

Decision making and problem solving – Lecture 8

- Multiple objective optimization (MOO)
- Pareto optimality (PO)
- Approaches to solving PO-solutions: weighted sum, weighted max-norm, and value function methods

Liesiö, Punkka, Salo, Vilkkumaa

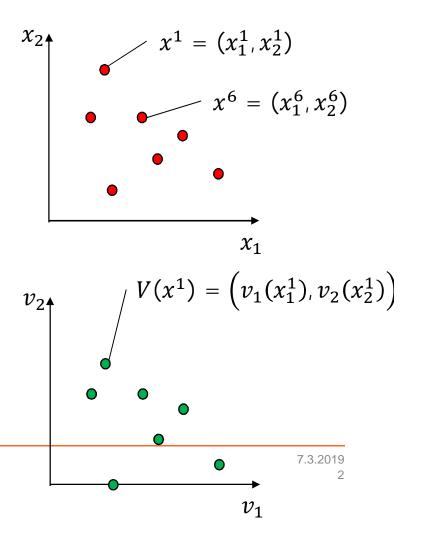
Until this lecture

- $\Box \quad \underline{\text{Explicit set}} \text{ of alternatives } X = \{x^1, \dots, xm\}, \text{ which are evaluated with regard to } n \text{ criteria}$
- \Box Evaluations $x_i^j: X \to \mathbb{R}^n$
- Preference modeling

Aalto University

School of Science

□ Value functions $\max_{x^{j} \in X} V(x^{j}) = V(x_{1}^{j}, ..., x_{n}^{j})$



Need for other kind of approaches

□ The decision alternatives cannot necessarily be listed

- Preference modeling can be time-consuming and difficult at the early stages of the analysis
- Conditions required for the additive value function to represent preferences do not necessarily hold or are difficult to validate
- We might want to see some results quickly to get a better understanding of the problem at hand

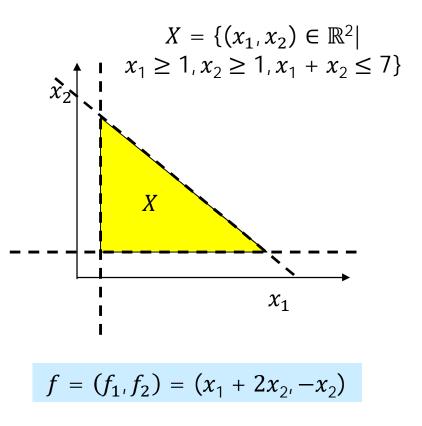
Aalto University School of Science

Multi-objective optimization: concepts

- ❑ Set of feasible solutions X = {x ∈ ℝⁿ | g(x) ≤ 0}
 ❑ Objective functions f = (f₁,..., f_n): X → ℝⁿ
 ❑ Preference modeling on trade-offs between objectives - Value functions max V(f(x)) = V(f₁(x),..., f_n(x))
 - Pareto approaches

 $\bigvee \max_{x \in X} V(f(x)) = (f_1(x), \dots, f_n(x))$

Interactive approaches (not covered)

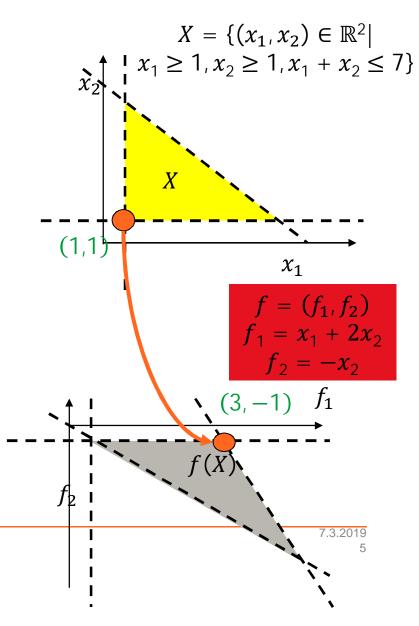


Multi-objective optimization: concepts

□ Objective functions f map the feasible solutions X to f(X) in the solution space:

$$f(X) = \{y \in \mathbb{R}^n | \exists x \in X \text{ so that } y \\ = f(x)\}$$

$$f(X) = \{(f_1, f_2) \in \mathbb{R}^2 | \\ f_2 \le -1, f_2 \le 7 - f_1, 2f_2 \ge 1 - f_1 \}$$

