Decision making and problem solving Lecture 8

- Multiple objective optimization (MOO)
- Pareto optimality (PO)
- Approaches to solving PO-solutions: weighted sum, weighted max-norm, and value function methods

Until this lecture

- Explicit set of alternatives $X=$ $\left\{x^{1}, \ldots, x m\right\}$, which are evaluated with regard to n criteria
- Evaluations $x_{i}^{j}: X \rightarrow \mathbb{R}^{n}$
- Preference modeling
\square Value functions
$\max _{x^{j} \in X} V\left(x^{j}\right)=V\left(x_{1}^{j}, \ldots, x_{n}^{j}\right)$

Need for other kind of approaches

The decision alternatives cannot necessarily be listed

- Preference modeling can be time-consuming and difficult at the early stages of the analysis
- Conditions required for the additive value function to represent preferences do not necessarily hold or are difficult to validate

We might want to see some results quickly to get a better understanding of the problem at hand

Multi-objective optimization: concepts

- Set of feasible solutions

$$
X=\left\{x \in \mathbb{R}^{n} \mid g(x) \leq 0\right\}
$$

- Objective functions

$$
f=\left(f_{1}, \ldots, f_{n}\right): X \rightarrow \mathbb{R}^{n}
$$

- Preference modeling on trade-offs between objectives
- Valuefunctions

$$
\max _{x \in X} V(f(x))=V\left(f_{1}(x), \ldots, f_{n}(x)\right)
$$

- Pareto approaches

$$
v-\max _{x \in X} V(f(x))=\left(f_{1}(x), \ldots, f_{n}(x)\right)
$$

- Interactive approaches (not covered)

$$
f=\left(f_{1}, f_{2}\right)=\left(x_{1}+2 x_{2},-x_{2}\right)
$$

Multi-objective optimization: concepts

Preferential independence

In multi-objective optimization (MOO), each objective is assumed preferentially independent of the others

- Definition (cf. Lecture 5): Preference between two values of objective function i does not depend on the values of the other objective functions
\rightarrow Without loss of generality, we can assume all objectives to be maximized
- MIN can be transformed to MAX: $\min _{x \in X} f_{i}(x)=-\max _{x \in X}\left[-f_{i}(x)\right]$

Which feasible solution(s) to prefer?

Pareto-optimality

Definition. $x^{*} \in X$ is Pareto-optimal if there does not exist $x \in X$ such that

$$
\left\{\begin{array}{c}
f_{i}(x) \geq f_{i}\left(x^{*}\right) \text { for all } i \in\{1, \ldots, n\} \\
f_{i}(x)>f_{i}\left(x^{*}\right) \text { for some } i \in\{1, \ldots, n\}
\end{array}\right.
$$

Set of all Pareto-optimal solutions: X_{PO}

Definition. Objective vector $y \in f(X)$ is Paretooptimal, if there exists a Pareto-optimal $x^{\star} \in X$ s.t. $f\left(x^{*}\right)=y$

- Set of Pareto-optimal objective vectors: $\mathrm{f}\left(\mathrm{X}_{\mathrm{PO}}\right)$
- Notation $f\left(X_{P O}\right)=v-\max _{x \in X} f(x)$

Example: Markowitz model

- Optimal asset portfolio selection
- How to allocate funds to m assets based on
- Expected returns $\bar{r}_{i}, \mathrm{i}=1, \ldots, \mathrm{~m}$
- Covariances of returns $\sigma_{i j}, i, j=1, \ldots, m$
- Set of feasible solutions
- Decision variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$
- Allocate $\mathrm{x}_{\mathrm{j}} * 100 \%$ of funds to j -th asset
- Portfolio $x \in X=\left\{x \in \mathbb{R}^{m} \mid x_{i} \geq 0, \sum_{i=1}^{m} x_{i}=1\right\}$
- Objective functions

1. Maximize expected return of portfolio $f_{2}(x)=\sum_{i=1}^{n} \bar{r}_{i} x_{i}$
2. Minimize variance (risk) of portfolio $f_{1}(x)=$ $\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_{i j} x_{i} x_{j}$

