Approximation Algorithms

Lecture 3: Steiner Tree \& Multiway Cut Joachim Spoerhase

Approximation Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximation preserving reduction from Π_{1} to Π_{2} is a pair (f, g) of poly-time computable functions with the following properties.
(i) for each instance I_{1} of $\Pi_{1}, I_{2}:=f\left(I_{1}\right)$ is an instance of Π_{2} where $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$
(ii) for each feasible solution t of $I_{2}, s:=g\left(I_{1}, t\right)$ is a feasible solution of I_{1} where $\operatorname{obj}_{\Pi_{1}}\left(I_{1}, s\right) \leq \operatorname{obj}_{\Pi_{2}}\left(I_{2}, t\right)$

Approximation Preserving Reduction

Thm.
Let Π_{1}, Π_{2} be minimization problems where there is an approximation preserving reduction from Π_{1} to Π_{2}. Then, for each factor- α approximation algorithm of Π_{2}, there is a factor- α approximation algorithm of Π_{1}.

Approximation Preserving Reduction

Thm. Let Π_{1}, Π_{2} be minimization problems where there is an approximation preserving reduction from Π_{1} to Π_{2}. Then, for each factor- α approximation algorithm of Π_{2}, there is a factor- α approximation algorithm of Π_{1}.

Proof.

- Consider a factor- α approx. alg. A of Π_{2} and an instance I_{1} of Π_{1}.
- Let $I_{2}:=f\left(I_{1}\right), t:=A\left(I_{2}\right)$ and $s:=g\left(I_{1}, t\right)$
- $\operatorname{obj}_{\Pi_{1}}\left(I_{1}, s\right) \leq \operatorname{obj}_{\Pi_{2}}\left(I_{2}, t\right) \leq \alpha \cdot \mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \alpha \cdot \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$

Approximation Preserving Reduction

Thm. Let Π_{1}, Π_{2} be minimization problems where there is an approximation preserving reduction from Π_{1} to Π_{2}. Then, for each factor- α approximation algorithm of Π_{2}, there is a factor- α approximation algorithm of Π_{1}.

Proof.

- Consider a factor- α approx. alg. A of Π_{2} and an instance I_{1} of Π_{1}.
- Let $I_{2}:=f\left(I_{1}\right), t:=A\left(I_{2}\right)$ and $s:=g\left(I_{1}, t\right)$
- $\operatorname{obj}_{\Pi_{1}}\left(I_{1}, s\right) \leq \operatorname{obj}_{\Pi_{2}}\left(I_{2}, t\right) \leq \alpha \cdot \operatorname{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \alpha \cdot \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$

SteinerTree

Given: a graph $G=(V, E)$ with edge weights $c: E \rightarrow \mathbb{Q}^{+}$and a partition (T, S) of V into a set T of Terminals and a set S of Steiner vertices.
Find: a subtree $B=\left(V^{\prime}, E^{\prime}\right)$ of G of minimum cost $\left(c\left(E^{\prime}\right):=\sum_{e \in E^{\prime}} c(e)\right)$ containing all terminals, i.e., $T \subseteq V^{\prime}$.

- Terminal
- Steiner vertex

SteinerTree

Given: a graph $G=(V, E)$ with edge weights $c: E \rightarrow \mathbb{Q}^{+}$and a partition (T, S) of V into a set T of Terminals and a set S of Steiner vertices.
Find: a subtree $B=\left(V^{\prime}, E^{\prime}\right)$ of G of minimum cost $\left(c\left(E^{\prime}\right):=\sum_{e \in E^{\prime}} c(e)\right)$ containing all terminals, i.e., $T \subseteq V^{\prime}$.
feas. solution: cost 4

- Terminal
- Steiner vertex

SteinerTree

Given: a graph $G=(V, E)$ with edge weights $c: E \rightarrow \mathbb{Q}^{+}$and a partition (T, S) of V into a set T of Terminals and a set S of Steiner vertices.
Find: a subtree $B=\left(V^{\prime}, E^{\prime}\right)$ of G of minimum cost $\left(c\left(E^{\prime}\right):=\sum_{e \in E^{\prime}} c(e)\right)$ containing all terminals, i.e., $T \subseteq V^{\prime}$.
optimal solution: cost 3