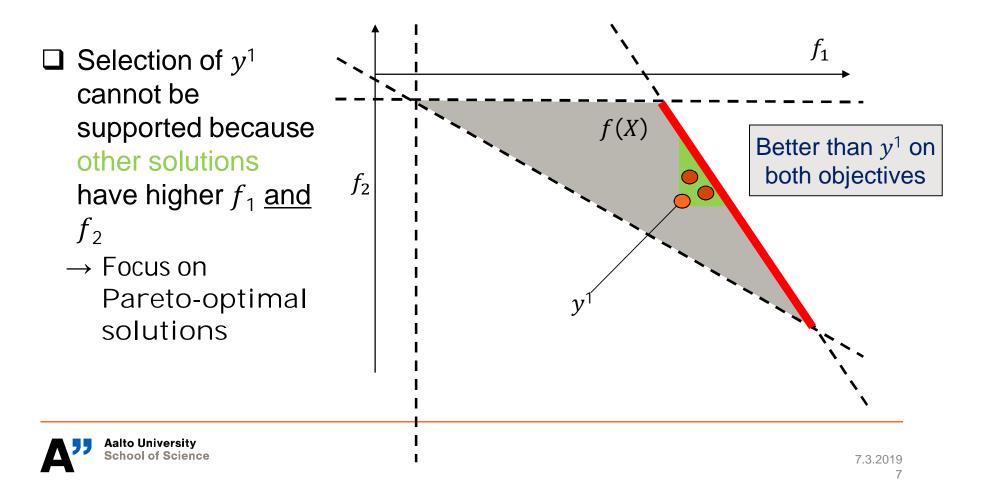


Preferential independence

- □ In multi-objective optimization (MOO), each objective is assumed preferentially independent of the others
- **Definition** (cf. Lecture 5): Preference between two values of objective function *i* does not depend on the values of the other objective functions
- \rightarrow Without loss of generality, we can assume all objectives to be maximized
 - MIN can be transformed to MAX: $\min_{x \in X} f_i(x) = -\max_{x \in X} [-f_i(x)]$

Aalto University **School of Science**

Which feasible solution(s) to prefer?



Pareto-optimality

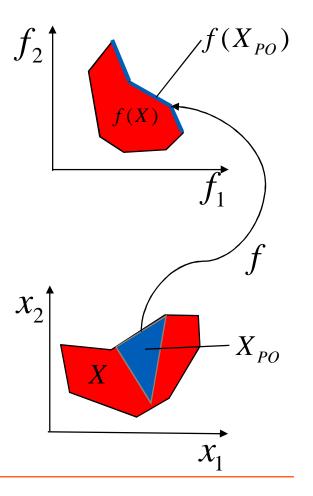
Definition. $x^* \in X$ is Pareto-optimal if there does not exist $x \in X$ such that

 $\begin{cases} f_i(x) \ge f_i(x^*) \text{ for all } i \in \{1, \dots, n\} \\ f_i(x) > f_i(x^*) \text{ for some } i \in \{1, \dots, n\} \end{cases}$

Set of all Pareto-optimal solutions: X_{PO}

Definition. Objective vector $y \in f(X)$ is Paretooptimal, if there exists a Pareto-optimal $x^* \in X$ s.t. $f(x^*)=y$

- Set of Pareto-optimal objective vectors: f(X_{PO})
- Notation $f(X_{PO}) = v \max_{x \in X} f(x)$



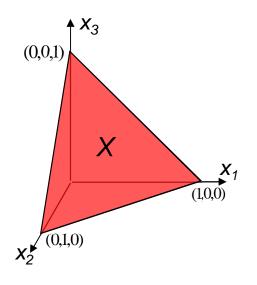
Example: Markowitz model

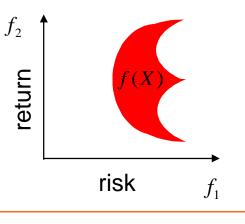
- Optimal asset portfolio selection

 How to allocate funds to m assets based on
 Expected returns r
 _i, i=1,...,m
 Covariances of returns σ
 _{ij}, i,j=1,...,m

 Set of feasible solutions

 Decision variables x
 ₁,...,x
 _n
 Allocate x
 _j*100% of funds to j-th asset
 Portfolio x ∈ X = {x ∈ ℝ^m | x
 _i ≥ 0, Σ
 _{i=1} x
 _i = 1}
 - 1. Maximize expected return of portfolio $f_2(x) = \sum_{i=1}^n \bar{r}_i x_i$
 - 2. Minimize variance (risk) of portfolio $f_1(x) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_{ij} x_i x_j$