Aalto University School of Science

Pareto-optimality in Markowitz model

- Portfolio x is Pareto-optimal, if no other portfolio yields greater or equal expected return with less risk
- One possibility for computation:
- Choosed $=$ max number of solutions computed
- Solve $\mu_{1}=\max _{2}, \mu_{\mathrm{d}}=\min \mathrm{f}_{2}$
- For all k=2,..,d-1 set μ_{k} s.t. $\mu_{\mathrm{k}-1}>\mu_{\mathrm{k}}>\mu_{\mathrm{d}}$ and solve (1-dimensional) quadratic programming problem
$\min _{x \in X} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_{i j} x_{i} x_{j}$ such that $\sum_{i=1}^{n} \bar{r}_{i} x_{i}=\mu_{k}$
- Discard solutions which are not PO
- Not attractive when $\mathrm{n}>2$

Algorithms for solving Pareto-optimal solutions (1/2)

- Exact algorithms
- Guaranteed to find all PO-solutions X_{PO}
- Only for certain problem types, e.g., Multi-Objective Mixed Integer Linear Programming (MOMILP)
\square Use of single-objective optimization algorithms
- Sequentially solve ordinary (i.e. 1-dimensional) optimization problems to obtain a subset of all PO-solutions, $\mathrm{X}_{\text {Pos }}$
- Performance guarantee: $\mathrm{X}_{\mathrm{POS} \subseteq} \subseteq \mathrm{X}_{\mathrm{PO}}$
- Solutions may not be "evenly" distributed in the sense that majority of the obtained solutions can be very "close" to each other
- Methods:
- Weighted sum approach, weighted max-norm approach, ε-constraint approach

Algorithms for solving Pareto-optimal solutions (2/2)

- Approximation algorithms
- Obtain an approximation $X_{\text {POA }}$ of $X_{P O}$ in polynomial time
- Performance guarantee: For every $\mathrm{x} \in \mathrm{X}_{\mathrm{PO}}$ exists $\mathrm{y} \in \mathrm{X}_{\mathrm{POA}}$ such that $\|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})\|<\varepsilon$
- Only for very few problem types, e.g., MO knapsack problems
- Metaheuristics
- No performance guarantees
- Can handle problems with
- A large number of variables and constraints
- Non-linear or non-continuous objective functions/ constraints
- Evolutionary algorithms (e.g., SPEA, NSGA)
- Stochastic search algorithms (simulated annealing)

Example: Multiobjective integer linear programming (MOILP)

\square Ben is at an amusement park that offers 2 different rides:
\square Tickets to ride 1 cost $2 €$. Each ticket lets you take the ride twice

- Tickets to ride 2 are for one ride and cost $3 €$
\square Ben has 20 euros to spend on tickets to ride $1\left(x_{1} \in \mathbb{N}\right)$ and ride $2\left(x_{2} \in\right.$ $\mathbb{N}) \rightarrow$ constraint $2 x_{1}+3 x_{2} \leq 20$
\square Each time Ben takes ride 2, his grandfather cheers for him
\square Ben maximizes the number of (i) rides taken and (ii) cheers \rightarrow objective functions $f=\left(f_{1}, f_{2}\right)=\left(2 x_{1}+x_{2}, x_{2}\right)$

Feasible solutions X

Example: MOILP (cont’d)

Blue points are feasible solutions; the 7 PO solutions are circled

7.3.2019

Weighted sum approach

- Algorithm

1. Generate $\lambda \sim U N I\left(\left\{\lambda \in[0,1]^{n} \mid \sum_{i=1}^{n} \lambda_{i}=1\right\}\right)$
2. Solve $\max _{x \in X} \sum_{i=1}^{n} \lambda_{i} f_{i}(x)$
3. Solution is Pareto-optimal

