∈ℕ} with width N = O(n^d) and depth D = O((log n)^d)
 - Consider a parallel computer with N interconnected processors
 - Assing one gate from each *layer* of circuit to one machine
 - At each step of parallel computation:
 - Each machine computes the output of their gate
 - Each machine sends their output to the machines that need it on the next step
- More formally: NC is equivalent to logtime PRAMs

P-completeness

Do all problems in P have an efficient parallel algorithm?

- Can be formalised as the question whether P = NC
- Believed: no
- Motivates the study of P-completeness

Definition

A language $L \subseteq \{0,1\}^*$ is P-complete if $L \in P$ and for any language $L' \in P$, there is a logspace reduction from L' to L.

P-completeness

Theorem

If $L \subseteq \{0,1\}^*$ is P-complete, then

- $L \in NC$ if and only if P = NC, and
- $L \in L$ if and only if P = L, where L is logarithmic space.

• P-complete problems don't have efficient parallel algorithm if $\mathsf{P} \neq \mathsf{NC}$

P-completeness

Circuit value

- Instance: A circuit *C* with *n* inputs and $x \in \{0, 1\}^*$
- **Question:** Does it hold that C(x) = 1?
- Circuit value is P-complete:
 - Circuit value is clearly in P
 - Hardness follows from the proof that all problems in P have logspace-uniform circuits

Lecture 15: Summary

- Boolean Circuits
- $\bullet \ {\sf Class} \ {\sf P}_{/{\sf poly}}$
- P_{/poly} and uniform complexity classes
- Counting arguments for circuit lower bounds
- NC, AC and P-completeness

