CS-E4840
 Information Visualization
 Lecture 3: Theory of data graphics

Tassu Takala tapio.takala@aalto.fi 4 March 2019

Theory of data graphics

- Influential concepts
- Not an exact theory (no quantitative truths, a common sense is still needed)
- Theory of human perception will be discussed in later lectures
- How is it useful for me?
- Knowing these things helps to see the difference between the good and bad solutions in information visualization
- Terminology is good to know
- Main source material:Tufte, Part II

Theory of data graphics

- The idea:
- Give the viewer the greatest number of ideas in the shortest time
- Use the least amount of ink
- Don't waste space
- Eliminate non-essentials and redundancies
- Or:
- Make the graphics as easy to read and as simple as possible, while displaying the data fully.

Which is better?

(a)

(b)

Exports and Imports to and from DENMARK \&e NORWAY from 1700 to 1780 .

Theory of data graphics

- Data-ink
- Chartjunk
- Multifunctioning graphical elements
- Data density and small multiples
- Aesthetics and techniques

Data-ink

- Data consists of empty space (white paper) and ink
- Data-ink is the non-erasable and non-redundant core of graphics. Erasing data-ink would reduce the amount of information transmitted by the graphics

data-ink
 data-ink ratio $=\overline{\text { total ink used to print the graphics }}$

Example: low data-ink ratio

CHART of IMPORTS and EXPORTS of ENGLAND to and from all NoRTH AMERICA From the Year 1790 to 1782 by W. Playfoir

The Bottom Line is divided into Iears the righthand Line into HUNDAED THousand Pounds

Example: high-data ink ratio

Exports and Imports to and from DENMAREK \&e NORWAY from 1700 to 1780 .

The Bottom line is divided into Years, the Right hand line into L10,000 each.

100\% data-ink ratio

Kenneth A. Kờoi, 1971 [T 93]

Sparklines

- compact time series
- data-ink ratio = 1
- labels clear from context
- can be used inline with main text

Using d3.js, we can fairly easily draw SVG-based sparklines. This is 2013 historical stock prices for Google $\$ 1084.75$. And this is for Facebook $\$ 55.57$. And this is for Apple trimanarow \$550.77. Each sparkline hâs 244 data points, but it's condensed very nicely.

Another example

- Most of the ink here is dataink
- the dots and labels on the diagonal
- with, 10-20 percent non dataink
- the grid ticks and the frame

Improving data-ink ratio

Relationship of Actual Rates of Registration to Predicted Rates (104 cities 1960).

Maximize data-ink

- It is always a good idea to maximize the data-ink ratio, within reason
- The larger the share of data-ink the better, other matters being equal
- every bit of ink on a graphic needs a reason
- nearly always that reason being that the ink presents new information
- Ink that fails to depict statistical information is uninteresting, and often it is also dull

Maximize data-ink

- To increase the proportion of data-ink use two erasing principles
- erase non data-ink
- erase redundant data-ink
- Non data-ink is ink that fails to depict information, it has little interest to the viewer
- sometimes, such non data-ink clutters up the data
- sometimes, such non data-ink helps set the stage
- Redundant data-ink depicts information but it does it showing it over and over

Edit and redesign

Kuznicki et al. Journal of ExperimentaßPPsychology: General, 108 (1979), 76.
(a)

(c)

(b)

Atomic volume vs. atomic number

Which do you think is the best, and why?

Edit and redesign

- The data-ink ratio is about 0.6
- 76 data points and the reference curve are obscured by 63 grid marks
- The grid and part of the frame can be erased to improve the data-ink ratio

Linus Pauling, General Chemistry, p. 64, 1947

Edit and redesign

- Data-ink ratio improves to 0.9
- only the frames line are uninformative
- erasing the grid marks highlights that several of the elements do not fit the smooth theoretical curve so well

The reference curve is essential in organizing the data, and shows the periodicity (the message) by creating a structure, and by giving ordering and hierarchy

Edit and redesign

Without the curve we hardly detect the periodicity. The curve becomes necessary because the eye needs guidance

Restoring the grid totally fails to organise the data. The grid marks are too powerful and induce visual vibration.

Edit and redesign

- We can use the erased space
- labels for the initial elements of each period
- unusual rare-earths
- also, turned label and numbers on the vertical axis
- Message: do not be happy with the initial version of your graphics!

Edit and redesign

- Example of how to improve standard R scatterplot
- http://www.iki.fi/kaip/p/iris.nb.html

The five principles

- Above all show the data
- The larger the share of data-ink, the better (all other things being equal): Maximize the data-ink ratio, within reason.
- Maximizing the data-ink ratio implies minimizing the amount of non-data ink:
- Erase non-data-ink, within reason.
- Erase redundant data-ink.
- Revise and edit.