Repeat 1-3 until enough PO-solutions have been found

+ Easy to implement
- Cannot find all PO solutions if the problem is non-convex (if PO solutions are not in the border of the convex hull of $\mathrm{f}(\mathrm{X})$)

$$
\max _{\substack{x_{1}, x_{1} \in \mathbb{N} \\ 2 x_{1}+3 x_{2} \leq 20}}\left[2 \lambda_{1} x_{1}+\left(\lambda_{1}+\lambda_{2}\right) x_{2}\right]
$$

$$
\max _{\substack{x_{1}, x_{2} \in \mathbb{N} \\ 2 x_{1}+3 x_{2} \leq 20}}\left[2 \lambda_{1} x_{1}+\left(\lambda_{1}+\lambda_{2}\right) x_{2}\right]
$$

$f(X)$ and Pareto-optimal solutions

Weighted max-norm approach

I. Idea: define a utopian vector of objective function values and find a solution for which the distance from this utopian vector is minimized

- Utopian vector: $f^{*}=\left[f_{1}^{*}, \ldots, f_{n}^{*}\right], f_{i}^{*}>f_{i}(x) \forall x \in X, i=1, \ldots, n$
\square Distance is measured with weighted max-norm $\max _{i=1, . ., n} \lambda_{i} d_{i}$, where d_{i} is the between f_{i}^{*} and $f_{i}(x)$, and $\lambda_{i}>0$ is the weight of objective i such that $\sum_{i=1}^{n} \lambda_{i}=1$.
\square The solutions that minimize the distance of $f(x)$ from f^{*} are found by solving:

$$
\begin{aligned}
& \min _{x \in X}\left\|f^{*}-f(x)\right\|_{\max }^{\lambda}=\min _{x \in X} \max _{i=1, \ldots, n} \lambda_{i}\left(f_{i}^{*}-f_{i}(x)\right) \\
& =\min _{x \in X, \Delta \in \mathbb{R}} \Delta \text { s.t. } \lambda_{i}\left(f_{i}^{*}-f_{i}(x)\right) \leq \Delta \forall i=1, \ldots, n
\end{aligned}
$$

Aalto University School of Science

Weighted max-norm approach (2/2)

. Algorithm

1. Generate $\lambda \sim U N I\left(\left\{\lambda \in[0,1]^{n} \mid \sum_{i=1}^{n} \lambda_{i}=1\right\}\right)$
2. Solve $\min _{x \in X}\left\|f^{*}-f(x)\right\|_{\text {max }}^{\lambda}$
3. At least one of the solutions of Step 2 is PO Repeat 1-3 until enough PO solutions have been found

+ Easy to implement
+ Can find all PO-solutions
- n additional constraints, one additional variable

Example: MOILP (cont’d)

- Find a utopian vector f^{*}
$-\max f_{1}=2 x_{1}+x_{2}$ s.t. $2 x_{1}+3 x_{2} \leq 20, x_{1}, x_{2} \geq 0$

$$
\circ \mathrm{x}=(10,0) ; \mathrm{f}_{1}=20
$$

- $\max _{2}=\mathrm{x}_{2}$ s.t. $2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 20, \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
- $x=(0,20 / 3) ; f_{2}=20 / 3$
- Let $\mathrm{f}^{*}=(21,7)$
- Minimize the distance from the utopian vector:
$\min _{\Delta \in \mathbb{R}} \Delta$ s.t.

$$
\begin{gathered}
\lambda_{1}\left(21-\left(2 x_{1}+x_{2}\right)\right) \leq \Delta \\
\lambda_{2}\left(7-x_{2}\right) \leq \Delta \\
2 x_{1}+3 x_{2} \leq 20, x_{1}, x_{2} \in \mathbb{N}
\end{gathered}
$$

$$
\lambda_{1}=0.1, \lambda_{2}=0.9:
$$

$\min _{\Delta \in \mathbb{R}} \Delta$ s.t.
$\Delta \in \mathbb{R}$
$2.1-0.2 x_{1}-0.1 x_{2} \leq \Delta$
$6.3-0.9 x_{2} \leq \Delta$
$2 x_{1}+3 x_{2} \leq 20$
$x_{1}, x_{2} \in \mathbb{N}$