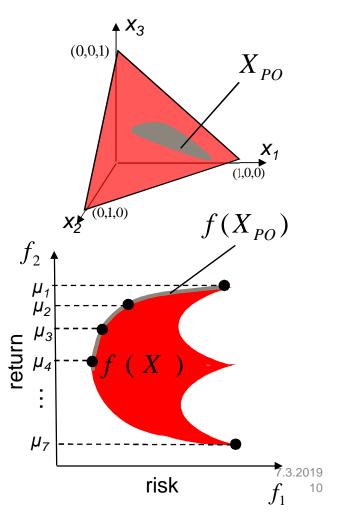


Pareto-optimality in Markowitz model

- Portfolio x is Pareto-optimal, if no other portfolio yields greater or equal expected return with less risk
- □ One possibility for computation:
 - Choose d = max number of solutions computed
 - Solve $\mu_1 = \max f_2$, $\mu_d = \min f_2$
 - For all k=2,...,d-1 set μ_k s.t. μ_{k-1}> μ_k> μ_d and solve (1-dimensional) quadratic programming problem

 $\min_{x \in X} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_{ij} x_i x_j \text{ such that } \sum_{i=1}^{n} \bar{r}_i x_i = \mu_k$

- Discard solutions which are not PO
- Not attractive when n>2



Algorithms for solving Pareto-optimal solutions (1/2)

Exact algorithms

- Guaranteed to find all PO-solutions X_{PO}
- Only for certain problem types, e.g., Multi-Objective Mixed Integer Linear Programming (MOMILP)

Use of single-objective optimization algorithms

- Sequentially solve ordinary (i.e. 1-dimensional) optimization problems to obtain a subset of all PO-solutions, X_{POS}
- Performance guarantee: $X_{POS} \subseteq X_{PO}$
 - Solutions may not be "evenly" distributed in the sense that majority of the obtained solutions can be very "close" to each other
- Methods:
 - o Weighted sum approach, weighted max-norm approach, ε-constraint approach

Aalto University School of Science

Algorithms for solving Pareto-optimal solutions (2/2)

□ Approximation algorithms

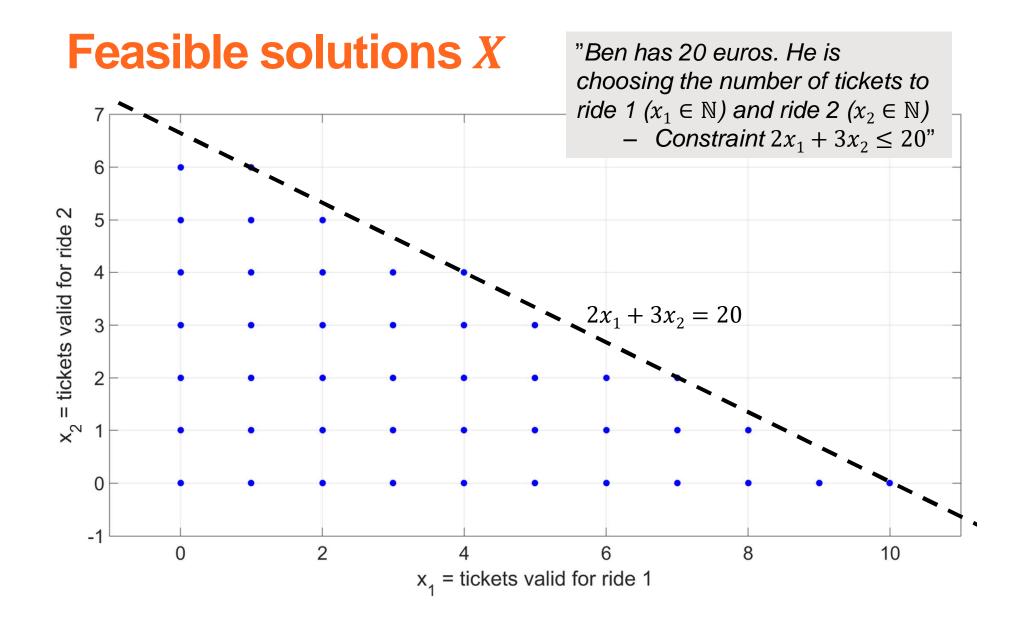
- Obtain an approximation X_{POA} of X_{PO} in polynomial time
- Performance guarantee: For every $x \in X_{PO}$ exists $y \in X_{POA}$ such that $||f(x)-f(y)|| < \varepsilon$
- Only for very few problem types, e.g., MO knapsack problems

Metaheuristics

- No performance guarantees
- Can handle problems with
 - A large number of variables and constraints
 - Non-linear or non-continuous objective functions/constraints
- Evolutionary algorithms (e.g., SPEA, NSGA)
- Stochastic search algorithms (simulated annealing)

