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Summary of the Last Lecture

Rao–Blackwellization is a variance reduction technique
that can be used to handle analytically tractable
substructures
In Rao–Blackwellized particle filters a part of the state is
sampled and part is integrated in closed form with Kalman
filter
Rao–Blackwellized particle filters use a Gaussian mixture
for approximating the filtering distributions
Rao–Blackwellization may significantly reduce the number
of particles required in a particle filter
It is possible to do approximate Rao–Blackwellization by
replacing the Kalman filter with a Gaussian filter
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Filtering, Prediction and Smoothing

Measurements Estimate

0 Tk

Prediction:

Filtering:

Smoothing:
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Types of Smoothing Problems

Fixed-interval smoothing: estimate states on interval [0,T ]
given measurements on the same interval.
Fixed-point smoothing: estimate state at a fixed point of
time in the past.
Fixed-lag smoothing: estimate state at a fixed delay in the
past.
Here we shall only consider fixed-interval smoothing, the
others can be quite easily derived from it.
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Examples of Smoothing Problems

Given all the radar measurements of a rocket (or missile)
trajectory, what was the exact place of launch?
Estimate the whole trajectory of a car based on GPS
measurements to calibrate the inertial navigation system
accurately.
What was the history of chemical/combustion/other
process given a batch of measurements from it?
Remove noise from audio signal by using smoother to
estimate the true audio signal under the noise.
Smoothing solution also arises in EM algorithm for
estimating the parameters of a state space model.
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Bayesian Smoothing Algorithms

Linear Gaussian models

Rauch-Tung-Striebel smoother (RTSS).
Two-filter smoother.

Non-linear Gaussian models

Extended Rauch-Tung-Striebel smoother (ERTSS).
Unscented Rauch-Tung-Striebel smoother (URTSS).
Statistically linearized Rauch-Tung-Striebel smoother
(SLRTSS).
Gaussian Rauch-Tung-Striebel smoothers (GRTSS),
cubature, Gauss-Hermite, Bayes-Hermite, Monte Carlo.
Two-filter versions of the above.

Non-linear non-Gaussian models

Particle smoothers.
Rao-Blackwellized particle smoothers.
Grid based smoothers.
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Problem Formulation

Probabilistic state space model:

measurement model: yk ∼ p(yk |xk )

dynamic model: xk ∼ p(xk |xk−1)

Assume that the filtering distributions p(xk |y1:k ) have
already been computed for all k = 0, . . . ,T .
We want recursive equations of computing the smoothing
distribution for all k < T :

p(xk |y1:T ).

The recursion will go backwards in time, because on the
last step, the filtering and smoothing distributions coincide:

p(xT |y1:T ).
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Derivation of Formal Smoothing Equations [1/2]

The key: due to the Markov properties of state we have:

p(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k )

Thus we get:

p(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k )

=
p(xk ,xk+1 |y1:k )

p(xk+1 |y1:k )

=
p(xk+1 |xk ,y1:k ) p(xk |y1:k )

p(xk+1 |y1:k )

=
p(xk+1 |xk ) p(xk |y1:k )

p(xk+1 |y1:k )
.
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Derivation of Formal Smoothing Equations [2/2]

Assuming that the smoothing distribution of the next step
p(xk+1 |y1:T ) is available, we get

p(xk ,xk+1 |y1:T ) = p(xk |xk+1,y1:T ) p(xk+1 |y1:T )

= p(xk |xk+1,y1:k ) p(xk+1 |y1:T )

=
p(xk+1 |xk ) p(xk |y1:k ) p(xk+1 |y1:T )

p(xk+1 |y1:k )

Integrating over xk+1 gives

p(xk |y1:T ) = p(xk |y1:k )

∫ [
p(xk+1 |xk ) p(xk+1 |y1:T )

p(xk+1 |y1:k )

]
dxk+1
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Bayesian Smoothing Equations

Bayesian Smoothing Equations

The Bayesian smoothing equations consist of prediction step
and backward update step:

p(xk+1 |y1:k ) =

∫
p(xk+1 |xk ) p(xk |y1:k ) dxk

p(xk |y1:T ) = p(xk |y1:k )

∫ [
p(xk+1 |xk ) p(xk+1 |y1:T )

p(xk+1 |y1:k )

]
dxk+1

The recursion is started from the filtering (and smoothing)
distribution of the last time step p(xT |y1:T ).
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Linear-Gaussian Smoothing Problem

Gaussian driven linear model, i.e., Gauss-Markov model:

xk = Ak−1 xk−1 + qk−1

yk = Hk xk + rk ,

In probabilistic terms the model is

p(xk |xk−1) = N(xk |Ak−1 xk−1,Qk−1)

p(yk |xk ) = N(yk |Hk xk ,Rk ).

