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Exercise 1 - Sample Solutions 6 March 2019

return solution by 20:00, 1 March 2017 — electronically in MyCourses

1. (a) (A repetition of basic electromagnetic field theory course. Remind yourself of Maxwell
equations and vector calculus—for example, David K. Cheng’s book Field and Wave Elec-
tromagnetics.)

A Hertzian dipole which is located in the origin of the coordinate system in free space
(there are no sources except this dipole), and which has the z-directed dynamic dipole
moment I L, radiates electromagnetic vectorial field which depends on the spherical co-
ordinates (r,θ,ϕ) in the following way. The electric field E has two components:

E(r) = ur Er +uθEθ,

which read

Er (r) = jωµ0 2I L cosθ
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with the angular frequency of radiation ω and the free-space wave number k =ωpµ0ε0.

An alternative representation of an electric multipole field is by utilizing the multipole
decomposition that appears in David Jackson’s book "Classical Electrodynamics". There
the electric field of a z directed dipole distribution reads:

E = −jae
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where ae is the scattering amplitude and X10(θ,ϕ) =− j
2

√
3

2π sinθuϕ. The function h(2)
1 (kr )

is the spherical Hankel function of the second kind and first order.

i. Evaluate the field components (r,θ) of expression (3). Compare them with Eqs. (1)
and (2). What do you observe?

ii. The series expressions of the spherical Hankel function is
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Substitute the Hankel function in the results of question i: what do you observe now?

iii. Finally, evaluate ae as a function of I L. Which is the unit of ae?

Write down each step in your calculation. Use the vector differential calculus formulas for
curl in the spherical coordinate system:

∇× f = 1
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(b) Given the following complex vector E (expanded with cartesian unit vectors ux,y,z , and

where j is the imaginary unit):

E = (2+ j)ux +uy −3juz

In time domain, the vector draws an ellipse. Find



i. the directions of the major and minor axes of the ellipse,

ii. the amplitudes of the major and minor axes, and

iii. the axis ratio.

(c) Study carefully sections 1.1–1.4 from the textbook. Remember that the “ordinary” alge-
braic rules for real vectors may not apply for complex vectors.)

Analyze the properties of an arbitrary complex vector b. This vector can be split into a
linearly and a circularly polarized part with expressions

bCP = b× (b×b∗)+ j
p

b ·b b×b∗

|b|2 +|b ·b| (5)

and

bLP =
p

b ·b

|b|2 +|b ·b|
(p

b∗ ·b∗ b+
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)
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Check that the above vectors satisfy the requirements

i. b = bLP +bCP

ii. bLP ×b∗
LP = 0 (property of linear polarization)

iii. bCP ·bCP = 0 (property of circular polarization)

iv. bLP ·bCP = 0 (decoupling of components)

v. |b|2 = |bCP|2 +|bLP|2 (power orthogonality)

As a numerical example, verify the above requirements using b = E = (2+ j)ux +uy −3juz

from the previous problem.



Sample Solutions

1. (a) i. In a straightforward manner and after some careful calculations we obtain

E =− ae
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We evaluate the curl in spherical coordinate system, i.e.,
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Combining this to the final results we obtain:
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Comparison between the components of Eq. (1), (2), and Eq. (8) reveals that the new
representation is more compact and easy to memorize since it requires only the use
of the Hankel functions!

ii. Employing the given expression for Hankel function we have:
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By combining the above to Eq.(8) we obtain
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We notice that this form is quite close to our initial dipole field form. Hence know
we are more confident that indeed the Hankel version of a dipole field describes the
same quantities.

iii. Funally, by a simple comparisson between the component of Eq. (1), (2), and Eq. (8)
we obtain

ae =
√
π

6
k2I l (12)

with units A/m since the dipole moment I l has A·m.



(b) The product E ·E is not real, which means that the real and imaginary parts of E do not
correspond to the axes of the ellipse. Following section 1.4 in Methods, a new vector can
be defined, i.e.,

b =
∣∣∣pE ·E

∣∣∣ Ep
E ·E

(13)

describing the axial representation of the given E vector.

i. Indeed the real part of the above expression gives the major axis direction vector

bmajor =
∣∣∣pE ·E

∣∣∣ℜ{
Ep
E ·E

}
= {1.605,0.331,−2.83} (14)

with direction angles ϑmajor = 149.9◦ and ϕmajor = 11.648◦, while the imaginary part
the minor axis

bminor =
∣∣∣pE ·E
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= {−1.556,−0.943,−0.993} (15)

with direction angles ϑminor = 61.382◦ and ϕminor = 31.23◦, respectively.

ii. The amplitude of the above major and minor vectors are∣∣bmajor
∣∣= 3.271

and
|bminor| = 2.073

respectively

iii. Finally the axial ratio is ∣∣bmajor
∣∣

|bminor|
= 1.577



(c) For simplicity we assume that |b|2+|b·b| = 1. Also it is useful to invoke the following vector
properties: Given a complex vector a we have

a×a = 0 (16)

a× (a×a∗) = a|a|2 −a∗(a ·a) (17)

a · (a×a∗) = 0 (18)

and any other combinations that after certain permutations exhibit the product a×a
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v. Finally

|b| = b ·b∗ = (bCP +bLP) · (b∗
CP +b∗

LP

)= |bCP|+ |bLP|+2ℜ{bLP ·b∗
CP}

we need to prove that
bLP ·b∗

CP = 0

Similarly as before we expand. The important step here is that

p
b ·b

p
b∗ ·b∗ b · (b∗× (b∗×b)
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and
j
p

b ·b (b×b∗) ·
(
j
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hence these terms cancels and bLP ·b∗
CP = 0. Therefore

|b|2 = |bCP|2 +|bLP|2

The numerical example can be straightforwardly utilized from the above.