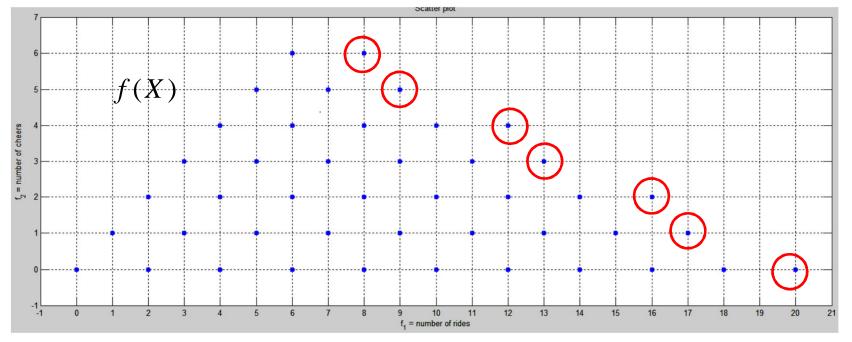
Example: Multiobjective integer linear programming (MOILP)

- □ Ben is at an amusement park that offers 2 different rides:
 - □ Tickets to ride 1 cost 2 €. Each ticket lets you take the ride twice
 - □ Tickets to ride 2 are for one ride and cost 3 €
- □ Ben has 20 euros to spend on tickets to ride 1 ($x_1 \in \mathbb{N}$) and ride 2 ($x_2 \in \mathbb{N}$) → constraint $2x_1 + 3x_2 \le 20$
- □ Each time Ben takes ride 2, his grandfather cheers for him
- □ Ben maximizes the number of (i) rides taken and (ii) cheers → objective functions $f = (f_1, f_2) = (2x_1 + x_2, x_2)$



Example: MOILP (cont'd)

□ Blue points are feasible solutions; the 7 PO solutions are circled



Weighted sum approach

□ Algorithm

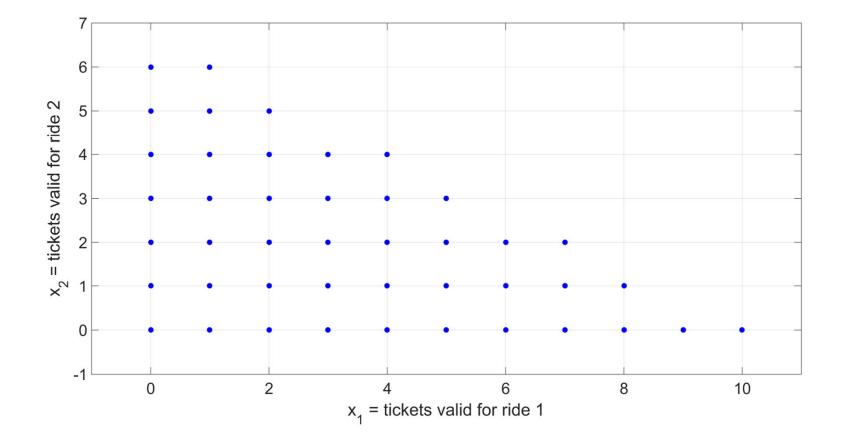
- 1. Generate $\lambda \sim UNI(\{\lambda \in [0,1]^n | \sum_{i=1}^n \lambda_i = 1\})$
- 2. Solve $\max_{x \in X} \sum_{i=1}^{n} \lambda_i f_i(x)$
- 3. Solution is Pareto-optimal

Repeat 1-3 until enough PO-solutions have been found

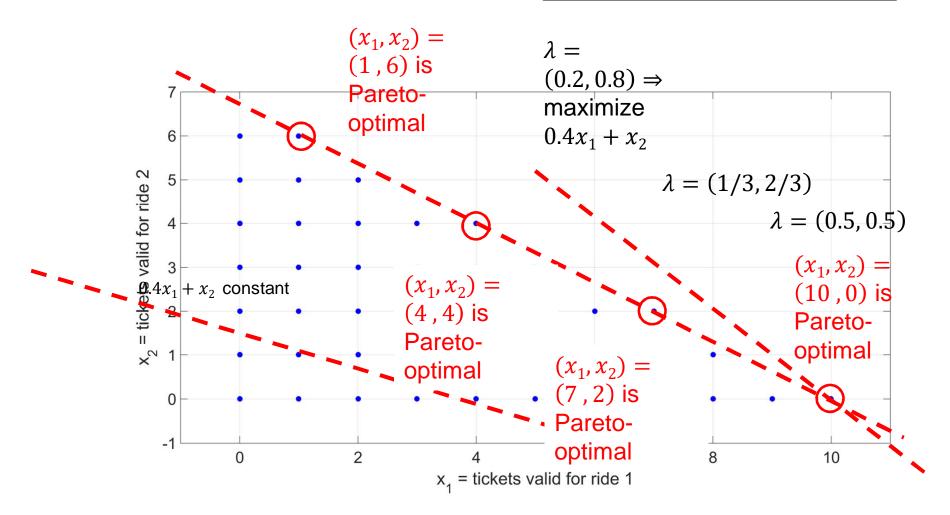
- + Easy to implement
- Cannot find all PO solutions if the problem is non-convex (if PO solutions are not in the border of the convex hull of f(X))

