
Agenda today

q Introduction to prescriptive modeling

q Linear optimization models through three examples: 
1. Production and inventory optimization
2. Distribution system design
3. Stochastic optimization

q Beyond linear optimization
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Part 1: Introduction to 
prescriptive modeling



Business Analytics
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Business Analytics is the scientific 
process of transforming data into 
insight for making better decisions

Definition by the Institute for Operations Research and the Management Sciences 
(INFORMS)
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Four types of analytics
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Required 
skill level

Level of business 
impact

What 
happened?

Why did it 
happen?

What will 
happen?

What should 
we do?

Descriptive

Diagnostic

Predictive

Prescriptive

3/4/19
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Source: Kart, L. ”Advancing analytics”, Gartner Inc. (2012)

Decision making
part of analytics



Prescriptive analytics

q Prescriptive analytics tools help to 
quickly evaluate trillions of possible 
combinations of choices, and select 
the combination that makes the best 
use of scarce resources 

q Hence, prescriptive analytics 
provides the largest business value

q Yet, it is only now gaining 
widespread adoption
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Source: ”Forecast snapshot: Prescriptive analytics, worldwide”, Gartner Inc. (2016)
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Optimization for prescriptive analytics
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Objective: What do I 
want to achieve?

Decisions: What do I 
need to decide on? 
(And what can I decide
on?)

Inputs: What do I know? 
(And what would I need
to know?) How certain is 
the information?

Restrictions: What do I 
have to adhere to?

Mathematical representation: 
Vector ! of decision variables

Mathematical representation: 
Objective function "(!) to be
maximized or minimized

Mathematical representation: 
Constraints on the feasible set of 
decision variables !

Mathematical representation: 
Set % of model parameters



Mathematical optimization models

q Example: A company manufactures two products consisting entirely of three raw 
materials A, B and C. The shares of the raw materials in both products as well as their 
availabilities are shown in the table below. What are the optimal production quantities 
for the two products, when the profit from product 1 is 2 €/kg and that from product 2 
is 3 €/kg?

max2%& +3%)
s.t. 0.1%& + 0.55%) ≤ 2500

0.7%& + 0.4%) ≤ 3000
0.2%& + 0.05%) ≤ 800

%&, %) ≥ 0
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A B C Profit

Product 1 10% 70% 20% 2

Product 2 55% 40% 5% 3

Availability 2500 kg 3000 kg 800 kg
Objective function

Constraints

q This can be formulated as an 
optimization problem: 

Decision variables %&, %)

Parameters



Predictive vs. prescriptive analytics

q The parameters ! of the prescriptive optimization model are often obtained 
through predictive analytics

q Yet, predictive analytics efforts should be planned to serve the objectives of 
the prescriptive model – not the other way around!
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”Our company has all kinds of data. 
Let’s use it for optimizing something!”

Predictive
analytics

Prescriptive
analytics

”Our company wants to optimize its
weekly production plan for the next
quarter. What kinds of data and 
information do we need?”



Part 2: Linear optimization 
models
Production and inventory optimization
Distribution system design
Stochastic optimization



Linear optimization problems

q On this course, we will focus on linear programming (LP) 
problems in which both the objective function and constraints are 
linear in the decision variables

q In this part we will demonstrate the flexibility of linear models to 
tackle business problems
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max 2%& +3%)
s.t.     0.1%& + 0.55%) ≤ 2500

0.7%& + 0.4%) ≤ 3000
0.2%& + 0.05%) ≤ 800

%&, %) ≥ 0

A B C Profit

Product 1 10% 70% 20% 2

Product 2 55% 40% 5% 3

Availability 2500 kg 3000 kg 800 kg



Example 1: Production and inventory 
optimization 
Contois Carpets is a small manufacturer of carpeting for home and office installations. 
Production capacity, estimated demand, production cost and inventory holding cost are 
shown in the below table. Contois wants to determine how many square meters of 
carpeting to produce each quarter to minimize the total production and inventory cost for 
the four-quarter period. 
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Quarter Production
capacity (!")

Estimated
demand (!")

Production cost
(€/!")

Inventory cost
(€/!")

1 600 400 2 0.25

2 300 500 5 0.25

3 500 400 3 0.25

4 400 400 3 0.25

Source: Anderson et al. 2000, An Introduction to Management Science – Quantitative Approaches to Decision Making, South-
Western College Publishing.



