Aalto University .
I" o Department of
No? Computer Science
)

Approximation Algorithms

Lecture 2: Set Cover & Shortest SuperString

Joachim Spoerhase

2019



SETCOVER (card.)
e Given a ground set U and a collection § of subsets of U
where | JS =U.

e Find a cover S’ C S of U (i.e. with [JS' =U) of
minimum cardinality.




S

ETCOV]

R (general)

e Given a ground set U and a collection § of subsets of U
where | JS = U.and each S € § has a postive cost ¢(5).

e Find a cover S’ C S of U (i.e. with [JS' =U) of

minimum

cardimatity. total cost ¢(S') = > .5 c(5).




lterative “re-pricing’

Obs: Total solution cost = » __; price(e)

Greedy-ldea: Always choose the set with the cheapest
unit price. Tie-breaking?




Greedy for SETCOV:

(T
e

GreedySetCover(U, S, ¢)

C+(
S 0
while C' # U do
S < Set S from S, with |§(\SCZ| minimized
foreach u € S\ C do
" y, C(S)
L price(u) < Eivel
C+CuS
ST S'U{S}

return S’ // Cover of U



Analysis

Thm.

Lemma.

Lemma.

GreedySetCover is a factor-H;, approximation alg.
where k is the cardinality of the largest set in S and

Hip=1+3+%+...+%¢cO0(logk).

Let S € S and uq,...,u; be the elements of S in
the order they are covered ( “bought”) by
GreedySetCover. Then

price(u;) < 725L

[—j+1°

price(.S) := Zf;:l price(u;) < H; - c(S)



Is the Analysis of Greedy Tight?

Question: Does there exist a set cover instance where our
greedy algorithm performs as bad (asymptotically) as our

performance guarantee?

Yes :-(

S Iy

1/n 1/(n—1)




SHORTESTSUPERSTRING (SSS)

Given a collection § = {s1,...,s,} of strings over a finite
alphabet X (i.e., SCXT).
Find a shortest string s such that each s; is a substring of s.

e.g.: U := {cbaa, abc, bcb}
WLOG: No string s; is @ note: s “covers”’ the

a substring of any strings in U

other string s;. s = abcbaa

abc
beb

cbaa



SSS as a SETCOVER problem

e SETCOVER Instance: ground set U, set family S, costs c.
e ground set U := {s1,...,5,}

e a string o;;, has prefix s;, suffix s; where s; and s; overlap

on k characters. ength k

S'L I I

Oijk
e for each o let set(oy;1) = {s € U | s substring of o1},
I.e., the ground elements covered by o,
o cost of 0;;1 is |0yk]

o set family S = {set(o;;x) | for valid choices of 7, j (possibly
i =7) and k > 0}.



Relating SSS and SETCOVER

Lemma. Let OPT be the length of a shortest superstring of
U and OPTgc be the minimum cost of the
corresponding SETCOVER-Instance. Then:

OPT < OPTgc¢
Proof.

e Consider an optimal set cover set(m1), . ..,set(m) of U.

® s:=m0---0T Is a superstring of U whose length is

OPTsc = Zf:l kel
e Thus, OPT < |s| = OPTsc



Relating SSS and SETCOVER

Lemma. OPTsc <2-OPT
Proof.

Let s be an optimal superstring. Construct set cover with:
cost < 2|s| =2-OPT.

no overlap between T and 73!




Relating SSS and SETCOVER

Lemma. OPTsc <2-OPT
Proof.

e cach string s; € U is a substring of some 7;

e set(m),...,set(m) is a solution for the SETCOVER
instance with cost ) . |;|

e the substrings m;, m;42 of s do not overlap

e cach character of s lies in at most two substrings
(i.e., Ty and 7Tj_|_1)

o > |m| <2|s| =2-0PT



Algorithm for SSS

e construct the SETCOVER instance U, S, c

o Let set(my),...,set(m) be the solution provided by the
GreedySetCover algorithm.

e return m o--- o as the superstring.

Thm. This algorithm for SHORTESTSUPERSTRING has
approximation factor 2H,,.

Proof.
The cost of the solution is bounded as follows:

H, - OPTsc <2-H, -OPT A

Note: SSS has a factor-3 approximation alg. see [V. §7].
Next Week: Steiner Trees & Multiway-Cuts



Approximation Preserving Reduction

Let 11, 1l> be minimization problems. An approximation
preserving reduction from Iy to I, is a pair (f, g) of
poly-time computable functions with the following properties.
(i) for each instance I of Iy, I, := f(I1) is an instance of
FI2 where OPTn2(IQ) < OPTnl(Il)
(ii) for each feasible solution t of I, s := g([1,t) is a feasible
solution of I; where objp (I1,s) < objp, (12,1)

[ [

instances 14 > b

solutions



Approximation Preserving Reduction

Thm. Let I'ly, [l be minimization problems where there is

an approximation preserving reduction from [1; to
[1>. Then, for each factor-ac approximation
algorithm of [1,, there is a factor-a approximation
algorithm of I1;.

Proof.
e Consider a factor-a approx. alg. A of I, and an instance I;
of |_|1.

o Let I, := f([1), t := A(l2) and s := g([1,1)

o objp, (I1,s) < objp, (I2,t) < a-OPTn,(12) < a-OPTR, (1)
O