Solution: $\Delta=1.3, x=(1,6) \Rightarrow$ $x=(1,6), f=(8,6)$ is PO

Example: MOILP revisited

1. $\lambda_{1}=0.1$; solution: $\{\Delta=1.3, x=(1,6)\} \Rightarrow$ $x=(1,6), f=(8,6)$ is PO
2. $\lambda_{1}=0.2$; 3 solutions $x=(2,5), x=(3,4)$, $x=(4,4)$. Only $x=(2,5), f=(9,5)$ and $x=(4,4)$, $f=(12,4)$ are PO
3. $\lambda_{1}=0.35 ; x=(5,3) ; f=(13,3)$ is PO
4. $\lambda_{1}=0.4$; 2 solutions $x=(6,2)$ and $x=(7,2)$;
$x=(7,2), f=(16,2)$ is PO
$5 . \lambda_{1}=0.55 ; x=(8,1) ; f=(17,1)$ is PO
5. $\lambda_{1}=0.70$; 2 solutions $x=(9,0)$ and $x=(10,0)$; $x=(10,0), f=(20,0)$ is PO

Value function methods (1/2)

\square Use value function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ to transform the MOO problem into a single-objective problem

- E.g., the additive value function $V(f(x))=\sum_{i=1}^{n} w_{i} v_{i}\left(f_{i}(x)\right)$

Theorem: Feasible solution x^{*} with the highest value $V\left(x^{*}\right)$ is Paretooptimal

Value function methods (2/2)

- Consider the additive value function $V(f(x))=\sum_{i=1}^{n} w_{i} v_{i}\left(f_{i}(x)\right)$ with incomplete weight information $w \in S \subseteq S^{0}$
\square Set of Pareto-optimal solutions $X_{P O}=$ set of non-dominated solutions with no weight information $X_{N D}\left(S^{0}\right)$
- Preference statements on weights decrease the set of feasible weights to $S \subseteq S^{0} \rightarrow$ focus on preferred PO-solutions $X_{N D}(S) \subseteq$ $X_{N D}\left(S^{0}\right)=X_{P O}$

Example: MOILP revisited

- Choose $\mathrm{v}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}}(\mathrm{x})\right)=\mathrm{f}_{\mathrm{i}}(\mathrm{x}) / \mathrm{C}_{\mathrm{i}}{ }^{*}$, normalization constants $\mathrm{C}_{1}{ }^{*}=20, \mathrm{C}_{2}{ }^{*}=6$

$$
V(f(x), w)=\sum_{i=1}^{n} w_{i} v_{i}(f(x))=w_{1} v_{1}\left(f_{1}(x)\right)+\left(1-w_{1}\right) v_{2}\left(f_{2}(x)\right)=\frac{w_{1}\left(2 x_{1}+x_{2}\right)}{20}+\left(1-w_{1}\right)\left(x_{2} / 6\right)
$$

Example: Bridge repair program (1/7)

Total of 313 bridges calling for repair

Which bridges should be included in the repair program under the next three years?

- Budget of 9,000,000€
- Program can contain maximum of 90 bridges
- Proxy for limited availability of equipment and personnel etc.

Program must repair the total sum of damages by at least 15,000 units

Aalto University School of Science

Example: Bridge repair program (2/7)

- Set of feasible solutions X defined by linear constraints and binary decision variables:

$$
X=\left\{x \in\{0,1\}^{313} \mid g(x) \leq 0\right\}, \quad g(x)=\left[\begin{array}{c}
\sum_{j=1}^{313} c_{c} x_{j}-9000000 \\
\sum_{j=1}^{313} x_{j}-90 \\
15000-\sum_{j=1}^{313} d_{j} x_{j}
\end{array}\right]
$$

- $x_{j}=$ a decision variable: $\mathrm{x}_{\mathrm{j}}=1$ repair bridge j
- $x=\left[x_{1}, \ldots, x_{313}\right]$ is a repair program
- $\mathrm{c}_{\mathrm{j}}=$ repair cost of bridge j
- $d_{j}=$ sum of damages of bridgej

