

# Lecture 2: Set Cover & Shortest SuperString Joachim Spoerhase

# SETCOVER (card.)

- Given a ground set U and a collection S of subsets of U where  $\bigcup S = U$ .
- Find a cover S' ⊆ S of U (i.e. with ∪ S' = U) of minimum cardinality.



# SETCOVER (general)

- Given a ground set U and a collection S of subsets of Uwhere  $\bigcup S = U$  and each  $S \in S$  has a postive cost c(S).
- Find a cover  $S' \subseteq S$  of U (i.e. with  $\bigcup S' = U$ ) of minimum cardinality. total cost  $c(S') := \sum_{S \in S'} c(S)$ .



What is the cost of picking a set?



What is the cost of picking a set?

Choosing a 3-element set with cost 4  $\rightsquigarrow$  unit price of  $\frac{4}{3}$  i.e., elements of S can be "bought" for a "price" of  $\frac{4}{3}$  each.



What is the cost of picking a set?

Choosing a 3-element set with cost 4  $\rightsquigarrow$  unit price of  $\frac{4}{3}$  i.e., elements of S can be "bought" for a "price" of  $\frac{4}{3}$  each.



#### What happens if we "buy" a set?



#### What happens if we "buy" a set? Fix price of the elements bought and re-evaluate unit prices!



#### What happens if we "buy" a set? Fix price of the elements bought and re-evaluate unit prices!



### Buy 3 more elements for a unit price of $\frac{4}{3}$ and re-price.



### Buy 3 more elements for a unit price of $\frac{4}{3}$ and re-price.











### Obs: Total solution $cost = \sum_{e \in U} price(e)$



Obs: Total solution  $cost = \sum_{e \in U} price(e)$ 

Greedy-Idea: Always choose the set with the cheapest unit price.



Obs: Total solution  $cost = \sum_{e \in U} price(e)$ 

Greedy-Idea: Always choose the set with the cheapest unit price. Tie-breaking?



Greedy for  $\operatorname{Set}\operatorname{Cover}$ 

```
GreedySetCover(U, S, c)
  C \leftarrow \emptyset
  \mathcal{S}' \leftarrow \emptyset
  while C \neq U do
        S \leftarrow \mathsf{Set}\ S from \mathcal{S}, with \frac{c(S)}{|S \setminus C|} minimized
        foreach u \in S \setminus C do
         | price(u) \leftarrow \frac{c(S)}{|S \setminus C|}
        C \leftarrow C \cup S
        \mathcal{S}' \leftarrow \mathcal{S}' \cup \{S\}
  return S'
                                                                              // Cover of U
```

### Analysis

Thm. GreedySetCover is a factor- $\mathcal{H}_k$  approximation alg. where k is the cardinality of the largest set in S and  $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \in O(\log k).$ 

**Lemma.** Let  $S \in S$  and  $u_1, \ldots, u_l$  be the elements of S in the order they are covered ("bought") by GreedySetCover. Then  $price(u_j) \leq \frac{c(S)}{l-j+1}$ .

**Lemma.** price
$$(S) := \sum_{i=1}^{l} \operatorname{price}(u_i) \le \mathcal{H}_l \cdot c(S)$$

### Is the Analysis of Greedy Tight?

**Question:** Does there exist a set cover instance where our greedy algorithm performs as bad (asymptotically) as our performance guarantee?

### Is the Analysis of Greedy Tight?

**Question:** Does there exist a set cover instance where our greedy algorithm performs as bad (asymptotically) as our performance guarantee?

Yes :-(



$$e.g.: U := \{cbaa, abc, bcb\}$$





**Given** a collection  $S = \{s_1, \ldots, s_n\}$  of strings over a finite alphabet  $\Sigma$  (i.e.,  $S \subseteq \Sigma^+$ ). **Find** a *shortest string* s such that each  $s_i$  is a *substring* of s.



cbaa

• SetCover Instance: ground set U, set family S, costs c.

