Combinatorics of Efficient Computations # Approximation Algorithms Lecture 2: Set Cover & Shortest SuperString Joachim Spoerhase ### SETCOVER (card.) - Given a **ground set** U and a collection S of **subsets** of U where $\bigcup S = U$. - Find a cover $S' \subseteq S$ of U (i.e. with $\bigcup S' = U$) of minimum cardinality. ## SetCover (general) - Given a **ground set** U and a collection S of **subsets** of U where $\bigcup S = U$ and each $S \in S$ has a postive cost c(S). - Find a cover $S' \subseteq S$ of U (i.e. with $\bigcup S' = U$) of minimum cardinality, total cost $c(S') := \sum_{S \in S'} c(S)$. ### Iterative "re-pricing" Obs: Total solution cost = $\sum_{e \in U} \operatorname{price}(e)$ Greedy-Idea: Always choose the set with the cheapest unit price. Tie-breaking? ### Greedy for SETCOVER $\mathsf{GreedySetCover}(U, \mathcal{S}, c)$ $$\begin{array}{l} C \leftarrow \emptyset \\ \mathcal{S}' \leftarrow \emptyset \\ \textbf{while } C \neq U \textbf{ do} \\ & \mid S \leftarrow \mathsf{Set} \; S \; \mathsf{from} \; \mathcal{S}, \; \mathsf{with} \; \frac{c(S)}{|S \backslash C|} \; \mathsf{minimized} \end{array}$$ foreach $$u \in S \setminus C$$ do $$C \leftarrow C \cup S$$ $$S' \leftarrow S' \cup \{S\}$$ return \mathcal{S}' // Cover of U ### **Analysis** Thm. GreedySetCover is a factor- \mathcal{H}_k approximation alg. where k is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \in O(\log k)$. Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_l be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $$\operatorname{price}(u_j) \leq \frac{c(S)}{l-j+1}$$. **Lemma.** $\operatorname{price}(S) := \sum_{i=1}^{l} \operatorname{price}(u_i) \leq \mathcal{H}_l \cdot c(S)$ ### Is the Analysis of Greedy Tight? **Question:** Does there exist a set cover instance where our greedy algorithm performs as bad (asymptotically) as our performance guarantee? Yes :-(### SHORTESTSUPERSTRING (SSS) **Given** a collection $S = \{s_1, \dots, s_n\}$ of strings over a finite alphabet Σ (i.e., $S \subseteq \Sigma^+$). **Find** a shortest string s such that each s_i is a substring of s. e.g.: $$U:=\{cbaa,abc,bcb\}$$ WLOG: No string s_i is a substring of any other string s_j . $$s=abcbaa$$ $$abc$$ $$bcb$$ $$cbaa$$ ### SSS as a SetCover problem - SetCover Instance: ground set U, set family S, costs c. - ullet ground set $U:=\{s_1,\ldots,s_n\}$ • a string σ_{ijk} has prefix s_i , suffix s_j where s_i and s_j overlap on k characters. - for each σ_{ijk} let $set(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\}$, i.e., the ground elements covered by σ_{ijk} . - cost of σ_{ijk} is $|\sigma_{ijk}|$ - set family $S = \{ set(\sigma_{ijk}) \mid \text{ for valid choices of } i, j \text{ (possibly } i = j) \text{ and } k > 0 \}.$ ### Relating SSS and SETCOVER Lemma. Let OPT be the length of a shortest superstring of U and OPT_{SC} be the minimum cost of the corresponding SetCover-Instance. Then: $$\mathsf{OPT} \leq \mathsf{OPT}_{\mathsf{SC}}$$ #### Proof. - Consider an optimal set cover $set(\pi_1), \ldots, set(\pi_k)$ of U. - $s := \pi_1 \circ \cdots \circ \pi_k$ is a superstring of U whose length is $\mathsf{OPT}_{\mathsf{SC}} = \sum_{i=1}^k |\pi_i|$ - Thus, $OPT \leq |s| = OPT_{SC}$ ### Relating SSS and SETCOVER #### Lemma. ### $\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$ #### Proof. Let s be an optimal superstring. Construct set cover with: ### Relating SSS and SETCOVER #### Lemma. $\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$ #### Proof. - ullet each string $s_i \in U$ is a substring of some π_j - $\operatorname{set}(\pi_1), \ldots, \operatorname{set}(\pi_k)$ is a solution for the SetCover instance with cost $\sum_i |\pi_i|$ - the substrings π_j, π_{j+2} of s do not overlap - each character of s lies in at most two substrings (i.e., π_j and π_{j+1}) - $\sum_{i} |\pi_{i}| \le 2|s| = 2 \cdot \mathsf{OPT}$ ### Algorithm for SSS - ullet construct the SetCover instance U, ${\cal S}$, c - Let $set(\pi_1), \ldots, set(\pi_k)$ be the solution provided by the GreedySetCover algorithm. - return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring. - Thm. This algorithm for SHORTESTSUPERSTRING has approximation factor $2\mathcal{H}_n$. #### Proof. The cost of the solution is bounded as follows: $$\mathcal{H}_n \cdot \mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathcal{H}_n \cdot \mathsf{OPT}$$ Note: SSS has a factor-3 approximation alg. see [V. §7]. Next Week: Steiner Trees & Multiway-Cuts ### Approximation Preserving Reduction Let Π_1 , Π_2 be minimization problems. An **approximation preserving reduction** from Π_1 to Π_2 is a pair (f,g) of poly-time computable functions with the following properties. - (i) for each instance I_1 of Π_1 , $I_2 := f(I_1)$ is an instance of Π_2 where $\mathsf{OPT}_{\Pi_2}(I_2) \leq \mathsf{OPT}_{\Pi_1}(I_1)$ - (ii) for each feasible solution t of I_2 , $s:=g(I_1,t)$ is a feasible solution of I_1 where $\operatorname{obj}_{\Pi_1}(I_1,s) \leq \operatorname{obj}_{\Pi_2}(I_2,t)$ ### Approximation Preserving Reduction Thm. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction from Π_1 to Π_2 . Then, for each factor- α approximation algorithm of Π_2 , there is a factor- α approximation algorithm of Π_1 . #### Proof. - Consider a factor- α approx. alg. A of Π_2 and an instance I_1 of Π_1 . - Let $I_2 := f(I_1)$, $t := A(I_2)$ and $s := g(I_1, t)$ - $\operatorname{obj}_{\Pi_1}(I_1,s) \leq \operatorname{obj}_{\Pi_2}(I_2,t) \leq \alpha \cdot \operatorname{OPT}_{\Pi_2}(I_2) \leq \alpha \cdot \operatorname{OPT}_{\Pi_1}(I_1)$