Bar chart

- One of the basic designs.

Exports and Imports of SCOTLAND to and from different parts for one Year from Chriftuas 1780 to Chriffmas 178

The I'pright divzions are Ten Thoufarnd Pounds each. The Black Lines are Exports the Ribbectimes Imports

WiNe mub, 'ssz.fornad. London

Bar chart

The standard bar chart

Bar chart

The box and vertical axis can be erased:

The ticks are needed to show the coordinate lines. Or are they?

Bar chart

The white lines show the coordinate lines more precisely than ticks, which are no longer needed:

Bar chart

We could still erase the base line since the bars define the end-point at the bottom:

This might however be overdoing it (thin baseline looks good).

Scatterplot

standard bivariate scatterplot

range frames indicate minimum and maximum values

Range frames

Standard frame:

	1	1	1	40
0	10	20	30	4

Range frame:

1	1	1	1	1
0	10	20	30	40

Range frame with explicit limits (may work better):

| 1 | 1 | 1 | 37 |
| :---: | :---: | :---: | :---: | :---: |

Data values as frame

Rug plot as frame

Dot-dash plot

Timothy H. Hankins, Barney J. Rickett, 1975 [T 134].

The five principles (on data-ink)

- Above all show the data
- The larger the share of data-ink, the better (all other things being equal): Maximize the data-ink ratio, within reason.
- Maximizing the data-ink ratio implies minimizing the amount of non-data ink:
- Erase non-data-ink, within reason.
- Erase redundant data-ink.
- Revise and edit.

Chartjunk

- Chartjunk is the interior decoration of graphics that does not tell the viewer anything new
- The purpose of the chartjunk may be to
- make the graphics appear more scientific and precise (grid lines, excess ticks, redundant representations of simple data etc.)
- decorate the graphics
- make the data appear more lively

Types of chartjunk

- Ducks (eye candy and self-promoting graphics)
- Vibrations
- Grids

Eye candy

Consumption of sweets in Germany
(kilograms per capita in a year)

H. Spissler, Reuters, 1999.

How much ice cream did a German eat in I997?

How much ice cream did a German eat in I997?

Eye candy

Where did they really look:

Differences: more unnecessary fixations (wasted time, missed information) with chartjunk? (I do not know if this is true in general.)

Facejunk

SPD:n kansleriehdokkaat

Self-promoting graphics

The graphics becomes self-promoting when the graphical style takes precedence over data structures.

American education [T 118]
The above chart could have been represented by a table of five numbers.

Visual stress (vibrations)

- Striped patterns cause visual stress in most people.
- The following combination is most potent:
- about 3 cycles per degree $\longrightarrow 1 \mathrm{deg}$.
- flicker rate of about 20 Hz
- large patterns

Optical effects

Hermann Grid illusion

Modified Hermann Grid illusion

There appear to be dark spots at the intersection of the bright lines. Similar effects can appear in data graphics.

Moirè effects

The vibration caused by repeating lines and optical effects are called Moirè effects.

Instituto de Expansao Con55nercial, Brazil, 1929 [T 108].

Moirè effects

Moirè vibration appears at a maximum for equally spaced bars:

James T. Kuznicki, N. Bruce McCutcheon, 1979 [T 109].
Eain M. Cornford, Marie E. Huot, Science, 1981 [T 109].

Moirè effects

Moirè vibration is extremely easy to produce with computer graphics tools:

- vibrations

Months after Operation

- necker illusion
- pyramids conceal each other
- also, the stacked depth of the pyramids has no label or scale

Grid lines

> 455865876864565749286555584765298742309847249473247 324879427149572389742982479280742938742564875647654 902842968476745464274784674573847648562484789847985
> $455865876864565749286555584765298742 \mathbf{3 0 9 8 4 7 2 4 9 4 7 3 2 4 7}$ 324879427149572389742982479280742938742564875647654 902842968476745464274784674573847648562484789847985

- As with the numbers above, the grids should be muted or suppressed so that the data (3's) can be separated pre-attentively
- Dark grids are chartjunk. They carry no information and clutter the graphics.

Grid lines

The doubled grid consumes 18% of the area of this plot. Optical white dots appear at the intersection of the grid lines. Redrawing eliminates the vibration:

Paul A. Tukey, John W. Tukey, 1981 [T 114].

Grid lines

The grid dominates the graphics. The font is disproportionately weak as compared to the grid. Optical dark spots appear at the intersection of the white grid lines. Redrawing fixes this. The information content is further emphasized by conservative use of color.

[El 63].