- SetCover Instance: ground set U, set family S, costs c.
- ground set  $U := \{s_1, \ldots, s_n\}$

- SETCOVER Instance: ground set U, set family S, costs c.
- ground set  $U := \{s_1, \ldots, s_n\}$
- a string  $\sigma_{ijk}$  has prefix  $s_i$ , suffix  $s_j$  where  $s_i$  and  $s_j$  overlap on k characters.



- SetCover Instance: ground set U, set family S, costs c.
- ground set  $U := \{s_1, \ldots, s_n\}$
- a string  $\sigma_{ijk}$  has prefix  $s_i$ , suffix  $s_j$  where  $s_i$  and  $s_j$  overlap on k characters.



for each σ<sub>ijk</sub> let set(σ<sub>ijk</sub>) = {s ∈ U | s substring of σ<sub>ijk</sub>},
i.e., the ground elements covered by σ<sub>ijk</sub>.

- SetCover Instance: ground set U, set family S, costs c.
- ground set  $U := \{s_1, \ldots, s_n\}$
- a string  $\sigma_{ijk}$  has prefix  $s_i$ , suffix  $s_j$  where  $s_i$  and  $s_j$  overlap on k characters.



- for each  $\sigma_{ijk}$  let set $(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\}$ , i.e., the ground elements covered by  $\sigma_{ijk}$ .
- cost of  $\sigma_{ijk}$  is  $|\sigma_{ijk}|$

- SetCover Instance: ground set U, set family S, costs c.
- ground set  $U := \{s_1, \ldots, s_n\}$
- a string  $\sigma_{ijk}$  has prefix  $s_i$ , suffix  $s_j$  where  $s_i$  and  $s_j$  overlap on k characters.



- for each  $\sigma_{ijk}$  let set $(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\}$ , i.e., the ground elements covered by  $\sigma_{ijk}$ .
- cost of  $\sigma_{ijk}$  is  $|\sigma_{ijk}|$
- set family  $S = \{ set(\sigma_{ijk}) \mid for valid choices of i, j (possibly i = j) and k > 0 \}.$

**Lemma.** Let OPT be the length of a shortest superstring of U and  $OPT_{SC}$  be the minimum cost of the corresponding SETCOVER-Instance. Then:

 $\mathsf{OPT} \leq \mathsf{OPT}_{\mathsf{SC}}$ 

**Lemma.** Let OPT be the length of a shortest superstring of U and  $OPT_{SC}$  be the minimum cost of the corresponding SETCOVER-Instance. Then:

### $\mathsf{OPT} \leq \mathsf{OPT}_{\mathsf{SC}}$

#### Proof.

• Consider an optimal set cover  $set(\pi_1), \ldots, set(\pi_k)$  of U.

**Lemma.** Let OPT be the length of a shortest superstring of U and  $OPT_{SC}$  be the minimum cost of the corresponding SETCOVER-Instance. Then:

### $\mathsf{OPT} \leq \mathsf{OPT}_{\mathsf{SC}}$

- Consider an optimal set cover  $set(\pi_1), \ldots, set(\pi_k)$  of U.
- $s := \pi_1 \circ \cdots \circ \pi_k$  is a superstring of U whose length is  $OPT_{SC} = \sum_{i=1}^k |\pi_i|$

**Lemma.** Let OPT be the length of a shortest superstring of U and  $OPT_{SC}$  be the minimum cost of the corresponding SETCOVER-Instance. Then:

### $\mathsf{OPT} \leq \mathsf{OPT}_{\mathsf{SC}}$

- Consider an optimal set cover  $set(\pi_1), \ldots, set(\pi_k)$  of U.
- $s := \pi_1 \circ \cdots \circ \pi_k$  is a superstring of U whose length is  $OPT_{SC} = \sum_{i=1}^k |\pi_i|$
- $\bullet$  Thus,  $\mathsf{OPT} \leq |s| = \mathsf{OPT}_{\mathsf{SC}}$

**Lemma.** Let OPT be the length of a shortest superstring of U and  $OPT_{SC}$  be the minimum cost of the corresponding SETCOVER-Instance. Then:

### $\mathsf{OPT} \leq \mathsf{OPT}_{\mathsf{SC}}$

- Consider an optimal set cover  $set(\pi_1), \ldots, set(\pi_k)$  of U.
- $s := \pi_1 \circ \cdots \circ \pi_k$  is a superstring of U whose length is  $OPT_{SC} = \sum_{i=1}^k |\pi_i|$
- $\bullet$  Thus,  $\mathsf{OPT} \leq |s| = \mathsf{OPT}_{\mathsf{SC}}$

Lemma.

