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Approximation Preserving Reduction

Let Π1,Π2 be minimization problems. An approximation
preserving reduction from Π1 to Π2 is a pair (f, g) of
poly-time computable functions with the following properties.

(i) for each instance I1 of Π1, I2 := f(I1) is an instance of
Π2 where OPTΠ2 (I2) ≤ OPTΠ1 (I1)

(ii) for each feasible solution t of I2, s := g(I1, t) is a feasible
solution of I1 where objΠ1

(I1, s) ≤ objΠ2
(I2, t)

instances I1

f
I2

ts
g

solutions

Π1 Π2



Approximation Preserving Reduction

Let Π1,Π2 be minimization problems where there is
an approximation preserving reduction from Π1 to
Π2. Then, for each factor-α approximation
algorithm of Π2, there is a factor-α approximation
algorithm of Π1.

Thm.

Proof.

• Consider a factor-α approx. alg. A of Π2 and an instance I1

of Π1.

• Let I2 := f(I1), t := A(I2) and s := g(I1, t)

• objΠ1
(I1, s) ≤ objΠ2

(I2, t) ≤ α ·OPTΠ2 (I2) ≤ α ·OPTΠ1 (I1)



SteinerTree

Given: a graph G = (V,E) with edge weights c : E → Q+ and
a partition (T, S) of V into a set T of Terminals and a set S
of Steiner vertices.
Find: a subtree B = (V ′, E′) of G of minimum cost
(c(E′) :=

∑
e∈E′ c(e)) containing all terminals, i.e., T ⊆ V ′.

Terminal

Steiner vertex2
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MetricSteinerTree

Restriction of SteinerTree where the cost function is
metric, i.e., graph G is complete (i.e., a clique) and for every
triple (u, v, w) of vertices, we have c(u,w) ≤ c(u, v) + c(v, w).
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MetricSteinerTree

There is an approximation preserving reduction
from SteinerTree to MetricSteinerTree.

Thm.

Proof. Part 1: The mapping f .

• Instance I1 of SteinerTree: Graph G1 = (V,E1), edge
weights c1, partition V = S ·∪T

• Metric Instance I2 := f(I1): complete graph G2 = (V,E2),
partition (T, S) as in I1, and cost funtion c2 as below.

• c2(u, v) := length of a shortest u–v-path in G1, for every
u, v ∈ V

• c2(u, v) ≤ c1(u, v) for every (u, v) ∈ E

P

c2(u, v) := c1(P )
u v



MetricSteinerTree

• Let B∗ be an optimal subtree of I1

• B∗ is also feasible for I2, since E1 ⊆ E2 and the vertex sets
V, S, T are the same

• Thus, OPT(I2) ≤ c2(B∗) ≤ c1(B∗) = OPT(I1)

There is an approximation preserving reduction
from SteinerTree to MetricSteinerTree.

Thm.

• Also, recall c2(u, v) ≤ c1(u, v) for every edge uv of G.

Proof. Part 2: OPT(I2) ≤ OPT(I1).



MetricSteinerTree

• Let B2 be a steiner tree for G2

• Construct G′1 ⊆ G1 from B2 by replacing each edge (u, v)
of B2 by a shortest u–v-path in G1.

• Note: c1(G′1) ≤ c2(B2)
u

v
w

u

v w

B2

G′1

• G′1 connects all terminals

• G′1 not necessarily a tree

• Pick B1 as a spanning tree of G′1

•  B1 is a Steiner tree of G1

• c1(B1) ≤ c1(G′1) ≤ c2(B2)

There is an approximation preserving reduction
from SteinerTree to MetricSteinerTree.

Thm.

Proof. Part 3: The mapping g.



2-Approximation for SteinerTree

For an instance of MetricSteinerTree, let B
be a minimum spanning tree (MST) of the
subgraph G[T ] := (T, {uv | u, v ∈ T }) induced by
the terminal set T . We have:

c(B) ≤ 2 · OPT

Thm.
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Proof

• Consider an optimal steiner tree B∗

• Find an Eulerian tour T ′ in B′  c(T ′) = c(B′) = 2 · OPT

• Find a Hamiltonian path H in G[T ] by “short-cutting” Steiner
vertices and previously visited terminals  c(H) ≤ c(T ) = 2 · OPT,
since G is metric.

• duplicate all edges in B∗  Eulerian (Multi-)Graph B′ with cost
c(B′) = 2 · OPT

B∗ H

• Note: any MST B of G[T ] has c(B) ≤ c(H) ≤ 2 · OPT, since H is a
spanning tree of G[T ]

*see glossary document



Is there a tight example?

Kn

terminal

steiner vertex

1

2

MST of G[T ] : cost 2(n− 1)
Optimal solution: cost n

2(n− 1)

n
→ 2

i.e., is there a graph where our algorithmic solution is 2 · OPT?



MultiwayCut

Given: a connected graph G = (V,E) with edge costs
c : E → Q+ and a set S = {s1, . . . , sk} ⊆ V of terminals.
Find: a minimum cost multiway-cut, where a subset E′ of E
is a multiway-cut when no path in the graph (V,E \ E′)
connects two terminals.

s1

s2

s3

connected components after
removing the multiway-cut.

multiway-cut

NP-hard for each fixed k ≥ 3. What about k = 2?



Isolating Cuts

An isolating cut for a terminal si is a set of edges separating
si from all other terminals.

si

Add dummy terminal t
conntected to each
s ∈ S \ {si}, and compute
minimum si–t cut.

t

Can we compute a minimum isolating cut efficiently?

∞
∞

∞

Yes :-)



Algorithm for MultiwayCut

• For each terminal si, compute a minimum isolating cut Ci.
• Return the union of the k − 1 cheapest such isolating cuts.

The above is a factor-(2− 2
k ) approx. alg.Thm.

si

optimal multiway-cut A

A =
⋃k

i=1 Ai

Ki
isolating cut Ai for si



Is our approximation factor tight?

2− ε 2− ε

2− ε2− ε
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isolating cuts: (k − 1)(2− ε)

OPT = k

(k − 1)(2− ε)/k ≈ 2− 2/k

i.e., is there an example where our algorithm produces a
multiway-cut whose cost is (2− 2

k ) ·OPT?
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