Grid lines

The train schelude by Marey has some Moirè vibration:

Thinning (or removing!) the grid lines helps:

Multifunctioning graphical elements

- A single multifunctioning graphical element can effectively display complex, multivariate data
- Example: a blob on the map specifies not only the geographic coordinates, but also shape of the feature and other properties are specified by color and shading
- Multifunctioning graphical elements will create puzzles, if applied wrongly

Eruption times of Old Faithful geyser

Stem-and-leaf display
The numbers specify exact eruption times (minutes up to one decimal) and form a bar chart.

Data-based grid

Sometimes the data grid can be used to report data:

K. V. Roberts, D. E. Potter, 1970 [T 145].

Data-based labels

Graphs with extended labels

Graphical puzzles

The complexity of multifunctioning elements may turn the data into visual puzzles.

P. Barabba, Alva L. Finker, 1978 [T 153].

This map must be interpreted through verbal rather than visual process.

Visually intuitive use of colors

Data density and small multiples

- Eye can distinguish patterns of about 10 (or even 60) cycles per degree
- In computer graphics, the resolution may be lower due to limitations in hardware (typical monitor at typical distances has a resolution of about 40 cycles per degree, 150 cycles per degree would be optimal)

Number of entries in data matrix
 Data density =

Low data density

Executive Office of the President, 1973 [T 163].
Data density $=0.02$ numbers per cm^{2}.

High data density

NEW YORK CITY'S WEATHER FOR 1980

New York Times, 11 January 1981 [T 30].
Data density $=28$ numbers per cm^{2}.

Use small differences

Make all visual distinctions as subtle as possible, but still clear and effective.

Matthew Arrot et al (original), E. R. Tufte, Polly Baker et al (revised) [VE 75].
Large distinctions generate clutter. Smaller distinctions highlight the data.

Using small multiples to make comparisons

- Comparisons must be positioned within the eyespan for the viewer to make comparisons at glance
- Show changes in data, not in design.

Graphs and tables

What is the 15 year survival rate for brain and nervous system cancer?

Graphs and tables

	Cancer survival rates (\%)			
	5 year	10 year	15 year	20 year
Leukemia	42.5	32.4	29.7	26.2
Brain, nervous	32.0	29.2	27.6	26.1
Mutiple myeloma	29.5	12.7	7.0	4.8
Stomach	23.8	19.4	19.0	14.9

What is the 15 year survival rate for brain and nervous system cancer?
What is the trend over the years?

Graphs and tables

	Estimates of \% survival rates				
	5 year	10 year	15 year		yea
Prostate 99	99				
Thyroid	96	96	4		
Testis		94			
Melanomas		87			
Breast	86		84		
Hodgkin's disease					
Corpus uteri, uterus 84.83					
Urinary, bladder $82 \sim 79$					
Cervix, uteri					
Larynx		64	63		
Rectum					
Kidney, renal pelvis					
Colon 62					
Non-Hodgkin's 58					
Oral cavity, pharynx					
Ovary					
Leukemia 43×50					
Brain, nervous system $32 \sim 30$	32				
Multiple myeloma $30 \sim 28-26$					
Stomach 24					
Lung and bronchus 15					
Esophagus					
Liver, bile duct	8	6	6		
Pancreas	4	-3-	-3		

What is the 15 year survival rate for brain and nervous system cancer?

Graphs and tables

- The data can be shown in
- sentences,
- tables or
- graphics.
- Table is usually the best choice for (small) collection of numbers

New York Times, 2 January 1979 [T 180].
Nearly 53% of group A
did something compared
to 46% of group B and
57% of C.
Same using a table:

Group A	53%
Group B	46%
Group C	57%

Better(?) order:

Group B	46%
Group A	53%
Group C	57%

Aesthetics:

Line weight and lettering

The weights of the letters should be in proportion to the other visual elements:

E. R. Tufte, 1973 [T 184].

The heavier weight should be given to data measures:

Line weight and lettering

An excellent summary of crimes committed by state's witnesses in a Mafia trial. Notice the thick glyphs and how the most horrid crimes are listed first and last.

Aesthetics: Proportion of graphics

Graphics should usually have greater length than height:

- Our eye is practiced in detecting deviations from the horizon. Thus e.g. horizontal time-series are easier to read.
- It is easier to write words and labels horizontally.
- Longer horizontal helps to emphasize the causal variable

Preferred height/length ratios vary depending on the circumstances; the golden ratio $1: 1.618$ is a good rule of thumb.

Summary

- Data-ink
- Chartjunk
- Multifunctioning graphical elements
- Data density and small multiples
- Aesthetics and techniques

Conclusion

- Communicating ideas and information is difficult. Wiio's laws:
- Communication usually fails, except by accident.
- If a message can be interpreted in several ways, it will be interpreted in a manner that maximizes damages.
- Theory of data graphics: show only the essential in a way that makes the facts obvious. Don't waste space and eliminate all non-essentials and redundancies

Next lecture

- Visualization techniques
- The assignments