Example 1: Production and inventory 
optimization 
Decision variables: 
q !": Amount of carpet produced in quarter $ = 1,… , 4
q *": Amount of carpet in inventory in quarter $ = 1,… , 4

Objective function (total production & inventory cost):

2!, + 5!/ + 3!1 + 3!2 + 0.25(*, + */ + *1 + *2)
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Example 1: Production and inventory 
optimization 
Constraints: 

q Production amounts !" are bounded by production capacities
q Production and inventory amounts are linked by the demand #" in each 

quarter:
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!$

%$#$

!&

#$ = !$ − %$,

#&
%*%& %+

!* !+

#* #+

#& = %$ + !& − %&, #* = %& + !* − %*, #+ = %* + !+ − %+

Q1 Q2 Q3 Q4



Example 1: Production and inventory 
optimization 
LP formulation: 
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!" ≤ 600
!& ≤ 300
!( ≤ 500

!* ≤ 400
!" − -" = 400

!& + -" − -& = 500
!( + -& − -( = 400

!* + -( − -* = 400
!0, -0 ≥ 0, 3 = 1,… , 4

Production capacity
constraints

Inventory / demand
constraints

min9:,;:
2!" + 5!& + 3!( + 3!* + 0.25(-" + -& + -( + -*)

s.t.

Minimize total production & 
inventory cost

Non-negativity
constraints



Example 1: Production and inventory 
optimization 
The problem was solved with gurobi in Python (to be discussed in tutorial)

Solution:
q Optimal production amounts: !", !$, !%, !& = (600, 300, 400, 400)
q Optimal inventory amounts: .", .$, .%, .& = (200, 0, 0, 0)
q Optimal cost: 5,150 €
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600

200
400

300

500
00 0

400 400

400 400

Q1 Q2 Q3 Q4



Example 1: Lessons learned

q The use of so-called auxiliary decision variables can be helpful in 
formulating the optimization problem

q E.g., in the production and inventory problem, the inventory variables could 
be eliminated by writing

q There is a trade-off between ease of formulation and the number of decision 
variables + constraints

q Yet, in continuous LP problems the number of decision variables + 
constraints is rarely a problem from the computational point of view
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!" = $" − 400 !( = $( + !" − 500 = $" + $( − 900
!, = $" + $( + $, − 1300 !/ = $" + $( + $, + $/ − 1700



Example 2: Distribution system design

The Martin-Beck Company operates a plant in St. Louis with an annual capacity of 30,000 
units. Product is shipped from the plant to regional distribution centers located in Boston, 
Atlanta, and Houston. Because of an anticipated increase in demand, Martin-Beck plans 
to increase capacity by constructing a new plant in one or more of the following cities: 
Dallas, Fort Worth, Denver, or Kansas City. Dallas and Fort Worth are very close to one 
another, whereby the company does not want to have a plant in both cities. The estimated 
annual fixed costs and capacities for the four proposed plants are as follows:
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Proposed plant Annual Fixed Cost Annual Capacity

Dallas $175,000 10,000

Fort Worth $300,000 20,000

Denver $375,000 30,000

Kansas City $500,000 40,000

Source: Anderson et al. 2000, An Introduction to Management Science – Quantitative Approaches to Decision Making, South-
Western College Publishing.



The company’s long-range planning group has developed forecasts of the anticipated annual demand 
at the distribution centers as follows: 

The shipping cost per unit from each plant to each distribution center are as follows:

In which city/cities should the Martin-Beck Company construct its new plant/plants? 

Example 2: Distribution system design
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Distribution center Annual demand

Boston 30,000

Atlanta 20,000

Houston 20,000

Distribution centers

Plant site Boston Atlanta Houston

Dallas 5 2 3

Fort Worth 4 3 4

Denver 9 7 5

Kansas City 10 4 2

St. Louis 8 4 3
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Example 2: Distribution system design
Network representation of the problem:
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1: Dallas

2: Fort Worth

3: Denver

4: Kansas City

5: St. Louis

1: Boston

2: Atlanta

3: Houston

Capacities (1,000 units) Costs of distribution routes
per unit

Demands (1,000 units)

Plants Distribution centers

10 

20 

30 

40 

30 

30 

20 

20 

5

2
3

4
3

4

9
7

5

10 4

2

8
4

3
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Example 2: Distribution system design

