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» Multiple objective optimization (MOO)

» Pareto optimality (PO)

* Approaches to solving PO-solutions: weighted sum, weighted max-norm,
and value function methods
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Until this lecture

Xoa 1 — 1 1
0 Explicit set of alternatives X = T
{xL .. 6xm}, which are evaluated with . %6 = (x8, x5)
regard to n criteria ° o

1 Evaluations xij:X — R"

L Preference modeling
L Value functions

maxV(x/) =V xj,...,xj
ijX ( ) ( 1 TL)

- / V(xt) = (i (D), v (o))
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O The decision alternatives cannot necessarily be listed

O Preference modeling can be time-consuming and difficult at the
early stages of the analysis

O Conditions required for the additive value function to represent
preferences do not necessarily hold or are difficult to validate

O We might want to see some results quickly to get a better
understanding of the problem at hand
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Multi-objective optimization: concepts

= 2
O Set of feasible solutions X ={(x1,x2) € R?|

X ={x € R"|g(x) <0} 3?2\“ : x,=21,x,21,x;,+x, <7}
d Objective functions N
f=U, . ) X->R"
U Preference modeling on trade-offs
between objectives X
— Value functions
max V(f (1)) = V(fi(x), ..., fu (1)) T ST

— Pareto approaches
v—max V(f(x)) = (f1(x), ..., fu(x))

— Interactive approaches (not covered)

f= {1 f2) = (xg + 2x5,—x5)
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I\/IuIti-objective ol 1Ele2ln e <)
optimization: concepts .
L x O.
 Objective functions f map the ___1 +_ _____ N
feasible solutions X to f(X) in the (1,13 ASUEER

solution space:

f(X)={y e R*|3x € X so that y
= f(x)}

0 = {(f.f2) € RY
faS—LfrS7—fu2f,2 1= f)}
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O In multi-objective optimization (MOO), each objective is assumed
preferentially independent of the others

O Definition (cf. Lecture 5): Preference between two values of
objective function i does not depend on the values of the other
objective functions

—  Without loss of generality, we can assume all objectives to be
maximized

— MIN can be transformed to MAX: min f;(x) = — mg)?([—ﬁ(x)]
X

xeX
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Which feasible solution(s) to prefer?

O Selection of yt
cannot be
supported because

have higher f, and
f2

— Focus on
Pareto-optimal
solutions

f2

4

Better than y! on
both objectives
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Pareto-optimality ‘.

Definition. x*eX is Pareto-optimal if there does
not exist xeX such that

fi(x) = f;(x*) foralli € {1, ...,n}
fi(x) = f;(x*) forsomei € {1,...,n}

Set of all Pareto-optimal solutions: Xpq

Definition. Objective vector y f(X) is Pareto- X,
optimal, if there exists a Pareto-optimal x*eX s.t.
f(x*)=y

- Set of Pareto-optimal objective vectors: f(Xpp)

- Notation f(Xpp) = v—xg(axf(x)
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Example: Markowitz model

O Optimal asset portfolio selection

— How to allocate funds to m assets based on
o0 Expected returns i3, i=1,...,m
o Covariances of returns o, i,j)=1,...,m

ij
d Set of feasible solutions

— Decision variables x,...,X,,
0 Allocate x;*100% of funds to j-th asset

— Portfoliox e X ={x e R™|x; > 0,X", x; = 1}

O Objective functions
1. Maximize expected return of portfolio f,(x) = »iL, 7;x;
2. Minimize variance (risk) of portfolio f;(x) =

1on m
S Li=1 Xj=10ijXi%;

v

risk f,
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Pareto-optimality in Markowitz model

O Portfolio x is Pareto-optimal, if no other
portfolio yields greater or equal expected
return with less risk

0 One possibility for computation:

- Choose d = max number of solutions computed
- Solve y, = maxf,, yy=minf,

- Forall k=2,...,d-1set p, s.t. w_,> 1> py and solve
(1-dimensional) quadratic programming problem

1 no -
l’;lel)r(lgzzl:l 271:1 0jXiX; such that Zi=1 riX; = Uy

- Discard solutions which are not PO
- Not attractive when n>2

return




Algorithms for solving Pareto-optimal
solutions (1/2)

U Exact algorithms
- Guaranteed to find all PO-solutions X,

- Only for certain problem types, e.g., Multi-Objective Mixed Integer Linear
Programming (MOMILP)

U Use of single-objective optimization algorithms

- Sequentially solve ordinary (i.e. 1-dimensional) optimization problems to obtain a
subset of all PO-solutions, Xpyog

