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Until this lecture
q Explicit set of alternatives =

1, … , , which are evaluated with
regard to criteria

q Evaluations : → ℝ

q Preference modeling
q Value functions

max
∈

= ( , … , )
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Need for other kind of approaches

q The decision alternatives cannot necessarily be listed

q Preference modeling can be time-consuming and difficult at the
early stages of the analysis

q Conditions required for the additive value function to represent
preferences do not necessarily hold or are difficult to validate

q We might want to see some results quickly to get a better
understanding of the problem at hand
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Multi-objective optimization: concepts
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q Set of feasible solutions
= { ∈ ℝ | ( ) ≤ 0}

q Objective functions
= , … , : → ℝ

q Preference modeling on trade-offs
between objectives

– Value functions
max

∈
( ( )) = ( ( ), … , ( ))

– Pareto approaches
v−max

∈
( ( )) = ( ( ), … , ( ))

– Interactive approaches (not covered)

= {( , ) ∈ ℝ2|
1 ≥ 1, 2 ≥ 1, 1 + 2 ≤ 7}

= , = ( 1 + 2 2, − 2)



Multi-objective
optimization: concepts

q Objective functions map the
feasible solutions to in the
solution space:

= { ∈ ℝ |∃ ∈ ℎ
= }
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= {( , ) ∈ ℝ2|
1 ≥ 1, 2 ≥ 1, 1 + 2 ≤ 7}

( )

= ,
1 = 1 + 2 2

2 = − 2

1,1

3, −1

( ) = {( , ) ∈ ℝ2|
2 ≤ −1, 2 ≤ 7 − 1, 2 2 ≥ 1 − 1}



Preferential independence
q In multi-objective optimization (MOO), each objective is assumed

preferentially independent of the others

q Definition (cf. Lecture 5): Preference between two values of
objective function i does not depend on the values of the other
objective functions

→ Without loss of generality, we can assume all objectives to be
maximized

– MIN can be transformed to MAX: min
∈

( ) = − max
∈

[− ( )]
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Which feasible solution(s) to prefer?

q Selection of 1

cannot be
supported because
other solutions
have higher 1 and

2

→ Focus on
Pareto-optimal
solutions
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Pareto-optimality
Definition. x*ÎX is Pareto-optimal if there does
not exist xÎX such that

≥ ∗   for all ∈ {1, … , }
> ∗   for some ∈ {1, … , }

Set of all Pareto-optimal solutions: XPO

Definition. Objective vector yÎf(X) is Pareto-
optimal, if there exists a Pareto-optimal x*ÎX s.t.
f(x*)=y

- Set of Pareto-optimal objective vectors: f(XPO)
- Notation = v−max

∈
( )
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Example: Markowitz model
q Optimal asset portfolio selection

– How to allocate funds to m assets based on
o Expected returns ,̅ i=1,...,m
o Covariances of returns σij, i,j=1,...,m

q Set of feasible solutions
– Decision variables x1,...,xm

o Allocate xj *100% of funds to j-th asset

– Portfolio ∈ = { ∈ ℝ | ≥ 0, ∑ = 1}
q Objective functions

1. Maximize expected return of portfolio = ∑ ̅
2. Minimize variance (risk) of portfolio =

∑ ∑
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Pareto-optimality in Markowitz model

q Portfolio x is Pareto-optimal, if no other
portfolio yields greater or equal expected
return with less risk

q One possibility for computation:
- Choose d = max number of solutions computed
- Solve μ1 = max f2, μd = min f2

- For all k=2,…,d-1 set μk s.t. μk-1>μk> μd and solve
(1-dimensional) quadratic programming problem

min
∈

∑ ∑ such that ∑ ̅ =

- Discard solutions which are not PO
- Not attractive when n>2
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Algorithms for solving Pareto-optimal
solutions (1/2)
q Exact algorithms

- Guaranteed to find all PO-solutions XPO

- Only for certain problem types, e.g., Multi-Objective Mixed Integer Linear
Programming (MOMILP)

q Use of single-objective optimization algorithms
- Sequentially solve ordinary (i.e. 1-dimensional) optimization problems to obtain a

subset of all PO-solutions, XPOS

- Performance guarantee: XPOSÍXPO

o Solutions may not be “evenly” distributed in the sense that majority of the obtained solutions
can be very “close” to each other

- Methods:
o Weighted sum approach, weighted max-norm approach, ε-constraint approach
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Algorithms for solving Pareto-optimal
solutions (2/2)
q Approximation algorithms