Decision variables: 
q !" ∈ {0,1}: A binary variable indicating whether a plant is built in city i (!" = 1) or not 

(!" = 0) 
q +", ∈ ℝ.: A continuous variable indicating the amount shipped from plant in city i to 

distribution center in city j
q A linear optimization problem with both discrete and continuous decision variables is 

referred to as a Mixed-Integer Linear Programming (MILP) problem

Objective function:
q Annual shipping cost:

q Annual fixed costs of operating the new plant / plants:
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175000!1 + 300000!4 + 375000!5 + 500000!6

5+11 + 2+14 + 3+15 + 4+41 + 3+44 + 4+45 + 9+51 + 7+54
+ 5+55 + 10+61 + 4+64 + 2+65 + 8+;1 + 4+;4 + 3+;5



Example 2: Distribution system design

Constraints:
q Shipping amounts are bounded by production capacities
q Shipping from a given plant ! can only happen if the plant has been built 
q E.g., capacity constraint for a plant in Dallas:

q Shipments to distribution center " from different plants ! must equal the demand at distribution 
center "

q E.g., demand constraint for a distribution center in Boston:  

q There cannot be a plant in both Dallas (! = 1) & Fort Worth (! = 2):  
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&'' + &') + &'* ≤ 10000-'

&'' + &)' + &*' + &.' + &/' = 30000

Sum of shipments
from Dallas (! = 1)

Sum of shipments is (smaller than or) equal to 0, if
there is no plant in Dallas (-' = 0)

Sum of shipments is smaller than or equal to 10,000 
units, if there is a plant in Dallas (-' = 1)

Sum of shipments to 
Boston (" = 1)

Demand in Boston (" = 1) 
is 30,000 units

-' + -) ≤ 1



Example 2: Distribution system design
MILP formulation: 
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!"" + !"$ + !"% − 10000)" ≤ 0
!$" + !$$ + !$% − 20000)$ ≤ 0
!%" + !%$ + !%% − 30000)% ≤ 0
!-" + !-$ + !-% − 40000)- ≤ 0

!"" + !$" + !%" + !-" + !/" = 30000

!12 ≥ 0, 5 = 1,… , 5, 8 = 1,… , 3

Plant capacity
constraints

Demand
constraints

min<=,1=

s.t.

Minimize total transportation
& operational costs

5!"" + 2!"$ + 3!"% + 4!$" + 3!$$ + 4!$% + 9!%" + 7!%$ + 5!%% + 10!-" +
4!-$ + 2!-% + 8!/" + 4!/$ + 3!/%+175000)" + 300000)$ + 375000)% + 500000)-

Non-negativity & 
binary constraints

!/" + !/$ + !/% ≤ 30000

!"$ + !$$ + !%$ + !-$ + !/$ = 20000
!"% + !$% + !%% + !-% + !/% = 20000

)1 ∈ {0,1}, 5 = 1,… , 5

)" + )$ ≤ 1 No plant in both Da & FW 



Example 2: Distribution system design

Solution:
q Optimal plant locations: 

!", !$, !%, !& = (0,0,0,1) → 
,-. = 0 for all /=1,2,3

q Optimal shipping amounts (in 
1000 units) 

,&", ,&$, ,&% = (0, 20, 20)
,1", ,1$, ,1% = (30, 0, 0)

q Optimal cost: $860,000 
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4: Kansas City

5: St. Louis

1: Boston

2: Atlanta

3: Houston

Plants Distribution centers

Capacity: 30,000 
units

Capacity: 40,000 
units Demand: 

30,000 units

Shipping: 
30,000 units to Boston 
with unit price $8

Shipping: 
20,000 units to Atlanta 
with unit price $4
20,000 units to Houston 
with unit price $2 Demand: 

20,000 units

Demand: 
20,000 units

Fixed cost: 
$500,000



Example 2: Lessons learned

q The selection of decision variables is not always obvious: To optimize plant locations 
(!"), we also need to optimize shipping (#"$)

q Binary decision variables provide flexibility for linear optimization models
− Conditional constraints: ”Production is at most 10,000 units if a plant is built, and otherwise 

zero” → #%% + #%' + #%( ≤ 10000!%
− Multiple choice constraints: ”Choose exactly one city in which to build a plant” → !% + !' +

!( + !, = 1
− Mutually exclusive constraints: ”There should be no plant in both Dallas and Fort Worth” → 