- Terminal
- Steiner vertex

MetricSteinerTree

Restriction of SteinerTree where the cost function is metric, i.e., graph G is complete (i.e., a clique) and for every triple (u, v, w) of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

MetricSteinerTree

Restriction of SteinerTree where the cost function is metric, i.e., graph G is complete (i.e., a clique) and for every triple (u, v, w) of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

not metric

MetricSteinerTree

Restriction of SteinerTree where the cost function is metric, i.e., graph G is complete (i.e., a clique) and for every triple (u, v, w) of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

not metric

metric

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 1: The mapping f.

- Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=S \cup T$

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 1: The mapping f.

- Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=S \cup T$
- Metric Instance $I_{2}:=f\left(I_{1}\right)$: complete graph $G_{2}=\left(V, E_{2}\right)$, partition (T, S) as in I_{1}, and cost funtion c_{2} as below.

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 1: The mapping f.

- Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=S \cup T$
- Metric Instance $I_{2}:=f\left(I_{1}\right)$: complete graph $G_{2}=\left(V, E_{2}\right)$, partition (T, S) as in I_{1}, and cost funtion c_{2} as below.
- $c_{2}(u, v):=$ length of a shortest $u-v$-path in G_{1}, for every $u, v \in V$

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 1: The mapping f.

- Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=S \cup T$
- Metric Instance $I_{2}:=f\left(I_{1}\right)$: complete graph $G_{2}=\left(V, E_{2}\right)$, partition (T, S) as in I_{1}, and cost funtion c_{2} as below.
- $c_{2}(u, v):=$ length of a shortest $u-v$-path in G_{1}, for every $u, v \in V$
- $c_{2}(u, v) \leq c_{1}(u, v)$ for every $(u, v) \in E$

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 2: $\operatorname{OPT}\left(I_{2}\right) \leq \operatorname{OPT}\left(I_{1}\right)$.

- Let B^{*} be an optimal subtree of I_{1}

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 2: $\operatorname{OPT}\left(I_{2}\right) \leq \operatorname{OPT}\left(I_{1}\right)$.

- Let B^{*} be an optimal subtree of I_{1}
- B^{*} is also feasible for I_{2}, since $E_{1} \subseteq E_{2}$ and the vertex sets V, S, T are the same

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 2: $\operatorname{OPT}\left(I_{2}\right) \leq \operatorname{OPT}\left(I_{1}\right)$.

- Let B^{*} be an optimal subtree of I_{1}
- B^{*} is also feasible for I_{2}, since $E_{1} \subseteq E_{2}$ and the vertex sets V, S, T are the same
- Also, recall $c_{2}(u, v) \leq c_{1}(u, v)$ for every edge $u v$ of G.

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 2: $\operatorname{OPT}\left(I_{2}\right) \leq \operatorname{OPT}\left(I_{1}\right)$.

- Let B^{*} be an optimal subtree of I_{1}
- B^{*} is also feasible for I_{2}, since $E_{1} \subseteq E_{2}$ and the vertex sets V, S, T are the same
- Also, recall $c_{2}(u, v) \leq c_{1}(u, v)$ for every edge $u v$ of G.
- Thus, $\mathrm{OPT}\left(I_{2}\right) \leq c_{2}\left(B^{*}\right) \leq c_{1}\left(B^{*}\right)=\mathrm{OPT}\left(I_{1}\right)$

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 3: The mapping g.

- Let B_{2} be a steiner tree for G_{2}

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 3: The mapping g.

- Let B_{2} be a steiner tree for G_{2}
- Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 3: The mapping g.

- Let B_{2} be a steiner tree for G_{2}
- Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.
- Note: $c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right)$

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 3: The mapping g.