- Obtain an approximation XPOA of XPO in polynomial time
- Performance guarantee: For every xÎXPO exists y ÎXPOA such that ||f(x)-f(y)||< ε
- Only for very few problem types, e.g., MO knapsack problems

q Metaheuristics
- No performance guarantees
- Can handle problems with

• A large number of variables and constraints
• Non-linear or non-continuous objective functions/constraints

- Evolutionary algorithms (e.g., SPEA, NSGA)
- Stochastic search algorithms (simulated annealing)
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Example: Multiobjective integer linear
programming (MOILP)
q Ben is at an amusement park that offers 2 different rides:

q Tickets to ride 1 cost 2 €. Each ticket lets you take the ride twice
q Tickets to ride 2 are for one ride and cost 3 €

q Ben has 20 euros to spend on tickets to ride 1 (x1Îℕ) and ride 2 (x2Î
ℕ) → constraint 2 1 + 3 2 ≤ 20

q Each time Ben takes ride 2, his grandfather cheers for him
q Ben maximizes the number of (i) rides taken and (ii) cheers →

objective functions = 1, 2 = (2 1 + 2, 2)
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Feasible solutions
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”Ben has 20 euros. He is
choosing the number of tickets to
ride 1 ( 1 ∈ ℕ) and ride 2 ( 2 ∈ ℕ)

‒ Constraint 2 1 + 3 2 ≤ 20”

2 1 + 3 2 = 20



Example: MOILP (cont’d)

q Blue points are feasible solutions; the 7 PO solutions are circled
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Weighted sum approach

q Algorithm
1. Generate ~ ({ ∈ 0,1 | ∑ = 1})
2. Solve max

∈
∑ ( )

3. Solution is Pareto-optimal
Repeat 1-3 until enough PO-solutions have been found

+ Easy to implement
– Cannot find all PO solutions if the problem is non-convex (if PO

solutions are not in the border of the convex hull of f(X))
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2 (0.7,0.3)Tl =



max
, ∈ℕ

[2 1 1 + ( 1 + 2) 2]



max
, ∈ℕ

[2 1 1 + ( 1 + 2) 2]

=
0.2, 0.8 ⇒

maximize
0.4 1 + 2

0.4 1 + 2 
constant

( 1, 2) =
1 , 6 is

Pareto-
optimal

= 0.5, 0.5

( 1, 2) =
10 , 0 is

Pareto-
optimal

= 1/3, 2/3

( 1, 2) =
4 , 4 is

Pareto-
optimal ( 1, 2) =

7 , 2 is
Pareto-
optimal



( ) and Pareto-optimal solutions
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Only 4 of the 7 Pareto-optimal
solutions can be found with
the weighted sum approach



Weighted max-norm approach

q Idea: define a utopian vector of objective function values
and find a solution for which the distance from this utopian
vector is minimized

q Utopian vector: ∗ = ∗, … , ∗ , ∗ >  ∀ ∈ , = 1, … ,
q Distance is measured with weighted max-norm max

,…,
,

where is the between ∗ and , and > 0 is the
weight of objective i such that ∑ = 1.

q The solutions that minimize the distance of ( ) from ∗ are
found by solving:

min
∈

∗ − ( ) = min
∈

max
,…,

∗ −

= min
∈ ,Δ∈ℝ

Δ . . ∗ − ≤ Δ  ∀ = 1, … ,

7.3.2019
20

1f

*f

*

max
Contours of ( )

when (0.9,0.1)T

f f x
l

l

-

=

2f



Weighted max-norm approach (2/2)

q Algorithm
1. Generate ~ ({ ∈ 0,1 | ∑ = 1})
2. Solve min

∈
∗ − f(x)

3. At least one of the solutions of Step 2 is PO
Repeat 1-3 until enough PO solutions have been
found

+ Easy to implement
+ Can find all PO-solutions
– n additional constraints, one additional variable
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Example: MOILP (cont’d)

q Find a utopian vector f*
- max f1= 2x1+x2 s.t. 2x1+3x2≤ 20, x1,x2 ≥ 0

o x=(10,0); f1=20

- max f2 = x2 s.t. 2x1+3x2≤ 20, x1,x2 ≥ 0
o x=(0, 20/3); f2=20/3

- Let f*=(21,7)

q Minimize the distance from the
utopian vector:

min
Δ∈ℝ

Δ s.t.