 $\lambda^2 = (0.7, 0.3)^T$

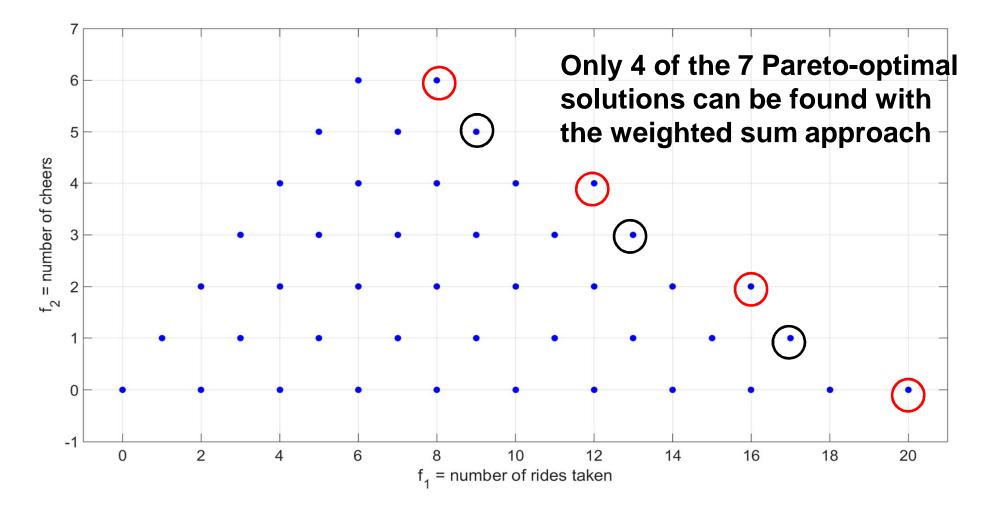
 $[2\lambda_1 x_1 + (\lambda_1 + \lambda_2) x_2]$ $\max_{\substack{x_1, x_2 \in \mathbb{N} \\ 2x_1 + 3x_2 \le 20}} |$



$$\max_{\substack{x_1, x_2 \in \mathbb{N} \\ 2x_1 + 3x_2 \le 20}} [2\lambda_1 x_1 + (\lambda_1 + \lambda_2) x_2]$$



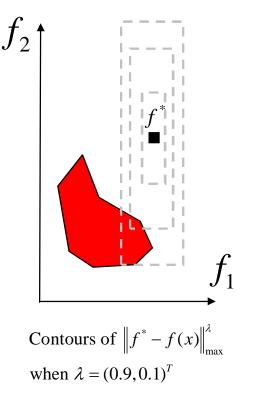
f(X) and Pareto-optimal solutions



Weighted max-norm approach

- Idea: define a utopian vector of objective function values and find a solution for which the distance from this utopian vector is minimized
- **U**topian vector: $f^* = [f_1^*, ..., f_n^*], f_i^* > f_i(x) \ \forall x \in X, i = 1, ..., n$
- Distance is measured with weighted max-norm $\max_{i=1,...,n} \lambda_i d_i$, where d_i is the between f_i^* and $f_i(x)$, and $\lambda_i > 0$ is the weight of objective *i* such that $\sum_{i=1}^n \lambda_i = 1$.
- □ The solutions that minimize the distance of f(x) from f^* are found by solving:

$$\min_{x \in X} \|f^* - f(x)\|_{max}^{\lambda} = \min_{x \in X} \max_{i=1,\dots,n} \lambda_i \left(f_i^* - f_i(x)\right)$$
$$= \min_{x \in X, \Delta \in \mathbb{R}} \Delta \quad s. t. \lambda_i \left(f_i^* - f_i(x)\right) \le \Delta \quad \forall i = 1, \dots, n$$

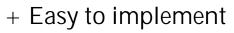


Aalto University School of Science

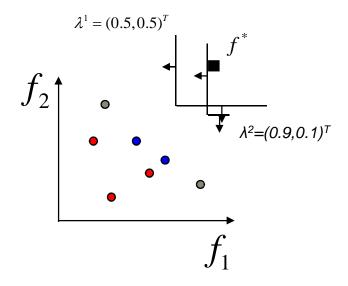
Weighted max-norm approach (2/2)

□ Algorithm

- 1. Generate $\lambda \sim UNI(\{\lambda \in [0,1]^n | \sum_{i=1}^n \lambda_i = 1\})$
- 2. Solve $\min_{x \in X} ||f^* f(x)||_{max}^{\lambda}$
- 3. At least one of the solutions of Step 2 is PO Repeat 1-3 until enough PO solutions have been found



- + Can find all PO-solutions
- n additional constraints, one additional variable



Example: MOILP (cont'd)

