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SetCover (card.)

• Given a ground set U and a collection S of subsets of U
where

⋃
S = U .

• Find a cover S ′ ⊆ S of U (i.e. with
⋃
S ′ = U) of

minimum cardinality.
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SetCover (general)

• Given a ground set U and a collection S of subsets of U
where

⋃
S = U .

• Find a cover S ′ ⊆ S of U (i.e. with
⋃
S ′ = U) of

minimum cardinality.

and each S ∈ S has a postive cost c(S).

total cost c(S ′) :=
∑
S∈S′ c(S).
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3 each.
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Iterative “re-pricing”
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Buy 3 more elements for a unit price of 4
3 and re-price.
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Iterative “re-pricing”
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Iterative “re-pricing”
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Iterative “re-pricing”
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Obs: Total solution cost =
∑
e∈U price(e)

Greedy-Idea: Always choose the set with the cheapest
unit price.
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Iterative “re-pricing”
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∑
e∈U price(e)

Greedy-Idea: Always choose the set with the cheapest
unit price.
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Greedy for SetCover

GreedySetCover(U,S, c)
C ← ∅
S ′ ← ∅
while C 6= U do

S ← Set S from S, with c(S)
|S\C| minimized

foreach u ∈ S \ C do

price(u)← c(S)
|S\C|

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U



Analysis

GreedySetCover is a factor-Hk approximation alg.
where k is the cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ∈ O(log k).

Thm.

Let S ∈ S and u1, . . . , ul be the elements of S in
the order they are covered (“bought”) by
GreedySetCover. Then

price(uj) ≤ c(S)
l−j+1 .

Lemma.

price(S) :=
∑l
i=1 price(ui) ≤ Hl · c(S)Lemma.



Is the Analysis of Greedy Tight?

Question: Does there exist a set cover instance where our
greedy algorithm performs as bad (asymptotically) as our
performance guarantee?



Is the Analysis of Greedy Tight?

1 + ε

1/n 1/(n− 1) 1

. . .

Question: Does there exist a set cover instance where our
greedy algorithm performs as bad (asymptotically) as our
performance guarantee?

Yes :-(



ShortestSuperstring (SSS)

Given a collection S = {s1, . . . , sn} of strings over a finite
alphabet Σ (i.e., S ⊆ Σ+).
Find a shortest string s such that each si is a substring of s.
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ShortestSuperstring (SSS)

Given a collection S = {s1, . . . , sn} of strings over a finite
alphabet Σ (i.e., S ⊆ Σ+).
Find a shortest string s such that each si is a substring of s.

U := {cbaa, abc, bcb}e.g.:

s = abcbaa
abc
bcb
cbaa

note: s “covers” the
strings in U

WLOG: No string si is
a substring of any
other string sj .



SSS as a SetCover problem

• SetCover Instance: ground set U , set family S, costs c.
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SSS as a SetCover problem

• SetCover Instance: ground set U , set family S, costs c.

• ground set U := {s1, . . . , sn}
• a string σijk has prefix si, suffix sj where si and sj overlap

on k characters.

si
sj

length k

︸ ︷︷ ︸
σijk

• for each σijk let set(σijk) = {s ∈ U | s substring of σijk},
i.e., the ground elements covered by σijk.

• cost of σijk is |σijk|
• set family S = {set(σijk) | for valid choices of i, j (possibly
i = j) and k > 0}.



Relating SSS and SetCover

Let OPT be the length of a shortest superstring of
U and OPTSC be the minimum cost of the
corresponding SetCover-Instance. Then:

OPT ≤ OPTSC

Lemma.
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Relating SSS and SetCover

OPTSC ≤ 2 · OPT
Lemma.

Proof.
Let s be an optimal superstring. Construct set cover with:

cost ≤ 2|s| = 2 · OPT.
s
sb1
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sb2 is the first string strictly after sb1
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Relating SSS and SetCover

OPTSC ≤ 2 · OPT
Lemma.

Proof.
Let s be an optimal superstring. Construct set cover with:

cost ≤ 2|s| = 2 · OPT.
s
sb1

se1

π1

sb2

se2

π2

sb3
se3

π3

no overlap between π1 and π3!

πk

...

...
...

sn
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Algorithm for SSS

• construct the SetCover instance U , S, c

• Let set(π1), . . . , set(πk) be the solution provided by the
GreedySetCover algorithm.

• return π1 ◦ · · · ◦ πk as the superstring.

This algorithm for ShortestSuperstring has
approximation factor 2Hn.

Thm.

Proof.

The cost of the solution is bounded as follows:

Hn · OPTSC ≤ 2 · Hn · OPT

Next Week: Steiner Trees & Multiway-Cuts

Note: SSS has a factor-3 approximation alg. see [V. §7].



Approximation Preserving Reduction

Let Π1,Π2 be minimization problems. An approximation
preserving reduction from Π1 to Π2 is a pair (f, g) of
poly-time computable functions with the following properties.

(i) for each instance I1 of Π1, I2 := f(I1) is an instance of
Π2 where OPTΠ2 (I2) ≤ OPTΠ1 (I1)

(ii) for each feasible solution t of I2, s := g(I1, t) is a feasible
solution of I1 where objΠ1

(I1, s) ≤ objΠ2
(I2, t)

instances I1

f
I2

ts
g

solutions

Π1 Π2



Approximation Preserving Reduction

Let Π1,Π2 be minimization problems where there is
an approximation preserving reduction from Π1 to
Π2. Then, for each factor-α approximation
algorithm of Π2, there is a factor-α approximation
algorithm of Π1.

Thm.

instances I1

f
I2

ts
g

solutions

Π1 Π2

α-Approximationα-Approximation
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