 $\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$ 

#### Lemma.

$$\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$$

#### **Proof.**

Let s be an optimal superstring. Construct set cover with:

#### Lemma.

$$\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$$

#### **Proof**.

S

 $s_{b_1}$ 

Let s be an optimal superstring. Construct set cover with:

 $\cos t \leq 2|s| = 2 \cdot \mathsf{OPT}.$ 

 $\checkmark$  leftmost occurrence of some string  $s_{b_1} \in U$ 

#### Lemma.

$$\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$$

#### **Proof**.

S

 $s_{b_1}$ 

Let s be an optimal superstring. Construct set cover with:

 $\cos t \leq 2|s| = 2 \cdot \mathsf{OPT}.$ 

 $\checkmark$  leftmost occurence of **another** string in U.

#### Lemma.

$$\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$$

#### **Proof**.

Let s be an optimal superstring. Construct set cover with:



#### Lemma.

$$\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$$

#### **Proof**.

Let s be an optimal superstring. Construct set cover with:



#### Lemma.

$$\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$$

#### **Proof**.

Let s be an optimal superstring. Construct set cover with:



#### Lemma.

$$\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$$

#### **Proof**.

Let s be an optimal superstring. Construct set cover with:



#### Lemma.

$$\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$$

#### **Proof**.

Let s be an optimal superstring. Construct set cover with:



#### Lemma.

$$\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$$

#### **Proof**.

Let s be an optimal superstring. Construct set cover with:



#### Lemma.

$$\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$$

#### **Proof**.

Let s be an optimal superstring. Construct set cover with:

 $\cos t \leq 2|s| = 2 \cdot \mathsf{OPT}.$ . S $s_{b_1}$  $s_{e_1}$  $Sb_2$  $s_{e_2}$ ¦  $s_{b_3}$  $s_{e_3}$ no overlap between  $\pi_1$  and  $\pi_3$ !  $\pi_1$  $\pi_2$  $\pi_3$  $\sigma_{b_3, e_3, k_3}$ 

#### Lemma.

$$\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$$

#### **Proof**.

Let s be an optimal superstring. Construct set cover with:



| Lemma. | $OPT_{SC} < 2 \cdot OPT$ |
|--------|--------------------------|
| Proof. |                          |

• each string  $s_i \in U$  is a substring of some  $\pi_j$ 

**Lemma.**  $OPT_{SC} \le 2 \cdot OPT$ **Proof.** 

- each string  $s_i \in U$  is a substring of some  $\pi_j$
- $set(\pi_1), \ldots, set(\pi_k)$  is a solution for the SETCOVER instance with cost  $\sum_i |\pi_i|$

Lemma. 
$$OPT_{SC} \le 2 \cdot OPT$$
  
Proof.

- each string  $s_i \in U$  is a substring of some  $\pi_j$
- $set(\pi_1), \ldots, set(\pi_k)$  is a solution for the SETCOVER instance with cost  $\sum_i |\pi_i|$
- the substrings  $\pi_j, \pi_{j+2}$  of s do not overlap

**Lemma.** 
$$OPT_{SC} \le 2 \cdot OPT$$
  
**Proof.**

- each string  $s_i \in U$  is a substring of some  $\pi_j$
- $set(\pi_1), \ldots, set(\pi_k)$  is a solution for the SETCOVER instance with cost  $\sum_i |\pi_i|$
- the substrings  $\pi_j, \pi_{j+2}$  of s do not overlap
- each character of s lies in at most two substrings (i.e.,  $\pi_j$  and  $\pi_{j+1}$ )