Example: Bridge repair program (3/7)

- Six objective indexes measuring urgency for repair

1. Sum of Damages ("SumDam")
2. Repair Index ("RepInd")
3. Functional Deficiencies ("FunDef")
4. Average Daily Traffic ("ADTraf")
5. Road Salt usage ("RSalt")
6. Outward Appearance ("OutwApp")

- All objectives additive over bridges: $f_{i}(x)=\sum_{j=1}^{313} v_{i}^{j} x_{j}$, where v_{i}^{j} is the score of bridge j with regard to objective i :

Example: Bridge repair program (4/7)

A A multi-objective zero-one linear programming (MOZOLP) problem

$$
\mathrm{v}-\max _{x \in X}\left(\sum_{j=1}^{313} v_{1}^{j} x_{j}, \ldots, \sum_{j=1}^{313} v_{6}^{j} x_{j}\right)
$$

\square Pareto-optimal repair programs $X_{P O}$ generated using the weighted max-norm approach

$$
\begin{aligned}
& \min _{x \in X, \Delta \in \mathbb{R}} \Delta \\
& \Delta \geq \lambda_{i}\left(f_{i}^{*}-\sum_{j=1}^{313} x_{j} v_{i}^{j}\right) \forall i=1, \ldots, 6
\end{aligned}
$$

Example: Bridge repair program (5/7)

- Additive value function applied for modeling preferences between the objectives: $V(x, w)=\sum_{i=1}^{6} w_{i} f_{i}(x)=\sum_{i=1}^{6} w_{i} \sum_{j=1}^{313} v_{i}^{j} x_{j}$
I Incomplete ordinal information about objective weights: \{SumDam,RepInd\} $\geq\{$ FunDef, ADTraf $\} \geq$ RSalt,OutwApp $\}$

$$
S=\left\{w \in S^{0} \mid w_{i} \geq w_{j} \geq w_{k}, \forall i=1,2 ; j=3,4 ; k=5,6\right\}
$$

- Non-dominated repair programs

$$
\begin{gathered}
X_{N D}(S)=\left\{x \in X \mid \nexists x^{\prime} \in X \text { s.t. }\left\{\begin{array}{c}
V\left(x^{\prime}, w\right) \geq V(x, w) \text { for all } w \in S \\
V\left(x^{\prime}, w\right)>V(x, w) \text { for some } w \in S
\end{array}\right\}\right. \\
X_{P O}=X_{N D}\left(S^{0}\right) \supseteq X_{N D}(S)
\end{gathered}
$$

Example: Bridge repair program (6/7)

- Ca. 10,000 non-dominated bridge repair programs
- Bridge-specific decision recommendations can be obtained through a concept of core index:

$$
C I_{j}=\frac{\left|\left\{x \in X_{N D}(S) \mid x_{j}=1\right\}\right|}{\left|X_{N D}(S)\right|}
$$

- Of the 313 bridges:
- 39 were included in all non-dominated repair programs (CI=1)
- 112 were included in some but not all non-dominated
 programs ($0<\mathrm{CI}<1$)
- 162 were included in none of the non-dominated programs ($\mathrm{CI}=0$)

Example: Bridge repair program (7/7)

- Bridges listed in decreasing order of core indices
- Tentative but not binding priority list
- Costs and other characteristics displayed
\square The list was found useful by the program managers

| Bridge number and name | Core Index | BRIDEGES' SCORES | DamSum | RepInd | FunDef | ADTraf | Rsalt | OutwApp |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | Cost

Summary

- MOO differs from MAVT in that
- Alternatives are not explicit but defined implicitly through constraints
- MOO problems are computationally much harder
- MOO problems are solved by
- Computing the set of all Pareto-optimal solutions - or at least a subset or an approximation
- Introducing preference information about trade-offs between objectives to support the selection of one of the PO -solutions