!% + !' ≤ 1
− k out of n constraints: ”At most two plants should be built” → !% + !' + !( + !, ≤ 2

q MILP problems are considerably more difficult to solve than LPs

q Yet, faster and more efficient algorithms for solving MILPs are constantly being 
developed
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Example 3: Stochastic optimization

q In the previous two examples, point estimates for uncertain demands, costs 
etc. were taken at face value

q Often, such estimates produced by predictive analytics are uncertain

q One way to model parameter uncertainty is through a scenario tree

q Scenario trees are also useful, when decisions can be made sequentially
after having observed how the uncertainties unfold

q Optimal decision sequences or strategies can be solved by stochastic 
optimization methods
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Example 3: Stochastic optimization

Let us revisit Example 1 (production and inventory optimization at Contois
Carpets). For illustrative purposes, we will only focus on the first three periods. 
Assume that the production capacity, production cost and inventory cost are as 
follows:
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Quarter Production
capacity (!")

Production cost
(€/!")

Inventory cost
(€/!")

1 700 2 0.25

2 400 5 0.25

3 500 3 0.25



Example 3: Stochastic optimization

q Demand in each quarter is a discrete
random variable !" ∈ $%, $', $( =
{300,400,500}. 

q The probabilities of different demand 
values in each quarter depend on the 
observed demands in previous quarters. 

q The evolution of the demand can be 
represented by a scenario tree, where
− 12 = probability that the demand in quarter 1 

is $2
− 123 = probability that the demand in quarter 

2 is $3 on the condition that the demand in 
quarter 1 was $2

− 1234 = probability that the demand in quarter 
3 is $4 on the condition that the demands in 
quarters 1 and 2 were $2 and $3, respectively
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!% = 300

!% = 400
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!%, !' =
(300,500)
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!%, !', !( =
(300,300,300)

!%, !', !( =
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!%, !', !( =
(300,300,500)

Q1: Three 
demand
scenarios

Q2: Nine 
demand
scenarios

Q3: 27 
demand
scenarios
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Example 3: Stochastic optimization

q Production decisions are made before 
each quarter after having observed the 
demands in previous quarters
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%", %#, %$ =
(300,300,300)

%", %#, %$ =
(300,300,400)

%", %#, %$ =
(300,300,500)

Before Q1: Decide first-
quarter production & 
inventory (2 / 1 decision
variables)

Before Q2: Based on 
observed first-quarter demand, 
decide second-quarter
production & inventory (2 / 3
decision variables)

Before Q3: Based on 
observed first- and second-
quarter demands, decide third-
quarter production & inventory
(2 / 9 decision variables)
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Example 3: Stochastic optimization

4.3.2019
30

20 %

40 %
60 %
30 %
10 %

35 %
40 %
40 %
20 %

25 %
10 %
30 %
60 %

60 %

20 %
35 %
45 %
20 %

60 %
20 %
60 %
20 %

20 %
20 %
45 %
35 %

20 %

15 %
30 %
45 %
25 %

30 %
35 %
35 %
30 %

55 %
15 %
20 %
65 %

q Scenario probabilities are obtained by
simulating trajectories using a time-
series model for the uncertain
demand

Demand = 300 !"

Demand = 400 !"

Demand = 500 !"

#$ #$% #$%&
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Example 3: Stochastic optimization

Decision variables:
q !: Amount of carpet produced in quarter 1 (one variable)
q !#: Amount of carpet produced in quarter 2, given that the demand in quarter 1 was 

$# (three variables)
q !#%: Amount of carpet produced in quarter 3, given that the demands in quarters 1 

and 2 were $# and $%, respectively (nine variables)

q &: Expected amount of carpet in inventory in quarter 1 (one variable)
q &#: Expected amount of carpet in inventory in quarter 2, given that the demand in 

quarter 1 was $# (three variables)
q &#%: Expected amount of carpet in inventory in quarter 3, given that the demands in 

quarters 1 and 2 were $# and $%, respectively (nine variables)

→ 26 decision variables
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Example 3: Stochastic optimization

Objective function (total expected production & inventory cost):

2" + 5%
&'(

)
*&"& + 3%

&'(

)
*&%

,'(

)
*&,"&, + 0.25(0 +%

&'(

)
*&0& +%

&'(

)
*&%

,'(

)
*&,0&,)
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Expected second-
quarter production

Expected third-
quarter production

Expected second-
quarter inventory

Expected third-
quarter inventory



Example 3: Stochastic optimization

Constraints: 
q Production amounts !, !", !"# are bounded by production capacities
q Production and inventory amounts are linked by the observed demands in previous 

quarters, and expected demand in the present quarter:
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!

