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Cryptography

Cryptography is the study of secure communication
I Cryptography is much older than computer science
I Traditionally, cryptography referred to the development of various

ad-hoc encryption schemes
I These schemes were usually broken sooner or later

Modern cryptography was born in the 1970s, when
computational complexity theory was applied to
cryptography

I Modern cryptography aims to develop provably unbreakable
encryption schemes

I Unbreakability is conditioned on complexity assumptions
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Encryption Schemes

Two parties, Alice and Bob, wish to communicate in the presence
of a malevolent eavesdropper Eve

Alice Bob

Eve
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Encryption Schemes

Key:

Ciphertext:
Alice Bob

Eve

Message (plaintext):

k 2R {0, 1}n

x 2 {0, 1}m

y = Ek(x)

x = Dk(y)

Encryption scheme consists of two algorithms:
I Encryption algorithm E
I Decryption algorithm D

Both algorithms are parameterised by a randomly selected
secret key k ∈ {0,1}n, known to Alice and Bob

I For all k ∈ {0,1}n and x ∈ {0,1}m, we have Dk(Ek(x)) = x
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Encryption Schemes

Key:

Ciphertext:
Alice Bob

Eve

Message (plaintext):

k 2R {0, 1}n

x 2 {0, 1}m

y = Ek(x)

x = Dk(y)

Transmission of a secret message x:
I Alice computes ciphertext y = Ek(x)
I Alice sends y to Bob and Bob computes x = Dk(y)

Requirements for encryption scheme (E,D):
I E and D are polynomial-time
I Eve cannot obtain any information about x from y, even if Eve

knows E and D
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Perfect Secrecy

What does

“Eve cannot obtain any information about x from y”

mean?

Definition (Perfect secrecy)

Let (E,D) be a encryption scheme for messages of length m with key
size n. We say that (E,D) is perfectly secret if for any pair of
messages x,x′ ∈ {0,1}m, the distributions EUn(x) and EUn(x

′) are the
same, where Un denotes the uniform distribution over {0,1}n.

If the key is picked at random, Eve will see the same distribution
of ciphertexts regardless of the actual message
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One-time Pad

Key:

Ciphertext:
Alice Bob

Eve

Message (plaintext):

k 2R {0, 1}n

x 2 {0, 1}m

y = Ek(x)

x = Dk(y)

A simple solution: one-time pad
I For message x ∈ {0,1}n, select key k ∈ {0,1}n uniformly at

random
I Let Ek(x) = x⊕ k and Dk(x) = x⊕ k, where ⊕ is the bit-wise XOR
I Now Dk(Ek(x)) = (x⊕ k)⊕ k = x
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One-time Pad

Key:

Ciphertext:
Alice Bob

Eve

Message (plaintext):

k 2R {0, 1}n

x 2 {0, 1}m

y = Ek(x)

x = Dk(y)

One-time pad satisfies perfect secrecy:
I If k is uniformly distributed over {0,1}n, then so is Ek(x)

One-time pads are one-time:
I If same key k is used twice, then Ek(x)⊕Ek(x′) = x⊕ x′, which

yields nontrivial information about the messages
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Computational Security

Perfect security means we can fool any adversary
I Perfect security requires that key length is at least message length
I However, it is reasonable to assume that adversary has limited

computational power

Computational security: aim is to fool any (randomised)
polynomial-time adversary

I One can define various forms of computational security
I Strength of the required security can depend on application
I Real definitions are somewhat complicated and subtle
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Computational Security: Simple Definition

A simple version of computational security:
I Intuition: adversary cannot guess any bit of the plaintext with

probability significantly larger than 1/2
I Formally: we say that a scheme (E,D) for m-bit messages with

n-bit keys is computationally secure if for any probabilistic
polynomial-time algorithm A,

Pr
k∈Un
x∈Um

[A(Ek(x)) = (i,b) such that xi = b]≤ 1/2+ ε(n) ,

where ε(n) = n−ω(1), that is, ε(n)< n−c for any c and for
sufficiently large n
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One-way Functions

One can show that if P = NP, then computationally secure
encryption schemes do not exist

I Thus, modern cryptography requires P 6= NP
I Assuming P 6= NP is not quite enough, as far as we know

Standard assumption: one-way functions exist
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One-way Functions

Definition
A polynomial-time computable function f : {0,1}∗→{0,1}∗ is a
one-way function if for every probabilistic polynomial-time algorithm A,

Pr
x∈Un

y=f (x)

[A(y) = x′ such that f (x′) = y]< ε(n) ,

where ε(n) = n−ω(1).