 \Box Find a utopian vector f^*

- max $f_1 = 2x_1 + x_2$ s.t. $2x_1 + 3x_2 \le 20$, $x_1, x_2 \ge 0$ o x=(10,0); $f_1=20$
- max $f_2 = x_2 \text{ s.t. } 2x_1 + 3x_2 \le 20$, $x_1, x_2 \ge 0$ o x = (0, 20/3); $f_2 = 20/3$
- Let f*=(21,7)
- Minimize the distance from the utopian vector:

$$\min_{\Delta \in \mathbb{R}} \Delta \text{ s.t.}$$

$$\lambda_1 (21 - (2x_1 + x_2)) \le \Delta$$

$$\lambda_2 (7 - x_2) \le \Delta$$

$$2x_1 + 3x_2 \le 20, x_1, x_2 \in \mathbb{N}$$

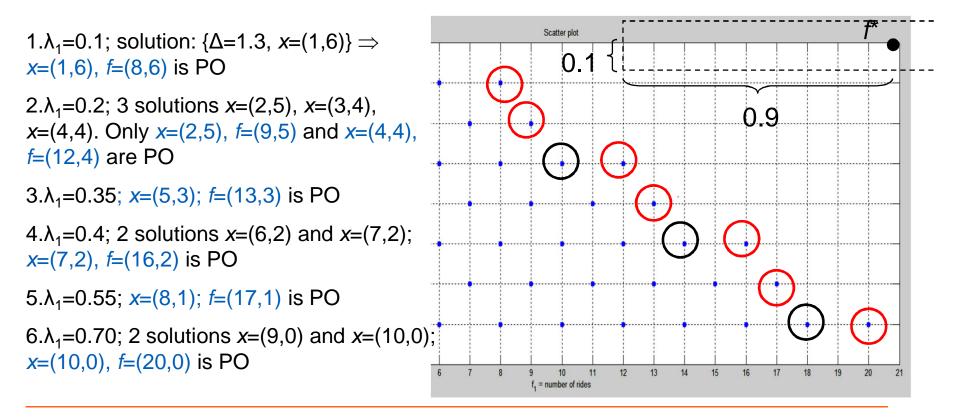
 $\lambda_1 = 0.1, \lambda_2 = 0.9$:

$$\min_{\Delta \in \mathbb{R}} \Delta \text{ s.t.}$$

2.1 - 0.2 x_1 - 0.1 $x_2 \le \Delta$
6.3 - 0.9 $x_2 \le \Delta$
2 x_1 + 3 $x_2 \le 20$
 $x_1, x_2 \in \mathbb{N}$

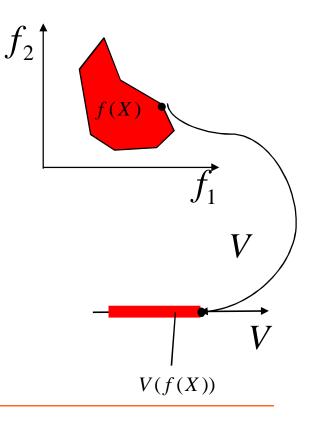
Solution: Δ =1.3, *x*=(1,6) \Rightarrow *x*=(1,6), *f*=(8,6) is PO

Example: MOILP revisited



Value function methods (1/2)

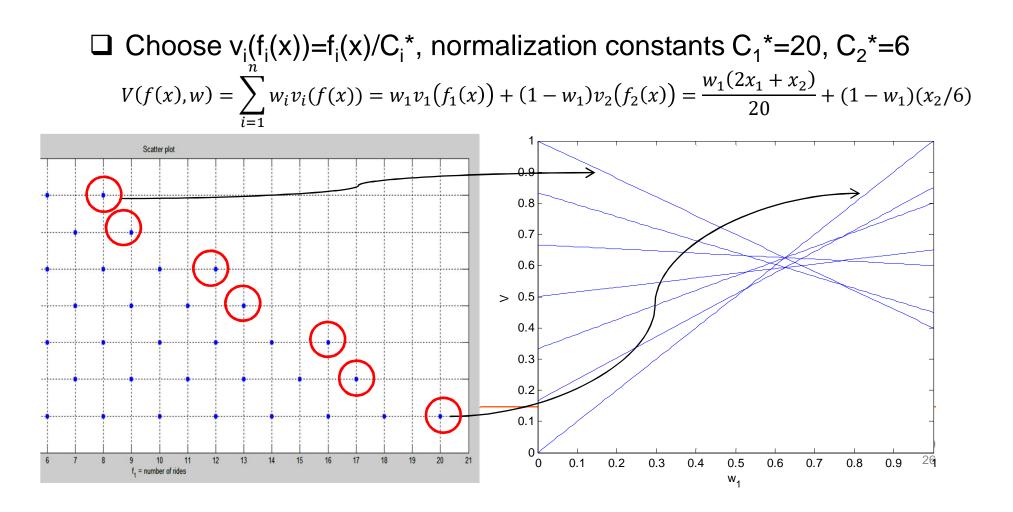
- □ Use value function $V: \mathbb{R}^n \to \mathbb{R}$ to transform the MOO problem into a single-objective problem
 - E.g., the additive value function $V(f(x)) = \sum_{i=1}^{n} w_i v_i(f_i(x))$
- Theorem: Feasible solution x* with the highest value V(x*) is Paretooptimal