Kalman filter can be used for computing all the Gaussian
filtering distributions:

p(xk |y1:k ) = N(xk |mk ,Pk ).
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RTS: Derivation Preliminaries

Gaussian probability density

N(x |m,P) =
1

(2π)n/2 |P|1/2 exp

(
−1

2
(x−m)T P−1 (x−m)

)
,

Let x and y have the Gaussian densities

p(x) = N(x |m,P), p(y |x) = N(y |H x,R),

Then the joint and marginal distributions are(
x
y

)
∼ N

((
m

H m

)
,

(
P P HT

H P H P HT + R

))
y ∼ N(H m,H P HT + R).
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RTS: Derivation Preliminaries (cont.)

If the random variables x and y have the joint Gaussian
probability density(

x
y

)
∼ N

((
a
b

)
,

(
A C

CT B

))
,

Then the marginal and conditional densities of x and y are
given as follows:

x ∼ N(a,A)

y ∼ N(b,B)

x |y ∼ N(a + C B−1 (y− b),A− C B−1CT )

y |x ∼ N(b + CT A−1 (x− a),B− CT A−1 C).
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Derivation of Rauch-Tung-Striebel Smoother [1/4]

By the Gaussian distribution computation rules we get

p(xk ,xk+1 |y1:k ) = p(xk+1 |xk ) p(xk |y1:k )

= N(xk+1 |Ak xk ,Qk ) N(xk |mk ,Pk )

= N

([
xk

xk+1

] ∣∣∣m1,P1

)
,

where

m1 =

(
mk

Ak mk

)
, P1 =

(
Pk Pk AT

k
Ak Pk Ak Pk AT

k + Qk

)
.
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Derivation of Rauch-Tung-Striebel Smoother [2/4]

By conditioning rule of Gaussian distribution we get

p(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k )

= N(xk |m2,P2),

where

Gk = Pk AT
k (Ak Pk AT

k + Qk )−1

m2 = mk + Gk (xk+1 − Ak mk )

P2 = Pk −Gk (Ak Pk AT
k + Qk ) GT

k .
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Derivation of Rauch-Tung-Striebel Smoother [3/4]

The joint distribution of xk and xk+1 given all the data is

p(xk+1,xk |y1:T ) = p(xk |xk+1,y1:T ) p(xk+1 |y1:T )

= N(xk |m2,P2) N(xk+1 |ms
k+1,P

s
k+1)

= N

([
xk+1
xk

] ∣∣∣m3,P3

)

where

m3 =

(
ms

k+1
mk + Gk (ms

k+1 − Ak mk )

)
P3 =

(
Ps

k+1 Ps
k+1 GT

k
Gk Ps

k+1 Gk Ps
k+1 GT

k + P2

)
.
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Derivation of Rauch-Tung-Striebel Smoother [4/4]

The marginal mean and covariance are thus given as

ms
k = mk + Gk (ms

k+1 − Ak mk )

Ps
k = Pk + Gk (Ps

k+1 − Ak Pk AT
k −Qk ) GT

k .

The smoothing distribution is then Gaussian with the above
mean and covariance:

p(xk |y1:T ) = N(xk |ms
k ,P

s
k ),
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Rauch-Tung-Striebel Smoother

Rauch-Tung-Striebel Smoother

Backward recursion equations for the smoothed means ms
k and

covariances Ps
k :

m−
k+1 = Ak mk

P−
k+1 = Ak Pk AT

k + Qk

Gk = Pk AT
k [P−

k+1]−1

ms
k = mk + Gk [ms

k+1 −m−
k+1]

Ps
k = Pk + Gk [Ps

k+1 − P−
k+1] GT

k ,

mk and Pk are the mean and covariance computed by the
Kalman filter.
The recursion is started from the last time step T , with
ms

T = mT and Ps
T = PT .

Simo Särkkä Lecture 8: Bayesian and Rauch-Tung-Striebel smoothing



Summary

Bayesian smoothing is used for computing estimates of
state trajectories given the measurements on the whole
trajectory.
Rauch-Tung-Striebel (RTS) smoother is the closed form
smoother for linear Gaussian models.
RTSS is fixed-interval smoother, there are also fixed-point
and fixed-lag smoothers.
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RTS Smoother: Car Tracking Example

The dynamic model of the car tracking model from the first &
third lectures was:

xk
yk
ẋk
ẏk

 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

A


xk−1
yk−1
ẋk−1
ẏk−1

+ qk−1

where qk is zero mean with a covariance matrix Q:

Q =


qc

1 ∆t3/3 0 qc
1 ∆t2/2 0

0 qc
2 ∆t3/3 0 qc

2 ∆t2/2
qc

1 ∆t2/2 0 qc
1 ∆t 0

0 qc
2 ∆t2/2 0 qc

2 ∆t


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