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Learning Outcomes

0 Summary of the Last Lecture
e What is Bayesian Smoothing?
Q Bayesian Smoothing Equations
@ Rauch-Tung-Striebel Smoother

e Summary and Demonstration
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Summary of the Last Lecture

@ Rao—Blackwellization is a variance reduction technique
that can be used to handle analytically tractable
substructures

@ In Rao—Blackwellized particle filters a part of the state is
sampled and part is integrated in closed form with Kalman
filter

@ Rao—Blackwellized particle filters use a Gaussian mixture
for approximating the filtering distributions

@ Rao—Blackwellization may significantly reduce the number
of particles required in a particle filter

@ ltis possible to do approximate Rao—Blackwellization by
replacing the Kalman filter with a Gaussian filter
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Filtering, Prediction and Smoothing

0 k T
Prediction:
Filtering:
Smoothing:
Measurements Estimate
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Types of Smoothing Problems

@ Fixed-interval smoothing: estimate states on interval [0, T]
given measurements on the same interval.

@ Fixed-point smoothing: estimate state at a fixed point of
time in the past.

@ Fixed-lag smoothing: estimate state at a fixed delay in the
past.

@ Here we shall only consider fixed-interval smoothing, the
others can be quite easily derived from it.
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Examples of Smoothing Problems

@ Given all the radar measurements of a rocket (or missile)
trajectory, what was the exact place of launch?

@ Estimate the whole trajectory of a car based on GPS
measurements to calibrate the inertial navigation system
accurately.

@ What was the history of chemical/combustion/other
process given a batch of measurements from it?

@ Remove noise from audio signal by using smoother to
estimate the true audio signal under the noise.

@ Smoothing solution also arises in EM algorithm for
estimating the parameters of a state space model.
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Bayesian Smoothing Algorithms

@ Linear Gaussian models

e Rauch-Tung-Striebel smoother (RTSS).
o Two-filter smoother.

@ Non-linear Gaussian models

e Extended Rauch-Tung-Striebel smoother (ERTSS).

e Unscented Rauch-Tung-Striebel smoother (URTSS).

e Statistically linearized Rauch-Tung-Striebel smoother
(SLRTSS).

e Gaussian Rauch-Tung-Striebel smoothers (GRTSS),
cubature, Gauss-Hermite, Bayes-Hermite, Monte Carlo.

e Two-filter versions of the above.

@ Non-linear non-Gaussian models

e Particle smoothers.
e Rao-Blackwellized particle smoothers.
o Grid based smoothers.
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Problem Formulation

@ Probabilistic state space model:

measurement model: yx ~ p(Yk | Xk)
dynamic model: xx ~ p(Xx | Xx_1)

@ Assume that the filtering distributions p(xx | y1.x) have
already been computed forall k =0,..., T.

@ We want recursive equations of computing the smoothing
distribution for all k < T:

P(Xk |Y1.7)-

@ The recursion will go backwards in time, because on the
last step, the filtering and smoothing distributions coincide:

P(XT | Y1.7).
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Derivation of Formal Smoothing Equations [1/2]

@ The key: due to the Markov properties of state we have:

P(Xk | Xk11,Y1:7) = P(Xk | Xk41, Y1:4)

@ Thus we get:

P(Xk | Xk11,Y1:7) = P(Xk [ X1, Y1:k)
~ P(Xk, Xkt1 | Y1:4)
 p(Xktt [ Yik)
P(Xk+1 | Xk, Y1:k) P(Xk | Y1:5)
P(Xk+1 | Y1:k)
— P(Xkt1 [ Xi) P(Xk | Y1:k)
B P(Xkt1|Y1:k)
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Derivation of Formal Smoothing Equations [2/2]

@ Assuming that the smoothing distribution of the next step
p(Xx11|Y1.7) is available, we get

P(Xk, Xk11 | Y1.7) = P(Xk | Xk11, Y1.7) P(Xk41 | Y1.7)
= P(Xk | Xk4+1,Y1:k) P(Xk+1 | Y1:7)
— P(Xkt1 [ Xk) P(Xk | Y1:6) P(Xk 41 [Y1:7)
P(Xk11|Y1:k)

@ Integrating over X, gives

,O(Xk+1 ‘ Xk) p(Xk+1 ‘ y1:T)
. ) — o(x . dx
p(Xk [y1.7) = P( ky1.k)/{ P(Xer1 | V1K) o
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Bayesian Smoothing Equations

Bayesian Smoothing Equations

The Bayesian smoothing equations consist of prediction step
and backward update step:

P(Xk+1 | Y1:k) = /P(Xk+1 | Xk) P(Xk | Y1:x) dXk

P(Xs1 | Xi) p(X
55 T ) = B [ k)/[ k1 | Xk) P(Xk41 | Y1 T)} X
P(Xk4+1 | Y1:k)

The recursion is started from the filtering (and smoothing)
distribution of the last time step p(X7 | y1.7).
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Linear-Gaussian Smoothing Problem

@ Gaussian driven linear model, i.e., Gauss-Markov model:

Xk = Ak_1 X1 + Ok_1
Vi = He Xk + 1y,

@ In probabilistic terms the model is

P(Xk | Xk—1) = N(Xx | Ax—1 Xk—1, Qk_1)
P(Yk | Xk) = N(Yk | Hk Xk, R).