Value function methods (2/2)

- □ Consider the additive value function $V(f(x)) = \sum_{i=1}^{n} w_i v_i(f_i(x))$ with incomplete weight information $w \in S \subseteq S^0$
- □ Set of Pareto-optimal solutions X_{PO} = set of non-dominated solutions with no weight information $X_{ND}(S^0)$
- □ Preference statements on weights decrease the set of feasible weights to $S \subseteq S^0 \rightarrow$ focus on preferred PO-solutions $X_{ND}(S) \subseteq X_{ND}(S^0) = X_{PO}$

Example: MOILP revisited



Example: Bridge repair program (1/7)

□ Total of 313 bridges calling for repair

- Which bridges should be included in the repair program under the next three years?
- □ Budget of 9,000,000€
- □ Program can contain *maximum* of 90 bridges
 - Proxy for limited availability of equipment and personnel etc.

□ Program must repair the total sum of damages by at least 15,000 units

P. Mild, J. Liesiö and A. Salo (2015): Selecting Infrastructure Maintenance Projects with Robust Portfolio Modeling, *Decision Support Systems*

Example: Bridge repair program (2/7)

Set of feasible solutions X defined by linear constraints and binary decision variables:

$$X = \{x \in \{0,1\}^{313} | g(x) \le 0\}, \quad g(x) = \begin{bmatrix} \sum_{j=1}^{313} c_j x_j - 900000 \\ \sum_{j=1}^{313} x_j - 90 \\ 15000 - \sum_{j=1}^{313} d_j x_j \end{bmatrix}$$

- $x_j = a$ decision variable: $x_j = 1$ repair bridge j
- $x = [x_1, \dots, x_{313}]$ is a repair program
- c_i = repair cost of bridge j
- d_i = sum of damages of bridge j

Example: Bridge repair program (3/7)

□ Six objective indexes measuring urgency for repair

- 1. <u>Sum of Damages ("SumDam")</u>
- 2. <u>Repair Index ("RepInd")</u>
- 3. <u>Functional Deficiencies ("FunDef")</u>
- 4. <u>Average Daily Traffic ("ADTraf")</u>
- 5. <u>R</u>oad <u>S</u>alt usage ("RSalt")
- 6. <u>O</u>utward <u>Appearance</u> ("OutwApp")
- All objectives additive over bridges: $f_i(x) = \sum_{j=1}^{313} v_i^j x_{j'}$

where v_i^j is the score of bridge *j* with regard to objective *i*:

Example: Bridge repair program (4/7)

□ A multi-objective zero-one linear programming (MOZOLP) problem $v - \max_{x \in X} (\sum_{j=1}^{313} v_1^j x_j, \dots, \sum_{j=1}^{313} v_6^j x_j)$

□ Pareto-optimal repair programs X_{PO} generated using the weighted max-norm approach

$$\min_{x \in X, \Delta \in \mathbb{R}} \Delta$$
$$\Delta \ge \lambda_i \left(f_i^* - \sum_{j=1}^{313} x_j v_i^j \right) \forall i = 1, \dots, 6$$

Example: Bridge repair program (5/7)

- □ Additive value function applied for modeling preferences between the objectives: $V(x, w) = \sum_{i=1}^{6} w_i f_i(x) = \sum_{i=1}^{6} w_i \sum_{j=1}^{313} v_i^j x_j$
- □ Incomplete ordinal information about objective weights: {SumDam,RepInd}
 ≥{FunDef, ADTraf} ≥ {RSalt,OutwApp}

$$S = \{ w \in S^0 | w_i \ge w_j \ge w_{k'} \forall i = 1,2; j = 3,4; k = 5,6 \}$$

Non-dominated repair programs

$$X_{ND}(S) = \left\{ x \in X | \nexists x' \in X \text{ s.t. } \left\{ \begin{array}{l} V(x', w) \ge V(x, w) \text{ for all } w \in S \\ V(x', w) > V(x, w) \text{ for some } w \in S \end{array} \right\} \right\}$$

$$X_{PO} = X_{ND}(S^0) \supseteq X_{ND}(S)$$

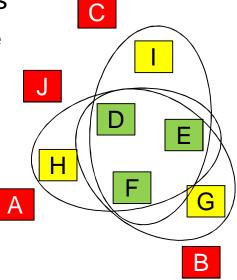
Example: Bridge repair program (6/7)