- Performance guarantee: Xy5scXpo

o Solutions may not be “evenly” distributed in the sense that majority of the obtained solutions
can be very “close” to each other

- Methods:

o Weighted sum approach, weighted max-norm approach, e-constraint approach
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Algorithms for solving Pareto-optimal
solutions (2/2)

O Approximation algorithms
- Obtain an approximation X5, of Xy in polynomial time

- Performance guarantee: For every X eXpg exists y eXpoa such that ||[f(X)-f(y)]|< e
- Only for very few problem types, e.g., MO knapsack problems

J Metaheuristics

- No performance guarantees
- Can handle problems with
* A large number of variables and constraints
* Non-linear or non-continuous objective functions/constraints
- Evolutionary algorithms (e.g., SPEA, NSGA)
- Stochastic search algorithms (simulated annealing)
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Example: Multiobjective integer linear
programming (MOILP)

O Ben is at an amusement park that offers 2 different rides:
O Tickets to ride 1 cost 2 €. Each ticket lets you take the ride twice
O Tickets to ride 2 are for one ride and cost 3 €

O Ben has 20 euros to spend on tickets to ride 1 (x,eN) and ride 2 (X,
N) — constraint 2x; + 3x, < 20

O Each time Ben takes ride 2, his grandfather cheers for him

O Ben maximizes the number of (i) rides taken and (ii) cheers —
objective functions f = (f1, f,) = (2x; + x5, %)
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FeaSible SOIUtiOﬂS X "Ben has 20 euros. He is

choosing the number of tickets to

T~ [ ride 1 (x, € N) and ride 2 (x, € N)
RS — Constraint 2x, + 3x, < 20"
6 = \\\
\\
AN 5 ® ® e N
[} ~
g ~<
é 4 - ° ° ° ® \o\
= TN O 2x 431, = 20
g 3+ ° o 'y ° ° o\\fl-l_ xz_
5 S o
j‘% 2 o @ © ° ® ° © \\
1 \\
><N 1k ° o ° ° ° . ® ° ° \\
~
~
() o o ° ® ° ° ° . ° [ \o\
~
1 l J I 1 1 [
0 2 4 6 8 10

X, = tickets valid for ride 1



Example: MOILP (cont’'d)

O Blue points are feasible solutions; the 7 PO solutions are circled

—7Tr r 1 1 1 1 T T 7T 71T T T T T 1 1

'2- number of cheers
w o
! !
: —h
E _~
4 :
" +
. -
,:‘ - -—-a-- o
4 :
i i
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Welghted sum approach

Q Algorithm f,r .
1. Generate A~UNI({2 € [01]"| X, 4; = 1}) ﬂl=(0-2,§ o .
2. Solve max Yicq1Ai fi(x) %ﬂ,osﬁ
3. Solution is Pareto-optimal \ T;

Repeat 1-3 until enough PO-solutions have been found

+ Easy to implement

— Cannot find all PO solutions if the problem is non-convex (if PO
solutions are not in the border of the convex hull of f(X))
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X5, = tickets valid for ride 2

max
x,X,EN
2x,+3x,<20

[241%1 + (A1 + 45)x; ]

|

4

6

X, = tickets valid for ride 1

1
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/

/

/
/

max  [24.%; + (A, + 1,)%,]

x,X,EN
2x,+3%,<20
(%1, xz)_ = 1=
~_ (1,6) s (0.2,0.8) =
7 Y rareto- 1 [ 1
~ optimal maximize
6 ° G ~ 0.4x1 + xZ i
~

g St ~\\ S o A=(1/3,2/3) I
= N L
5 — . . o ° A == 0.5, 0.“5
g 4 G ~ g S N ( ))
§ 3r 1 ¢ t 7 7 \\ \\ (x1;x2):
ﬁélxl + x, constant (x1,%5) = ~ N (10,0) is
-_.% &_\ N. ¢ T (4 ) 4) IS 1 G ~ N ~ Pal’etO- )
”C\I L .\ ~ ~ | Pareto- \. ~ S optimal -
5 =~ < optimal (x4, %5) = NN

(e @ @ ® « ™ ] ] (7 ) 2) IS . ® @ —

~ . Pareto- -~
- 0 2 4 optimal 8 10 N

X, = tickets valid for ride 1
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number of cheers

f

f(X) and Pareto-optimal solutions

7

6

5

solutions can be found with
the weighted sum approach -

@ |

I I | I |

Only 4 of the 7 Pareto-optima

12 14 16 18 20

f1 = number of rides taken



Welghted max-norm approach
f,1

O Idea: define a utopian vector of objective function values
and find a solution for which the distance from this utopian

vector is minimized .
QO Utopian vector: f* = [ff, ... fi . fi = i) Vx€X,i=1,. n n
O Distance is measured with weighted max-norm max A; d;,