- Let B_{2} be a steiner tree for G_{2}
- Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.
- Note: $c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right)$
- G_{1}^{\prime} connects all terminals

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 3: The mapping g.

- Let B_{2} be a steiner tree for G_{2}
- Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.
- Note: $c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right)$
- G_{1}^{\prime} connects all terminals
- G_{1}^{\prime} not necessarily a tree

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 3: The mapping g.

- Let B_{2} be a steiner tree for G_{2}
- Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.
- Note: $c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right)$
- G_{1}^{\prime} connects all terminals
- G_{1}^{\prime} not necessarily a tree
- Pick B_{1} as a spanning tree of G_{1}^{\prime}

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 3: The mapping g.

- Let B_{2} be a steiner tree for G_{2}
- Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.
- Note: $c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right)$
- G_{1}^{\prime} connects all terminals
- G_{1}^{\prime} not necessarily a tree
- Pick B_{1} as a spanning tree of G_{1}^{\prime}
- $\rightsquigarrow B_{1}$ is a Steiner tree of G_{1}

MetricSteinerTree

Thm. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. Part 3: The mapping g.

- Let B_{2} be a steiner tree for G_{2}
- Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.
- Note: $c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right)$
- G_{1}^{\prime} connects all terminals
- G_{1}^{\prime} not necessarily a tree
- Pick B_{1} as a spanning tree of G_{1}^{\prime}
- $\rightsquigarrow B_{1}$ is a Steiner tree of G_{1}
- $c_{1}\left(B_{1}\right) \leq c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right)$
\square

2-Approximation for SteinerTree

Thm.
For an instance of MetricSteinerTree, let B be a minimum spanning tree (MST) of the subgraph $G[T]:=(T,\{u v \mid u, v \in T\})$ induced by the terminal set T. We have:

$$
c(B) \leq 2 \cdot \mathrm{OPT}
$$

2-Approximation for SteinerTree

Thm.
For an instance of MetricSteinerTree, let B be a minimum spanning tree (MST) of the subgraph $G[T]:=(T,\{u v \mid u, v \in T\})$ induced by the terminal set T. We have:

$$
c(B) \leq 2 \cdot \mathrm{OPT}
$$

G

$G[T]$

B

Proof

- Consider an optimal steiner tree B^{*}

Proof ${ }^{\text {*see glossary document }}$

- Consider an optimal steiner tree B^{*}
- duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (Multi-)Graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT

Proof ${ }^{\text {*see glossary document }}$

- Consider an optimal steiner tree B^{*}
- duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (Multi-)Graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT
- Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot$ OPT

Proof

- Consider an optimal steiner tree B^{*}
- duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (Multi-)Graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT
- Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2$. OPT
- Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals $\rightsquigarrow c(H) \leq c(T)=2 \cdot$ OPT, since G is metric.

Proof tex desersy docement

- Consider an optimal steiner tree B^{*}
- duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (Multi-)Graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT
- Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2$. OPT
- Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals $\rightsquigarrow c(H) \leq c(T)=2 \cdot$ OPT, since G is metric.
- Note: any MST B of $G[T]$ has $c(B) \leq c(H) \leq 2$. OPT, since H is a spanning tree of $G[T]$

Proof

- Consider an optimal steiner tree B^{*}
- duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (Multi-)Graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT
- Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2$. OPT
- Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals $\rightsquigarrow c(H) \leq c(T)=2 \cdot$ OPT, since G is metric.
- Note: any MST B of $G[T]$ has $c(B) \leq c(H) \leq 2$. OPT, since H is a spanning tree of $G[T]$

Is there a tight example?

i.e., is there a graph where our algorithmic solution is $2 \cdot$ OPT?

Is there a tight example?

i.e., is there a graph where our algorithmic solution is $2 \cdot \mathrm{OPT}$?