Ca. 10,000 non-dominated bridge repair programs

□ Bridge-specific decision recommendations can be obtained through a concept of *core index*: $|\{x \in X_{up}(S) | x = 1\}|$

$$CI_{j} = \frac{|\{x \in X_{ND}(S) | x_{j} = 1\}}{|X_{ND}(S)|}$$

- □ Of the 313 bridges:
 - 39 were included in all non-dominated repair programs (CI=1)
 - 112 were included in some but not all non-dominated programs (0<CI<1)
 - 162 were included in none of the non-dominated programs (CI=0)



Aalto University School of Science

Example: Bridge repair program (7/7)

- Bridges listed in decreasing order of core indices
 - Tentative but not binding priority list
 - Costs and other characteristics displayed
- The list was found useful by the program managers

Bridge number and name		BRIDEGES' SCORES						
	Core Index	DamSum	RepInd	FunDef	ADTraf	Rsalt	OutwApp	Cost
2109 Lavusjoen silta	1.00	5.00	1.65	4	2.6	1	2.6	5000
2218 Joroisvirran silta	1.00	5.00	5.00	2	5	5	2.6	18000
2217 Rautatieylikulkusilta	1.00	3.49	5.00	1.5	5	5	1.8	13000
763 Hurukselantien risteyssilta	1.00	2.27	2.33	1	3.4	5	1	28000
80 Suolammenojan silta	1.00	1.36	1.53	2	4.2	5	1.8	1000
257 Villikkalan silta	0.81	1.97	1.96	5	1	1	1.8	200
1743 Huuman silta II	0.76	1.64	1.53	1	5	5	1.8	14000
730 Mälkiän itäinen risteyssilta	0.63	1.33	1.58	1.5	5	5	1	1200
2804 Raikuun kanavan silta	0.60	3.93	1.12	2.5	1	1	1	200
856 Ojaraitin alikulkukäytävä I	0.54	1.46	1.46	1	5	5	1	200
2703 Grahnin alikulkukäytävä	0.43	1.70	1.23	1	5	5	1	600
817 Petäjäsuon risteyssilta	0.39	1.52	1.37	1	5	5	1	500
725 Mustolan silta	0.29	1.98	1.93	2	1.8	1	4.2	1900
2189 Reitunjoen silta	0.24	1.90	1.63	3	1.8	1	1.8	100
2606 Haukivuoren pohjoinen ylikulkusilta	0.15	1.84	2.09	1.5	2.6	1	1	700
125 Telataipaleen silta	0.14	1.38	1.12	1	5	5	1.8	400
608 Jalkosalmen silta	0.03	1.54	1.50	3	1.8	1	2.6	100
556 Luotolan silta	0.00	1.74	1.26	3	1	1	1.8	100
661 Raikan silta	0.00	1.95	1.58	2	1	1	1.8	100
2613 Pitkänpohjanlahden silta	0.00	1.27	1.16	1	4.2	5	2.6	200
738 Hyypiälän ylikulkusilta	0.00	1.72	1.79	1	3.4	1	1.8	900
2549 Uitonsalmen silta	0.00	1.71	1.37	3	1	1	1	300
703 Tokkolan silta	0.00	1.82	1.70	2	1.8	1	1	100
870 Tiviän alikulkukäytävä	0.00	1.10	1.07	1	5	5	1	200
377 Sudensalmen silta	0.00	1.88	1.66	1	2.6	1	1.8	200
953 Sydänkylän silta	0.00	1.23	1.33	3.5	1	1	1.8	100
700 Kirjavalan ylikulkusilta	0.00	1.42	1.98	1.5	1	1	1	600
2142 Latikkojoen silta	0.00	1.43	1.58	2.5	2.6	1	1.8	200
464 Jokisilta	0.00	1.19	1.25	3.5	1.8	1	1	200
1025 Hartunsalmen silta	0.00	1.18	1.09	3.5	1.8	1	2.6	200
95 Touksuon silta	0.00	1.83	1.18	2	2.6	1	2.6	200
418 Laukassalmen silta	0.00	1.54	1.35	1.5	2.6	1	1.8	100
420 Sillanmäenojan silta	0.00	1.20	1.07	1.5	2.6	1	1.8	100

Summary

□ MOO differs from MAVT in that

- Alternatives are not explicit but defined implicitly through constraints
- MOO problems are computationally much harder

□ MOO problems are solved by

- Computing the set of all Pareto-optimal solutions or at least a subset or an approximation
- Introducing preference information about trade-offs between objectives to support the selection of one of the PO-solutions