1=1,..n
where d; is the between f;" and f;(x), and 4; > 0 is the
weight of objective i such that 37, 4; = 1.
O The solutions that minimize the distance of f(x) from f* are
found by solving:

fl

»
»

* A
minllf* - £CO s = min max 2, (£ = fi() Contours of [~ £ (9],

xX€X i=1,..,n

= xer)rrl,iAréRA stA(ff —fix) <A vi=1,..,n

when 4 =(0.9,0.1)"
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Weighted max-norm approach (2/2)

O Algorithm A'=(05,05)" )
1. Generate A~UNI({A € [01]"| X}, 4; = 1}) ,‘ f
2. Solve min||f* — fO) I ax f2“ o
3. At least one of the solutions of Step 2 is PO e o A*=(0.9,0.1)"
Repeat 1-3 until enough PO solutions have been o’ o
found °

+ Easy to implement
+ Can find all PO-solutions
— n additional constraints, one additional variable
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Example: MOILP (cont’'d)

Q Find a utopian vector f* A=0.1, A\,=0.9:
- max f;= 2x;+X, s.t. 2x,+3X%, < 20, X;,X, 20
o x=(10,0); f,=20

- maxf, =X, s.t. 2x,+3%, < 20, X;,X, = 0 rAnelﬂg A s.t
o x=(0, 20/3); f,=20/3 21—-02x; —0.1x, <A
- LetP=(21,7) 6.3—09x, <A
d Minimize the distance from the 2x; + 3x, < 20
utopian vector: x{,%, €N
rAneiﬂgA s.t.
21 —(2x1 +x,)) <A
He ,12(7(—?6;2) SZ)A) - Solution: A=1.3, x=(1,6) =
2x, + 3x, < 20,x1,%, €N x=(1,6), f=(8,6) is PO
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Example: MOILP revisited

1.A,=0.1; solution: {A=1.3, x=(1,6)} = T iJL[ — T T T T T T ®

- - i N R R N O J N O SN N I S N N S A A

2.1\,=0.2; 3 solutions x=(2,5), x=(3,4), T 2 U R R T R S NP S A
x=(4,4). Only x=(2,5), f=(9,5) and x=(4,4), * """"" e e

3.A,=0.35; x=(5,3); f=(13,3) is PO I S N S ,_
4.\,=0.4; 2 solutions x=(6,2) and x=(7,2);

BeseEg ST

sazoss e arnispo T O -

6.A,=0.70; 2 solutions x=(9,0) and xz(lOO)"""_

x=(10,0), f=(20,0) is PO I —

6 7
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— o |—
i
=3
=
=
e
=
-
=
o
=
=
o e

=
=3
ay
=
s
-]
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@
g
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Value function methods (1/2)

O Use value function V: R" - R to le
transform the MOO problem into a
single-objective problem

— E.g., the additive value function

V(f() = Ty wivi(fi(x))

d Theorem: Feasible solution x* with
the highest value V(x*) is Pareto-
optimal

V(T (X))

,, Aalto University
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O Consider the additive value function V(f(x)) = X, w;v;(f;(x))
with incomplete weight information w € § € §°

O Set of Pareto-optimal solutions Xp,= set of non-dominated
solutions with no weight information X (5°)

O Preference statements on weights decrease the set of feasible
weightsto S € S — focus on preferred PO-solutions Xyp (S) S
Xnp(S%) = Xpo

A’, Aalto University



Example: MOILP revisited

O Choose v,(fi(x))=f,(x)/C;*, normalization constants C,*=20, C,*=6
< wy (2x1 + x3)
20

V(f(x),w) = Z wiv (f (X)) = wyvg (f1(x)) + (1 - W1)172(f2(x)) = + (1 —wy)(x,/6)
i=1

1

Scatter plot

09 N
N 7

0.8

— --------- N S e e R B R 0.7}
G * ------- = 061
P b b R 05
S S 0.4
A s N 03F
e e QT

T S 0.2
AN S S S S S RS SR S S ’ 0.1t

I T T N N N AN T TN NN M A A , | , , ‘ , ‘ ,
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Example: Bridge repair program (1/7)

U Total of 313 bridges calling for repair

L Which bridges should be included in the repair program under the next three
years?