Conjecture
There exists a one-way function.
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One-way Functions

Existence of one-way functions implies P 6= NP
I No one-way functions are known

Some candidates:
I Integer multiplication: the function (p,q) 7→ pq, where p and q are

prime numbers (inverse: factoring)
I RSA function: fRSA(x,e,p,q,) = (xe mod pq,pq,e), where p and q

are prime numbers, e is a relative prime to φ(pq) = (p−1)(q−1)
and x < pq is an integer
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One-way Functions and Security

One-way functions are used as building block for encryption
schemes

Theorem
Assume one-way functions exist. Then for every c ∈ N, there exists a
computationally secure encryption scheme (E,D) for nc-bit messages
with n-bit keys.
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Pseudorandomness

Another application of one-way functions: pseudorandom
generators

I Basic idea: turn a small number of random bits into a larger
number of “random-looking” bits

I Specifically, we require that the pseudorandom bits cannot be
distinguished from real random bits by polynomial-time algorithms

I Lots of practical applications
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Pseudorandomness
Definition
Let G : {0,1}∗→{0,1}∗ be a polynomial-time computable function,
and let ` : N→ N be a polynomial-time computable function with
`(n)> n. We say that G is a secure pseudorandom generator of
stretch `(n) if |G(x)|= `(|x|) for every x ∈ {0,1}∗ and for every
probabilistic polynomial-time algorithm A, we have that∣∣ Pr

x∈Un
[A(G(x)) = 1]− Pr

z∈U`(n)
[A(z) = 1]

∣∣< ε(n) ,

where ε(n) = n−ω(1).

Definition
If one-way functions exist, then there is a secure pseudorandom
generator with stretch nc for every c ∈ N.
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Public-key Encryption

The notion of encryption schemes we have been discussing
so far is private-key encryption

I Alice and Bob need to share a secret key k
I Impractical: this key needs to be shared somehow!

Modern cryptography is based on public-key encryption
I Both the algorithms (E,D) and the encryption key are known

publicly
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Public-key Encryption

y = Dk1
(x)

Private key:

Ciphertext:
Alice Bob

Eve

Message (plaintext):
x 2 {0, 1}m

y = Ek2
(x)

k1 2R {0, 1}n
k2 2 {0, 1}n0Public key:

In public-key encryption, Bob generates two keys:
I A private key k1 and a public key k2
I Bob sends the public key to Alice unencrypted

Alice can now send an encrypted message to Bob
I Alice encrypts the message as y = Ek2(x)
I Bob decrypts the message as x = Dk1(y)
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Public-key Encryption

y = Dk1
(x)

Private key:

Ciphertext:
Alice Bob

Eve

Message (plaintext):
x 2 {0, 1}m

y = Ek2
(x)

k1 2R {0, 1}n
k2 2 {0, 1}n0Public key:

The security requirement is now:
I Public key should not reveal information about private key
I Knowing public key should not reveal information about the

message

This can be achieved using one-way functions
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RSA Encryption

y = Dk1
(x)

Private key:

Ciphertext:
Alice Bob

Eve

Message (plaintext):
x 2 {0, 1}m

y = Ek2
(x)

k1 2R {0, 1}n
k2 2 {0, 1}n0Public key:

Recall the definition of RSA function:
I fRSA(x,e,p,q) = (xe mod pq,pq,e), where p and q are prime

numbers, e is a relative prime to φ(pq) = (p−1)(q−1) and
x < pq is an integer

I e can be selected to be a fixed prime number
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RSA Encryption

y = Dk1
(x)

Private key:

Ciphertext:
Alice Bob

Eve

Message (plaintext):
x 2 {0, 1}m

y = Ek2
(x)

k1 2R {0, 1}n
k2 2 {0, 1}n0Public key:

The keys for the RSA system are now as follows:
I Bob generates two large primes p and q
I Bob’s private key is k1 = (p,q,d), where d = e−1 mod φ(pq), that

is, ed = 1+ kφ(pq) for some k (given p, q and e, one can compute
d by extended Euclid’s algorithm)

I Bob’s public key is k2 = (pq,e)
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RSA Encryption

y = Dk1
(x)

Private key:

Ciphertext:
Alice Bob

Eve

Message (plaintext):
x 2 {0, 1}m

y = Ek2
(x)

k1 2R {0, 1}n
k2 2 {0, 1}n0Public key:

Alice encrypts a message x as

y = xe mod pq

Bob decrypts a message y by

yd = xed = x1+kφ(pq) = x(xφ(pq))k = x mod pq ,

where xφ(pq) = 1 mod pq by an extension of Fermat’s theorem
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Lecture 16: Summary

Encryption schemes

Basic idea of computational security

One-way functions

Pseudorandom generators

Public-key encryption