@ Kalman filter can be used for computing all the Gaussian
filtering distributions:

P(Xk | Y1:k) = N(Xx | My, Pg).
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RTS: Derivation Preliminaries

@ Gaussian probability density

N(x |m, P) = W exp <—;(x —m) P (x— m)> ,

@ Let x and y have the Gaussian densities
p(x) =N(x|m,P),  p(y[x)=N(y[Hx,R),
@ Then the joint and marginal distributions are

<;) ~N ((Hmm> ! <HPP H PPHI-TIT+ R))

y ~N(Hm,HPH™ +R).
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RTS: Derivation Preliminaries (cont.)

@ If the random variables x and y have the joint Gaussian
probability density

() -() (e 8)):

@ Then the marginal and conditional densities of x and y are
given as follows:

N( A)

N(b, B)
x\y~N(a+CB (y—b),A—CB_1CT)
y|x~Nb+CTA " (x—a),B-CTA'C).
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Derivation of Rauch-Tung-Striebel Smoother [1/4]

@ By the Gaussian distribution computation rules we get

P(Xk, X1 | Y1:k) = P(Xk1 | Xk) P(Xk | V1:1)
= N(Xk11 | Ak Xk, Q) N(Xx | My, Py)

where

_ mg . Pk Pk A](-
1 = (Ak mk> ’ P = (Ak P« AkPcA] +Qx)°
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Derivation of Rauch-Tung-Striebel Smoother [2/4]

@ By conditioning rule of Gaussian distribution we get

P(Xk | Xk1,¥1:7) = P(Xk | Xk11, Y1:k)
= N(xx [ mg, P2),

where

Gk = Pk Al (AxPA] + Q)"
my = My + G (Xk1 — AgMy)
P> = Px — Gk (AxPcA] + Q) G/.
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Derivation of Rauch-Tung-Striebel Smoother [3/4]

@ The joint distribution of X, and Xx. 1 given all the data is

P(Xk+1,Xk | Y1.7) = P(Xk | Xk+1,Y1:7) P(Xk+1 | Y1:7)
= N(xx [ M2, P2) N(Xxq1 | Mg ¢, P3 )

(5]

where

LU )
m
§= <mk+Gk (mk+1 — Agmy)

Ps ( Pi-H k+1 Gk )
GxPf,; GkP{,1G[+P;
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Derivation of Rauch-Tung-Striebel Smoother [4/4]

@ The marginal mean and covariance are thus given as

mi =my + Gy (mi+1 —Akmk)
k = P+ G (P4 — APA] —Qx)G/.

@ The smoothing distribution is then Gaussian with the above
mean and covariance:

P(Xk | y1.7) = N(Xk | m§, P}),
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Rauch-Tung-Striebel Smoother

Rauch-Tung-Striebel Smoother

Backward recursion equations for the smoothed means mj and
covariances Py

m;+1 = A mg

Py.1 =AcPcA] +Qy
Gk = Pk AIZ- [P/:+1]71
mi = my + Gy [mi+1 - m/?+1]
P; =Pk + Gk [P§,1 — P, 411G/,

@ my and Py are the mean and covariance computed by the
Kalman filter.

@ The recursion is started from the last time step T, with
m?- = my and P‘%— =Pr.
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@ Bayesian smoothing is used for computing estimates of
state trajectories given the measurements on the whole
trajectory.

@ Rauch-Tung-Striebel (RTS) smoother is the closed form
smoother for linear Gaussian models.

@ RTSS is fixed-interval smoother, there are also fixed-point
and fixed-lag smoothers.
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RTS Smoother: Car Tracking Example

The dynamic model of the car tracking model from the first &
third lectures was:

Xk 1 0 At O Xk—1
Ye | | O 1 0 At Yk—1
x |[“loo 1 o g | Tk
Yk 00 0 1 Vk—1
A

where q, is zero mean with a covariance matrix Q:

qs A3/3 0 qs At? /2 0

Q- 0 qs At3/3 0 qs At?/2
a2 0 Q¢ At 0
0 qs At?)2 0 qs At
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