21 − 2 + ≤ Δ
7 − ≤ Δ

2 + 3 ≤ 20, , ∈ ℕ
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λ1=0.1, λ2=0.9:

min
Δ∈ℝ

Δ s.t.
2.1 − 0.2 − 0.1 ≤ Δ
6.3 − 0.9 ≤ Δ
2 + 3 ≤ 20

, ∈ ℕ

Solution: Δ=1.3, x=(1,6) Þ
x=(1,6), f=(8,6) is PO



Example: MOILP revisited

1.λ1=0.1; solution: {Δ=1.3, x=(1,6)} Þ
x=(1,6), f=(8,6) is PO

2.λ1=0.2; 3 solutions x=(2,5), x=(3,4),
x=(4,4). Only x=(2,5), f=(9,5) and x=(4,4),
f=(12,4) are PO

3.λ1=0.35; x=(5,3); f=(13,3) is PO

4.λ1=0.4; 2 solutions x=(6,2) and x=(7,2);
x=(7,2), f=(16,2) is PO

5.λ1=0.55; x=(8,1); f=(17,1) is PO

6.λ1=0.70; 2 solutions x=(9,0) and x=(10,0);
x=(10,0), f=(20,0) is PO
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Value function methods (1/2)

q Use value function : ℝ → ℝ to
transform the MOO problem into a
single-objective problem

– E.g., the additive value function
= ∑ ( ( ))

q Theorem: Feasible solution x* with
the highest value V(x*) is Pareto-
optimal
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Value function methods (2/2)

q Consider the additive value function = ∑ ( ( ))
with incomplete weight information ∈ ⊆

q Set of Pareto-optimal solutions = set of non-dominated
solutions with no weight information ( )

q Preference statements on weights decrease the set of feasible
weights to ⊆ → focus on preferred PO-solutions ⊆

=
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Example: MOILP revisited

q Choose vi(fi(x))=fi(x)/Ci*, normalization constants C1*=20, C2*=6
, = ( ( )) = + 1 − =

2 +
20 + (1 − )( /6)
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Example: Bridge repair program (1/7)

q Total of 313 bridges calling for repair

q Which bridges should be included in the repair program under the next three
years?

q Budget of 9,000,000€

q Program can contain maximum of 90 bridges
- Proxy for limited availability of equipment and personnel etc.

q Program must repair the total sum of damages by at least 15,000 units

7.3.2019
27

P. Mild, J. Liesiö and A. Salo (2015): Selecting Infrastructure Maintenance
Projects with Robust Portfolio Modeling, Decision Support Systems



Example: Bridge repair program (2/7)

q Set of feasible solutions X defined by linear constraints and binary
decision variables:

= ∈ 0,1 ≤ 0 , =

∑ − 9000000
∑ − 90

15000 − ∑

- xj = a decision variable: xj =1 repair bridge j
- x=[x1,...,x313] is a repair program
- cj = repair cost of bridge j
- dj = sum of damages of bridge j
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Example: Bridge repair program (3/7)

q Six objective indexes measuring urgency for repair
1. Sum of Damages (“SumDam”)
2. Repair Index (“RepInd”)
3. Functional Deficiencies (“FunDef”)
4. Average Daily Traffic (“ADTraf”)
5. Road Salt usage (“RSalt”)
6. Outward Appearance (“OutwApp”)

q All objectives additive over bridges: = ∑ ,

where is the score of bridge j with regard to objective i:
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Example: Bridge repair program (4/7)

q A multi-objective zero-one linear programming (MOZOLP) problem

v− max
∈

( , … , )

q Pareto-optimal repair programs XPO generated using the weighted
max-norm approach

min
∈ ,Δ∈ℝ

Δ

Δ ≥ ∗ − ∑  ∀ = 1, … , 6
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Example: Bridge repair program (5/7)

q Additive value function applied for modeling preferences between the
objectives: , = ∑ = ∑ ∑

q Incomplete ordinal information about objective weights: {SumDam,RepInd}
≥{FunDef, ADTraf} ≥ {RSalt,OutwApp}

= ∈ ≥ ≥ , ∀ = 1,2; = 3,4; = 5,6
q Non-dominated repair programs

= ∈ |∄ ∈  s.t. , ≥ ,  for all ∈
, > ,  for some ∈

= ( ) ⊇ ( )
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Example: Bridge repair program (6/7)
q Ca. 10,000 non-dominated bridge repair programs
q Bridge-specific decision recommendations can be

obtained through a concept of core index:

