

CS-E4530 Computational Complexity Theory

Lecture 16: Cryptography

Aalto University School of Science Department of Computer Science

Spring 2019

Agenda

- Encryption schemes
- Computational security
- One-way functions
- Public-key encryption schemes

Cryptography

• Cryptography is the study of secure communication

- Cryptography is much older than computer science
- Traditionally, cryptography referred to the development of various ad-hoc encryption schemes
- These schemes were usually broken sooner or later
- Modern cryptography was born in the 1970s, when computational complexity theory was applied to cryptography
 - Modern cryptography aims to develop *provably unbreakable* encryption schemes
 - Unbreakability is conditioned on complexity assumptions

Encryption Schemes

• Two parties, *Alice* and *Bob*, wish to communicate in the presence of a malevolent eavesdropper *Eve*

Encryption Schemes

• Encryption scheme consists of two algorithms:

- Encryption algorithm E
- Decryption algorithm D
- Both algorithms are parameterised by a randomly selected secret key $k \in \{0,1\}^n$, known to Alice and Bob
 - For all $k \in \{0,1\}^n$ and $x \in \{0,1\}^m$, we have $D_k(E_k(x)) = x$

Encryption Schemes

- Transmission of a secret message x:
 - Alice computes ciphertext $y = E_k(x)$
 - Alice sends y to Bob and Bob computes $x = D_k(y)$
- Requirements for encryption scheme (*E*,*D*):
 - E and D are polynomial-time
 - Eve cannot obtain any information about x from y, even if Eve knows E and D

Perfect Secrecy

What does

"Eve cannot obtain any information about x from y" mean?

Definition (Perfect secrecy)

Let (E,D) be a encryption scheme for messages of length *m* with key size *n*. We say that (E,D) is *perfectly secret* if for any pair of messages $x, x' \in \{0,1\}^m$, the distributions $E_{U_n}(x)$ and $E_{U_n}(x')$ are the same, where U_n denotes the uniform distribution over $\{0,1\}^n$.

• If the key is picked at random, Eve will see the same distribution of ciphertexts regardless of the actual message

One-time Pad

• A simple solution: one-time pad

- For message $x \in \{0,1\}^n$, select key $k \in \{0,1\}^n$ uniformly at random
- ▶ Let $E_k(x) = x \oplus k$ and $D_k(x) = x \oplus k$, where \oplus is the bit-wise XOR
- Now $D_k(E_k(x)) = (x \oplus k) \oplus k = x$

One-time Pad

- One-time pad satisfies perfect secrecy:
 - If k is uniformly distributed over $\{0,1\}^n$, then so is $E_k(x)$

• One-time pads are one-time:

If same key k is used twice, then E_k(x) ⊕ E_k(x') = x ⊕ x', which yields nontrivial information about the messages

Computational Security

Perfect security means we can fool any adversary

- Perfect security requires that key length is at least message length
- However, it is reasonable to assume that adversary has limited computational power

• *Computational security*: aim is to fool any (randomised) polynomial-time adversary

- One can define various forms of computational security
- Strength of the required security can depend on application
- Real definitions are somewhat complicated and subtle

Computational Security: Simple Definition

- A simple version of *computational security*:
 - ► Intuition: adversary cannot guess any bit of the plaintext with probability significantly larger than 1/2
 - ► **Formally:** we say that a scheme (*E*,*D*) for *m*-bit messages with *n*-bit keys is *computationally secure* if for any probabilistic polynomial-time algorithm *A*,

 $\Pr_{\substack{k \in U_n \\ x \in U_m}} [A(E_k(x)) = (i,b) \text{ such that } x_i = b] \le 1/2 + \varepsilon(n) \,,$

where $\epsilon(n) = n^{-\omega(1)},$ that is, $\epsilon(n) < n^{-c}$ for any c and for sufficiently large n

One-way Functions

- One can show that if P = NP, then computationally secure encryption schemes do not exist
 - Thus, modern cryptography requires $P \neq NP$
 - Assuming $P \neq NP$ is not quite enough, as far as we know
- Standard assumption: one-way functions exist

One-way Functions

Definition

A polynomial-time computable function $f: \{0,1\}^* \to \{0,1\}^*$ is a *one-way function* if for every probabilistic polynomial-time algorithm A,

$$\Pr_{\substack{x \in U_n \\ y = f(x)}} [A(y) = x' \text{ such that } f(x') = y] < \varepsilon(n),$$

where
$$\varepsilon(n) = n^{-\omega(1)}$$

Conjecture

There exists a one-way function.