- terminal
- steiner vertex
- 1
- 2

Is there a tight example?

i.e., is there a graph where our algorithmic solution is $2 \cdot$ OPT? MST of $G[T]$: cost $2(n-1)$

- terminal
o steiner vertex
- 1
- 2

Is there a tight example?

i.e., is there a graph where our algorithmic solution is $2 \cdot$ OPT? MST of $G[T]$: cost $2(n-1)$
Optimal solution: cost n

- terminal
- steiner vertex
- 1
- 2

Is there a tight example?

i.e., is there a graph where our algorithmic solution is $2 \cdot \mathrm{OPT}$? MST of $G[T]$: cost 2($n-1$)
Optimal solution: cost n

- terminal
o steiner vertex
- 1
- 2

MultiwayCut

Given: a connected graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{+}$and a set $S=\left\{s_{1}, \ldots, s_{k}\right\} \subseteq V$ of terminals. Find: a minimum cost multiway-cut, where a subset E^{\prime} of E is a multiway-cut when no path in the graph ($V, E \backslash E^{\prime}$) connects two terminals.

MultiwayCut

Given: a connected graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{+}$and a set $S=\left\{s_{1}, \ldots, s_{k}\right\} \subseteq V$ of terminals. Find: a minimum cost multiway-cut, where a subset E^{\prime} of E is a multiway-cut when no path in the graph ($V, E \backslash E^{\prime}$) connects two terminals.

NP-hard for each fixed $k \geq 3$.

MultiwayCut

Given: a connected graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{+}$and a set $S=\left\{s_{1}, \ldots, s_{k}\right\} \subseteq V$ of terminals. Find: a minimum cost multiway-cut, where a subset E^{\prime} of E is a multiway-cut when no path in the graph ($V, E \backslash E^{\prime}$) connects two terminals.

NP-hard for each fixed $k \geq 3$. What about $k=2$?

Isolating Cuts

An isolating cut for a terminal s_{i} is a set of edges separating s_{i} from all other terminals.

Isolating Cuts

An isolating cut for a terminal s_{i} is a set of edges separating s_{i} from all other terminals.

Can we compute a minimum isolating cut efficiently?

Isolating Cuts

An isolating cut for a terminal s_{i} is a set of edges separating s_{i} from all other terminals.

Can we compute a minimum isolating cut efficiently?
Yes:-)

Isolating Cuts

An isolating cut for a terminal s_{i} is a set of edges separating s_{i} from all other terminals.

Can we compute a minimum isolating cut efficiently?

> Yes :-)

Algorithm for MultiwayCut

- For each terminal s_{i}, compute a minimum isolating cut C_{i}.
- Return the union of the $k-1$ cheapest such isolating cuts.

Algorithm for MultiwayCut

- For each terminal s_{i}, compute a minimum isolating cut C_{i}.
- Return the union of the $k-1$ cheapest such isolating cuts.

Thm. The above is a factor- $\left(2-\frac{2}{k}\right)$ approx. alg.

Is our approximation factor tight?

i.e., is there an example where our algorithm produces a multiway-cut whose cost is $\left(2-\frac{2}{k}\right) \cdot O P T ?$

Is our approximation factor tight?

i.e., is there an example where our algorithm produces a multiway-cut whose cost is $\left(2-\frac{2}{k}\right) \cdot O P T ?$

Is our approximation factor tight?

i.e., is there an example where our algorithm produces a multiway-cut whose cost is $\left(2-\frac{2}{k}\right) \cdot O P T$? isolating cuts: $(k-1)(2-\epsilon)$

Is our approximation factor tight?

i.e., is there an example where our algorithm produces a multiway-cut whose cost is $\left(2-\frac{2}{k}\right) \cdot O P T$?

Is our approximation factor tight?

i.e., is there an example where our algorithm produces a multiway-cut whose cost is $\left(2-\frac{2}{k}\right) \cdot O P T$? isolating cuts: $(k-1)(2-\epsilon)$

$(k-1)(2-\epsilon) / k \approx 2-2 / k$

Is our approximation factor tight?

i.e., is there an example where our algorithm produces a multiway-cut whose cost is $\left(2-\frac{2}{k}\right) \cdot O P T$?