True inventory: 
! − %"&'

!"

([&'] = ! − ,,

&.

!"#

&/

([&.|&' = %"] = ! − %" + !" − ,", ([&/|&' = %", &. = %#]
= ! − %" + !" − %"# + !"# − ,"#,

Q1 Q2 Q3

Match production amount
! and expected inventory
amount , with expected
demand ( &' = ∑"3'/ 4"%"

Match production amount !", 
expected inventory amount ,", 
and observed inventory amount
! − %" with expected demand
([&.|&' = %"] = ∑#3'/ 4"#%"#

Match production amount !"#, expected
inventory amount ,"#, and observed
inventory amount ! − %" + !" − %"# with 
expected demand ([&/|&' = %", &. = %#] =
∑53'/ 4"#5%"#5

True inventory: 
! − %" + !" − %"#

True inventory: 
! − %" + !" − %"# + !"# − %"#5



Example 3: Stochastic optimization

LP formulation: 
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! ≤ 700
!% ≤ 400
!%' ≤ 500

! − * =,
%-.

/
0%1%

! + !% − *% = 1% +,'-.

/
0%'1%'

! + !% + !%' − *%' = 1% + 1%' +,3-.

/
0%'31%'3

!, !%, !%', *, *%, *%' ≥ 0

Production capacity
constraints (13 pc.)

Inventory 
constraints (13 pc.)

min9:,;:
2! + 5,

%-.

/
0%!% + 3,

%-.

/
0%,

'-.

/
0%'!%' + 0.25(* +,

%-.

/
0%*% +,

%-.

/
0%,

'-.

/
0%'*%')

s.t.

Minimize total
expected production
& inventory cost

Non-negativity
constraints (26 pc.)



Example 3: Stochastic optimization

Results:
Demand = 300 !"

Demand = 400 !"

Demand = 500 !"

q Expected cost of the optimal production 
strategy: 3260.45 €
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# = 700
s = 300

#) = 50
+) = 65

#)) = 200
+)) = 0
#)" = 330
+)" = 0
#). = 500
+). = 0

#" = 115
+" = 15

#") = 270
+") = 0
#"" = 385
+"" = 0
#". = 500
+". = 0

#. = 250
+. = 10

#.) = 245
+.) = 0
#." = 345
+." = 0
#.. = 500
+.. = 0

Q1 Q2 Q3

Quarter Production
capacity (23)

Production
cost (€/23)

Inventory 
cost (€/23)

1 700 2 0.25

2 400 5 0.25

3 500 3 0.25



Agenda for tutorial

q We will familiarize ourselves with gurobi optimization package for 
Python through the examples presented today

q We will take a look at Assignment 2

q Questions or comments?
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Part 3: Beyond linear 
optimization
To be taken on a nice-to-know basis



Convex optimization problems

4.3.2019
Data Science for Business II

39

q A more general class of problems
consists of convex optimization
problems, in which
− The objective function ! is convex if

minimized, or concave if
maximized

− Inequality constraints "#(%) ≤ 0 are 
convex

− Equality constraints ℎ# % = 0 are
linear

q Like linear problems, these
problems are fairly easy to solve
because a local optimum is also a 
global optimum

Convex functions

Concave functions

Convex & concave
= linear function

Neither convex nor
concave



Convex optimization problems

q Convex models can be used to accommodate risk considerations, either through
minimizing risk or imposing constraints on risk

q E.g., Markowitz portfolio model: 
− Consider ! risky assets " = 1,… , ! with expected returns '( and covariances )(*
− Find the portfolio of assests (represented by shares +( of funds allocated to each asset) that

minimizes portfolio risk subject to a constraint on the expected portfolio return
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min/0 1(23

4
1

*23

4
+(+* )(*

s.t. ∑(234 +('( = 6
∑(234 +( = 1

+( ≥ 0



Non-convex problems

q Many algorithms have been developed to find the global optimum for 
non-convex problems

q The performance of these algorithms depends on the problem –
no ̔one size fits all’ algorithm exists
− See http://www.denizyuret.com/2015/03/alec-radfords-animations-
for.html
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http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