**Lemma.** 
$$OPT_{SC} \le 2 \cdot OPT$$
  
**Proof.**

- each string  $s_i \in U$  is a substring of some  $\pi_j$
- $set(\pi_1), \ldots, set(\pi_k)$  is a solution for the SETCOVER instance with cost  $\sum_i |\pi_i|$
- the substrings  $\pi_j, \pi_{j+2}$  of s do not overlap
- each character of s lies in at most two substrings (i.e.,  $\pi_j$  and  $\pi_{j+1}$ )
- $\sum_i |\pi_i| \le 2|s| = 2 \cdot \mathsf{OPT}$

Lemma. 
$$OPT_{SC} \le 2 \cdot OPT$$
  
Proof.

- each string  $s_i \in U$  is a substring of some  $\pi_j$
- $set(\pi_1), \ldots, set(\pi_k)$  is a solution for the SETCOVER instance with cost  $\sum_i |\pi_i|$
- the substrings  $\pi_j, \pi_{j+2}$  of s do not overlap
- each character of s lies in at most two substrings (i.e.,  $\pi_j$  and  $\pi_{j+1}$ )
- $\sum_i |\pi_i| \le 2|s| = 2 \cdot \mathsf{OPT}$

- $\bullet$  construct the  $\operatorname{SetCover}$  instance U,  $\mathcal{S}$ , c
- Let set(π<sub>1</sub>),..., set(π<sub>k</sub>) be the solution provided by the GreedySetCover algorithm.
- return  $\pi_1 \circ \cdots \circ \pi_k$  as the superstring.

- $\bullet$  construct the  $\operatorname{SetCover}$  instance U,  $\mathcal{S}$ , c
- Let set(π<sub>1</sub>),..., set(π<sub>k</sub>) be the solution provided by the GreedySetCover algorithm.
- return  $\pi_1 \circ \cdots \circ \pi_k$  as the superstring.
- **Thm.** This algorithm for SHORTESTSUPERSTRING has approximation factor  $2\mathcal{H}_n$ .

- $\bullet$  construct the  $\operatorname{SetCover}$  instance U,  ${\mathcal S}$ , c
- Let set(π<sub>1</sub>),..., set(π<sub>k</sub>) be the solution provided by the GreedySetCover algorithm.
- return  $\pi_1 \circ \cdots \circ \pi_k$  as the superstring.
- **Thm.** This algorithm for SHORTESTSUPERSTRING has approximation factor  $2\mathcal{H}_n$ .

### Proof.

The cost of the solution is bounded as follows:

$$\mathcal{H}_n \cdot \mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathcal{H}_n \cdot \mathsf{OPT}$$

- $\bullet$  construct the  $\operatorname{SetCover}$  instance U,  $\mathcal{S}$ , c
- Let set(π<sub>1</sub>),..., set(π<sub>k</sub>) be the solution provided by the GreedySetCover algorithm.
- return  $\pi_1 \circ \cdots \circ \pi_k$  as the superstring.
- **Thm.** This algorithm for SHORTESTSUPERSTRING has approximation factor  $2\mathcal{H}_n$ .

### Proof.

The cost of the solution is bounded as follows:

$$\mathcal{H}_n \cdot \mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathcal{H}_n \cdot \mathsf{OPT}$$

- $\bullet$  construct the  $\operatorname{SetCover}$  instance U,  $\mathcal{S}$ , c
- Let set(π<sub>1</sub>),..., set(π<sub>k</sub>) be the solution provided by the GreedySetCover algorithm.
- return  $\pi_1 \circ \cdots \circ \pi_k$  as the superstring.
- **Thm.** This algorithm for SHORTESTSUPERSTRING has approximation factor  $2\mathcal{H}_n$ .

### Proof.

The cost of the solution is bounded as follows:

$$\mathcal{H}_n \cdot \mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathcal{H}_n \cdot \mathsf{OPT}$$

Note: SSS has a factor-3 approximation alg. see [V.  $\S7$ ].