=
|{ ∈ ( )| = 1}|

| ( )|
q Of the 313 bridges:

– 39 were included in all non-dominated repair programs
(CI=1)

– 112 were included in some but not all non-dominated
programs (0<CI<1)

– 162 were included in none of the non-dominated programs
(CI=0)
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Example: Bridge repair program (7/7)

q Bridges listed in
decreasing order of core
indices

- Tentative but not binding
priority list

- Costs and other
characteristics displayed

q The list was found useful
by the program managers
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BRIDEGES' SCORES
Bridge number and name Core Index DamSum RepInd FunDef ADTraf Rsalt OutwApp Cost
2109 Lavusjoen silta 1.00 5.00 1.65 4 2.6 1 2.6 50000
2218 Joroisvirran silta 1.00 5.00 5.00 2 5 5 2.6 180000
2217 Rautatieylikulkusilta 1.00 3.49 5.00 1.5 5 5 1.8 130000
763 Hurukselantien risteyssilta 1.00 2.27 2.33 1 3.4 5 1 280000
80 Suolammenojan silta 1.00 1.36 1.53 2 4.2 5 1.8 10000
257 Villikkalan silta 0.81 1.97 1.96 5 1 1 1.8 20000
1743 Huuman silta II 0.76 1.64 1.53 1 5 5 1.8 140000
730 Mälkiän itäinen risteyssilta 0.63 1.33 1.58 1.5 5 5 1 120000
2804 Raikuun kanavan silta 0.60 3.93 1.12 2.5 1 1 1 20000
856 Ojaraitin alikulkukäytävä I 0.54 1.46 1.46 1 5 5 1 20000
2703 Grahnin alikulkukäytävä 0.43 1.70 1.23 1 5 5 1 60000
817 Petäjäsuon risteyssilta 0.39 1.52 1.37 1 5 5 1 50000
725 Mustolan silta 0.29 1.98 1.93 2 1.8 1 4.2 190000
2189 Reitunjoen silta 0.24 1.90 1.63 3 1.8 1 1.8 10000
2606 Haukivuoren pohjoinen ylikulkusilta 0.15 1.84 2.09 1.5 2.6 1 1 70000
125 Telataipaleen silta 0.14 1.38 1.12 1 5 5 1.8 40000
608 Jalkosalmen silta 0.03 1.54 1.50 3 1.8 1 2.6 10000
556 Luotolan silta 0.00 1.74 1.26 3 1 1 1.8 10000
661 Raikan silta 0.00 1.95 1.58 2 1 1 1.8 10000
2613 Pitkänpohjanlahden silta 0.00 1.27 1.16 1 4.2 5 2.6 20000
738 Hyypiälän ylikulkusilta 0.00 1.72 1.79 1 3.4 1 1.8 90000
2549 Uitonsalmen silta 0.00 1.71 1.37 3 1 1 1 30000
703 Tokkolan silta 0.00 1.82 1.70 2 1.8 1 1 10000
870 Tiviän alikulkukäytävä 0.00 1.10 1.07 1 5 5 1 20000
377 Sudensalmen silta 0.00 1.88 1.66 1 2.6 1 1.8 20000
953 Sydänkylän silta 0.00 1.23 1.33 3.5 1 1 1.8 10000
700 Kirjavalan ylikulkusilta 0.00 1.42 1.98 1.5 1 1 1 60000
2142 Latikkojoen silta 0.00 1.43 1.58 2.5 2.6 1 1.8 20000
464 Jokisilta 0.00 1.19 1.25 3.5 1.8 1 1 20000
1025 Hartunsalmen silta 0.00 1.18 1.09 3.5 1.8 1 2.6 20000
95 Touksuon silta 0.00 1.83 1.18 2 2.6 1 2.6 20000
418 Laukassalmen silta 0.00 1.54 1.35 1.5 2.6 1 1.8 10000
420 Sillanmäenojan silta 0.00 1.20 1.07 1.5 2.6 1 1.8 10000



Summary

q MOO differs from MAVT in that
– Alternatives are not explicit but defined implicitly through constraints
– MOO problems are computationally much harder

q MOO problems are solved by
– Computing the set of all Pareto-optimal solutions – or at least a subset or

an approximation
– Introducing preference information about trade-offs between objectives to

support the selection of one of the PO-solutions
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