U Budget of 9,000,000€

U Program can contain maximum of 90 bridges
- Proxy for limited availability of equipment and personnel etc.

0 Program must repair the total sum of damages by at least 15,000 units

7.3.2019
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Example: Bridge repair program (2/7)

O Set of feasible solutions X defined by linear constraints and binary
decision variables:

%312 ¢x; — 9000000]
X={xe{0133|gx) <0}, gx) = 23x —90

| 15000 - X313 d;x; |

- X; = adecision variable: x; =1 repair bridge
- X=[Xy,...,X313] IS @ repair program

- ¢; = repair cost of bridge j

- d; = sum of damages of bridge j

,, Aalto University
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Example: Bridge repair program (3/7)

O Six objective indexes measuring urgency for repair

1. Sum of Damages (“SumDam”)
Repair Index (“Repind”)
Functional Deficiencies (“FunDef”)
Average Daily Traffic (“ADTraf”)
Road Salt usage (“RSalt”)

Qutward Appearance (“OutwApp”)

S

0 All objectives additive over bridges: f;(x) = X313 vij Xj,

where vij IS the score of bridge j with regard to objective i:

,, Aalto University
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Example: Bridge repair program (4/7)

O A multi-objective zero-one linear programming (MOZOLP) problem
313 313

J J
e v ) )
j:]_ ]:1
 Pareto-optimal repair programs Xy, generated using the weighted
max-norm approach

min A
x€EX,AER

A= 2(fF - Zfiix]vl]) vi=1,..,6
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Example: Bridge repair program (5/7)

O Additive value function applied for modeling preferences between the

objectives: V(x,w) = Xt wif;(x) = Xooy w; X355 v/ x

U Incomplete ordinal information about objective weights: {SumDam,Repind}
2{FunDef, ADTraf} = {RSalt,OutwApp}

S={weSw; =w; =w,,Vi=12;j =34,k =56}
L Non-dominated repair programs

Vix',w)=V(x,w)forallw e S
V(ix',w) >V(x,w) forsomew € S

Xyp(S) = {x € X|Ax' € X st {

Xpo = Xnp(S%) 2 Xnp(S)
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Example: Bridge repair program (6/7)

4 Ca. 10,000 non-dominated bridge repair programs
O Bridge-specific decision recommendations can be

obtained through a concept of core index: |
_ Hx € Xyp(S)|x; = 1}
Cl; = D| =
| Xnp (5)]
O Of the 313 bridges: H =

neuded e repa e

— 39 were included in all non-dominated repair programs
(CI=1)

— 112 were included in some but not all non-dominated E

programs (0<CI<1)

— 162 were included in none of the non-dominated programs
(CI1=0)

,, Aalto University
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Example: Bridge repair program (7/7)

BRIDEGES' SCORES

Bridge number and name Core Index | DamSum Repind FunDef  ADTraf Rsalt  OutwApp

U Bridges listed in
decreasing order of core
i n d i CeS 257 Villikkalan silta 0.81 1.97 1.96 5

1 1 1.8
1743 Huuman silta Il 0.76 1.64 1.53 5 5 1.8
H H H 730 Mlkian itainen risteyssilt 0.63 1.33 1.58 1.5 5 5 1
- Tentative but not binding s W || s wm w3 @
= - - 856 Ojaraitin alikulkukaytava | 0.54 1.46 1.46 1 5 5 1
p r I O r I ty I I St 2703 Grahnin alikulkukaytava 0.43 1.70 1.23 1 5 5 1
817 Petajasuon risteyssilta 0.39 1.52 1.37 1 5 5 1
725 Mustolan silta 0.29 1.98 1.93 2 1.8 1 4.2
- COStS an d Oth e r 2189 Reitunjoen silta 0.24 1.90 1.63 3 1.8 1 1.8
- - - 2606 Haukivuoren pohjoinen ylikulkusilta 0.15 1.84 2.09 15 2.6 1 1
C h aracte rl Stl CS d I S p I ayed 125 Telataipaleen silta 0.14 1.38 1.12 1 5 5 1.8
608 Jalkosalmen silta : 3 d 1

O The list was found useful
by the program managers

,, Aalto University
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O MOO differs from MAVT in that

— Alternatives are not explicit but defined implicitly through constraints
— MOO problems are computationally much harder

O MOO problems are solved by

— Computing the set of all Pareto-optimal solutions — or at least a subset or
an approximation

— Introducing preference information about trade-offs between objectives to
support the selection of one of the PO-solutions
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