- $\bullet$  construct the  $\operatorname{SetCover}$  instance U,  $\mathcal{S}$ , c
- Let set(π<sub>1</sub>),..., set(π<sub>k</sub>) be the solution provided by the GreedySetCover algorithm.
- return  $\pi_1 \circ \cdots \circ \pi_k$  as the superstring.
- **Thm.** This algorithm for SHORTESTSUPERSTRING has approximation factor  $2\mathcal{H}_n$ .

#### **Proof.**

The cost of the solution is bounded as follows:

$$\mathcal{H}_n \cdot \mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathcal{H}_n \cdot \mathsf{OPT}$$

Note: SSS has a factor-3 approximation alg. see [V. §7]. Next Week: Steiner Trees & Multiway-Cuts

Let  $\Pi_1, \Pi_2$  be minimization problems. An **approximation preserving reduction** from  $\Pi_1$  to  $\Pi_2$  is a pair (f, g) of poly-time computable functions with the following properties. (i) for each instance  $I_1$  of  $\Pi_1, I_2 := f(I_1)$  is an instance of  $\Pi_2$  where  $OPT_{\Pi_2}(I_2) \leq OPT_{\Pi_1}(I_1)$ 

(ii) for each feasible solution t of  $I_2$ ,  $s := g(I_1, t)$  is a feasible solution of  $I_1$  where  $obj_{\Pi_1}(I_1, s) \le obj_{\Pi_2}(I_2, t)$ 



**Thm.** Let  $\Pi_1, \Pi_2$  be minimization problems where there is an approximation preserving reduction from  $\Pi_1$  to  $\Pi_2$ . Then, for each factor- $\alpha$  approximation algorithm of  $\Pi_2$ , there is a factor- $\alpha$  approximation algorithm of  $\Pi_1$ .



**Thm.** Let  $\Pi_1$ ,  $\Pi_2$  be minimization problems where there is an approximation preserving reduction from  $\Pi_1$  to  $\Pi_2$ . Then, for each factor- $\alpha$  approximation algorithm of  $\Pi_2$ , there is a factor- $\alpha$  approximation algorithm of  $\Pi_1$ .

- Consider a factor-α approx. alg. A of Π<sub>2</sub> and an instance I<sub>1</sub> of Π<sub>1</sub>.
- Let  $I_2 := f(I_1)$ ,  $t := A(I_2)$  and  $s := g(I_1, t)$
- $\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t) \leq \alpha \cdot \operatorname{OPT}_{\Pi_2}(I_2) \leq \alpha \cdot \operatorname{OPT}_{\Pi_1}(I_1)$

**Thm.** Let  $\Pi_1$ ,  $\Pi_2$  be minimization problems where there is an approximation preserving reduction from  $\Pi_1$  to  $\Pi_2$ . Then, for each factor- $\alpha$  approximation algorithm of  $\Pi_2$ , there is a factor- $\alpha$  approximation algorithm of  $\Pi_1$ .

- Consider a factor- $\alpha$  approx. alg. A of  $\Pi_2$  and an instance  $I_1$  of  $\Pi_1$ .
- Let  $I_2 := f(I_1)$ ,  $t := A(I_2)$  and  $s := g(I_1, t)$
- $\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t) \leq \alpha \cdot \operatorname{OPT}_{\Pi_2}(I_2) \leq \alpha \cdot \operatorname{OPT}_{\Pi_1}(I_1)$

**Thm.** Let  $\Pi_1$ ,  $\Pi_2$  be minimization problems where there is an approximation preserving reduction from  $\Pi_1$  to  $\Pi_2$ . Then, for each factor- $\alpha$  approximation algorithm of  $\Pi_2$ , there is a factor- $\alpha$  approximation algorithm of  $\Pi_1$ .

- Consider a factor- $\alpha$  approx. alg. A of  $\Pi_2$  and an instance  $I_1$  of  $\Pi_1$ .
- Let  $I_2 := f(I_1)$ ,  $t := A(I_2)$  and  $s := g(I_1, t)$
- $\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t) \leq \alpha \cdot \operatorname{OPT}_{\Pi_2}(I_2) \leq \alpha \cdot \operatorname{OPT}_{\Pi_1}(I_1)$