.

One-way Functions

• Existence of one-way functions implies $\mathsf{P} \neq \mathsf{NP}$

No one-way functions are known

Some candidates:

- ► Integer multiplication: the function $(p,q) \mapsto pq$, where p and q are prime numbers (inverse: factoring)
- ► RSA function: $f_{\mathsf{RSA}}(x, e, p, q,) = (x^e \mod pq, pq, e)$, where p and q are prime numbers, e is a relative prime to $\phi(pq) = (p-1)(q-1)$ and x < pq is an integer

One-way Functions and Security

One-way functions are used as building block for encryption schemes

Theorem

Assume one-way functions exist. Then for every $c \in \mathbb{N}$, there exists a computationally secure encryption scheme (E,D) for n^c -bit messages with *n*-bit keys.

Pseudorandomness

Another application of one-way functions: *pseudorandom* generators

- Basic idea: turn a small number of random bits into a larger number of "random-looking" bits
- Specifically, we require that the *pseudorandom* bits cannot be distinguished from real random bits by polynomial-time algorithms
- Lots of practical applications

Pseudorandomness

Definition

Let $G: \{0,1\}^* \to \{0,1\}^*$ be a polynomial-time computable function, and let $\ell: \mathbb{N} \to \mathbb{N}$ be a polynomial-time computable function with $\ell(n) > n$. We say that *G* is a *secure pseudorandom generator of stretch* $\ell(n)$ if $|G(x)| = \ell(|x|)$ for every $x \in \{0,1\}^*$ and for every probabilistic polynomial-time algorithm *A*, we have that

$$\left|\Pr_{x\in U_n}[A(G(x))=1] - \Pr_{z\in U_{\ell(n)}}[A(z)=1]\right| < \varepsilon(n),$$

where $\varepsilon(n) = n^{-\omega(1)}$.

Definition

If one-way functions exist, then there is a secure pseudorandom generator with stretch n^c for every $c \in \mathbb{N}$.

Public-key Encryption

• The notion of encryption schemes we have been discussing so far is *private-key encryption*

- Alice and Bob need to share a secret key k
- Impractical: this key needs to be shared somehow!

Modern cryptography is based on *public-key encryption*

• Both the algorithms (E,D) and the encryption key are known publicly

Public-key Encryption

- In public-key encryption, Bob generates two keys:
 - A *private* key k_1 and a *public* key k_2
 - Bob sends the public key to Alice unencrypted
- Alice can now send an encrypted message to Bob
 - Alice encrypts the message as $y = E_{k_2}(x)$
 - Bob decrypts the message as $x = D_{k_1}(y)$

Public-key Encryption

- The security requirement is now:
 - Public key should not reveal information about private key
 - Knowing public key should not reveal information about the message
- This can be achieved using one-way functions

RSA Encryption

• Recall the definition of RSA function:

- F_{RSA}(x, e, p, q) = (x^e mod pq, pq, e), where p and q are prime numbers, e is a relative prime to φ(pq) = (p − 1)(q − 1) and x < pq is an integer</p>
- e can be selected to be a fixed prime number

RSA Encryption

• The keys for the RSA system are now as follows:

- Bob generates two large primes p and q
- ▶ Bob's private key is k₁ = (p,q,d), where d = e⁻¹ mod φ(pq), that is, ed = 1 + kφ(pq) for some k (given p, q and e, one can compute d by extended Euclid's algorithm)
- Bob's public key is $k_2 = (pq, e)$

RSA Encryption

Alice encrypts a message x as

 $y = x^e \mod pq$

Bob decrypts a message y by

$$y^d = x^{ed} = x^{1+k\phi(pq)} = x(x^{\phi(pq)})^k = x \mod pq,$$

where $x^{\phi(pq)} = 1 \mod pq$ by an extension of Fermat's theorem

Lecture 16: Summary

- Encryption schemes
- Basic idea of computational security
- One-way functions
- Pseudorandom generators
- Public-key encryption

