



Combinatorics of Efficient Computations

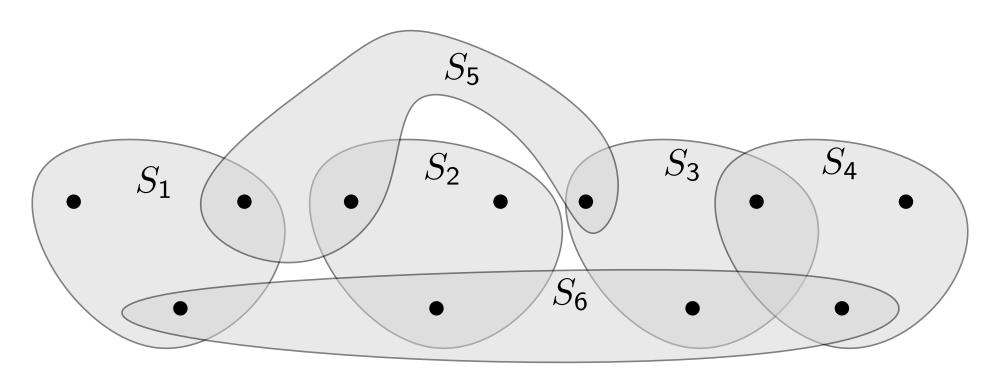
# Approximation Algorithms

Lecture 2: Set Cover & Shortest SuperString

Joachim Spoerhase

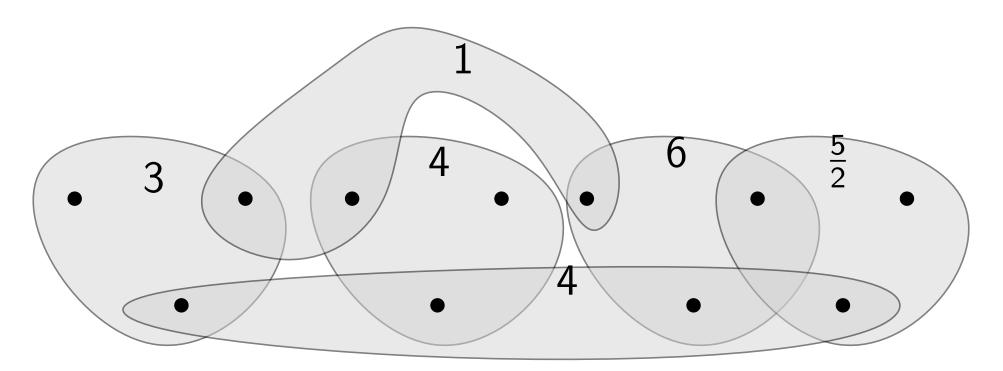
### SETCOVER (card.)

- Given a **ground set** U and a collection S of **subsets** of U where  $\bigcup S = U$ .
- Find a cover  $S' \subseteq S$  of U (i.e. with  $\bigcup S' = U$ ) of minimum cardinality.



## SetCover (general)

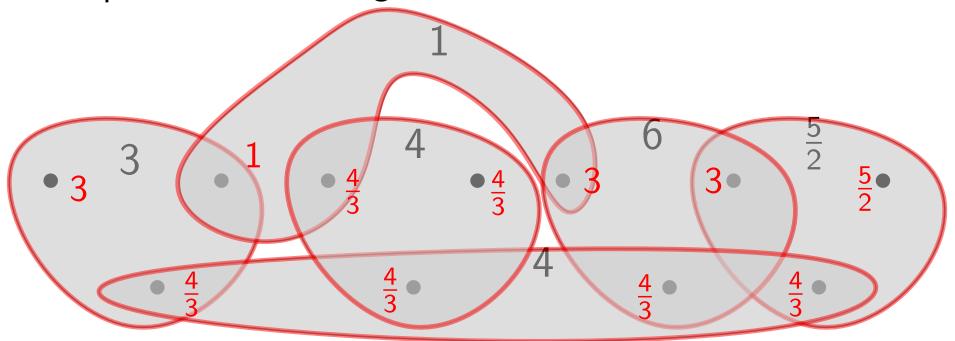
- Given a **ground set** U and a collection S of **subsets** of U where  $\bigcup S = U$  and each  $S \in S$  has a postive cost c(S).
- Find a cover  $S' \subseteq S$  of U (i.e. with  $\bigcup S' = U$ ) of minimum cardinality, total cost  $c(S') := \sum_{S \in S'} c(S)$ .



### Iterative "re-pricing"

Obs: Total solution cost =  $\sum_{e \in U} \operatorname{price}(e)$ 

Greedy-Idea: Always choose the set with the cheapest unit price. Tie-breaking?



### Greedy for SETCOVER

 $\mathsf{GreedySetCover}(U, \mathcal{S}, c)$ 

$$\begin{array}{l} C \leftarrow \emptyset \\ \mathcal{S}' \leftarrow \emptyset \\ \textbf{while } C \neq U \textbf{ do} \\ & \mid S \leftarrow \mathsf{Set} \; S \; \mathsf{from} \; \mathcal{S}, \; \mathsf{with} \; \frac{c(S)}{|S \backslash C|} \; \mathsf{minimized} \end{array}$$

foreach 
$$u \in S \setminus C$$
 do

$$C \leftarrow C \cup S$$
  
$$S' \leftarrow S' \cup \{S\}$$

return  $\mathcal{S}'$ 

// Cover of U

### **Analysis**

Thm.

GreedySetCover is a factor- $\mathcal{H}_k$  approximation alg. where k is the cardinality of the largest set in  $\mathcal{S}$  and  $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \in O(\log k)$ .

Lemma.

Let  $S \in \mathcal{S}$  and  $u_1, \ldots, u_l$  be the elements of S in the order they are covered ("bought") by GreedySetCover. Then

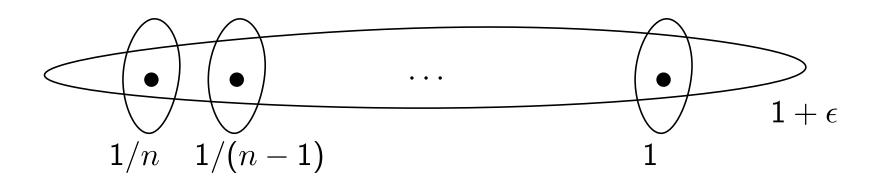
$$\operatorname{price}(u_j) \leq \frac{c(S)}{l-j+1}$$
.

**Lemma.**  $\operatorname{price}(S) := \sum_{i=1}^{l} \operatorname{price}(u_i) \leq \mathcal{H}_l \cdot c(S)$ 

### Is the Analysis of Greedy Tight?

**Question:** Does there exist a set cover instance where our greedy algorithm performs as bad (asymptotically) as our performance guarantee?

Yes :-(



### SHORTESTSUPERSTRING (SSS)

**Given** a collection  $S = \{s_1, \dots, s_n\}$  of strings over a finite alphabet  $\Sigma$  (i.e.,  $S \subseteq \Sigma^+$ ).

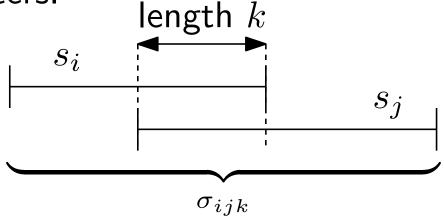
**Find** a shortest string s such that each  $s_i$  is a substring of s.

e.g.: 
$$U:=\{cbaa,abc,bcb\}$$
 WLOG: No string  $s_i$  is a substring of any other string  $s_j$ . 
$$s=abcbaa$$
 
$$abc$$
 
$$bcb$$
 
$$cbaa$$

### SSS as a SetCover problem

- SetCover Instance: ground set U, set family S, costs c.
- ullet ground set  $U:=\{s_1,\ldots,s_n\}$

• a string  $\sigma_{ijk}$  has prefix  $s_i$ , suffix  $s_j$  where  $s_i$  and  $s_j$  overlap on k characters.



- for each  $\sigma_{ijk}$  let  $set(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\}$ , i.e., the ground elements covered by  $\sigma_{ijk}$ .
- cost of  $\sigma_{ijk}$  is  $|\sigma_{ijk}|$
- set family  $S = \{ set(\sigma_{ijk}) \mid \text{ for valid choices of } i, j \text{ (possibly } i = j) \text{ and } k > 0 \}.$

### Relating SSS and SETCOVER

Lemma. Let OPT be the length of a shortest superstring of U and OPT<sub>SC</sub> be the minimum cost of the corresponding SetCover-Instance. Then:

$$\mathsf{OPT} \leq \mathsf{OPT}_{\mathsf{SC}}$$

#### Proof.

- Consider an optimal set cover  $set(\pi_1), \ldots, set(\pi_k)$  of U.
- $s := \pi_1 \circ \cdots \circ \pi_k$  is a superstring of U whose length is  $\mathsf{OPT}_{\mathsf{SC}} = \sum_{i=1}^k |\pi_i|$
- Thus,  $OPT \leq |s| = OPT_{SC}$

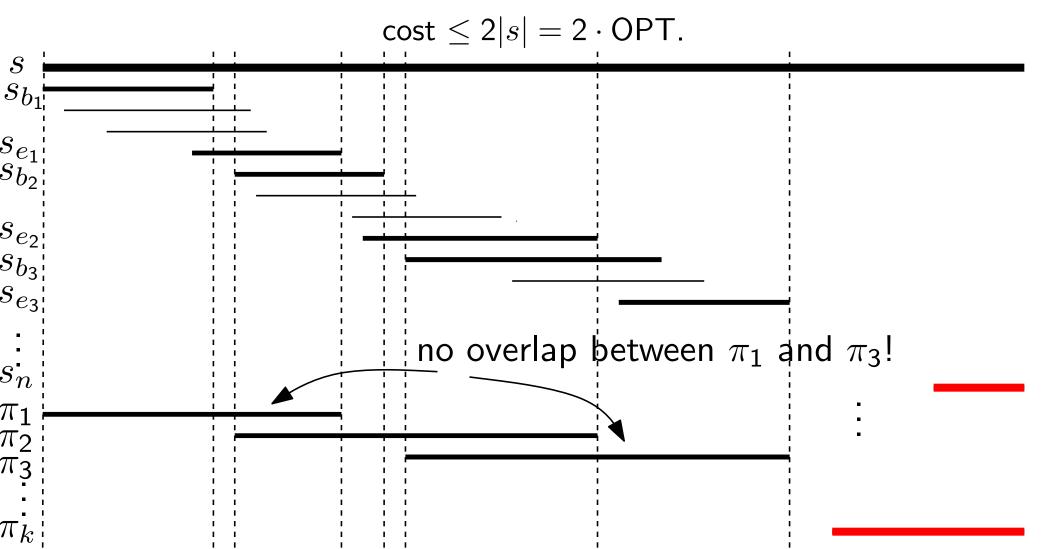
### Relating SSS and SETCOVER

#### Lemma.

### $\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$

#### Proof.

Let s be an optimal superstring. Construct set cover with:



### Relating SSS and SETCOVER

#### Lemma.

 $\mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathsf{OPT}$ 

#### Proof.

- ullet each string  $s_i \in U$  is a substring of some  $\pi_j$
- $\operatorname{set}(\pi_1), \ldots, \operatorname{set}(\pi_k)$  is a solution for the SetCover instance with cost  $\sum_i |\pi_i|$
- the substrings  $\pi_j, \pi_{j+2}$  of s do not overlap
- each character of s lies in at most two substrings (i.e.,  $\pi_j$  and  $\pi_{j+1}$ )
- $\sum_{i} |\pi_{i}| \le 2|s| = 2 \cdot \mathsf{OPT}$

### Algorithm for SSS

- ullet construct the SetCover instance U,  ${\cal S}$ , c
- Let  $set(\pi_1), \ldots, set(\pi_k)$  be the solution provided by the GreedySetCover algorithm.
- return  $\pi_1 \circ \cdots \circ \pi_k$  as the superstring.
- Thm. This algorithm for SHORTESTSUPERSTRING has approximation factor  $2\mathcal{H}_n$ .

#### Proof.

The cost of the solution is bounded as follows:

$$\mathcal{H}_n \cdot \mathsf{OPT}_{\mathsf{SC}} \leq 2 \cdot \mathcal{H}_n \cdot \mathsf{OPT}$$

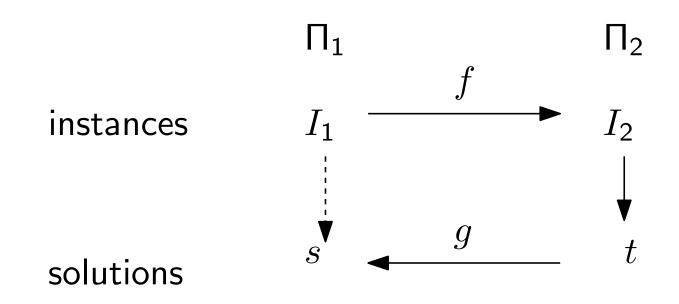
Note: SSS has a factor-3 approximation alg. see [V. §7].

Next Week: Steiner Trees & Multiway-Cuts

### Approximation Preserving Reduction

Let  $\Pi_1$ ,  $\Pi_2$  be minimization problems. An **approximation preserving reduction** from  $\Pi_1$  to  $\Pi_2$  is a pair (f,g) of poly-time computable functions with the following properties.

- (i) for each instance  $I_1$  of  $\Pi_1$ ,  $I_2 := f(I_1)$  is an instance of  $\Pi_2$  where  $\mathsf{OPT}_{\Pi_2}(I_2) \leq \mathsf{OPT}_{\Pi_1}(I_1)$
- (ii) for each feasible solution t of  $I_2$ ,  $s:=g(I_1,t)$  is a feasible solution of  $I_1$  where  $\operatorname{obj}_{\Pi_1}(I_1,s) \leq \operatorname{obj}_{\Pi_2}(I_2,t)$



### Approximation Preserving Reduction

Thm.

Let  $\Pi_1$ ,  $\Pi_2$  be minimization problems where there is an approximation preserving reduction from  $\Pi_1$  to  $\Pi_2$ . Then, for each factor- $\alpha$  approximation algorithm of  $\Pi_2$ , there is a factor- $\alpha$  approximation algorithm of  $\Pi_1$ .

#### Proof.

- Consider a factor- $\alpha$  approx. alg. A of  $\Pi_2$  and an instance  $I_1$  of  $\Pi_1$ .
- Let  $I_2 := f(I_1)$ ,  $t := A(I_2)$  and  $s := g(I_1, t)$
- $\operatorname{obj}_{\Pi_1}(I_1,s) \leq \operatorname{obj}_{\Pi_2}(I_2,t) \leq \alpha \cdot \operatorname{OPT}_{\Pi_2}(I_2) \leq \alpha \cdot \operatorname{OPT}_{\Pi_1}(I_1)$