

Aalto University School of Science

Combinatorics of Efficient Computations

Approximation Algorithms

Lecture 3: Steiner Tree & Multiway Cut Joachim Spoerhase

2019

Approximation Preserving Reduction

Let Π_1, Π_2 be minimization problems. An **approximation preserving reduction** from Π_1 to Π_2 is a pair (f, g) of poly-time computable functions with the following properties. (i) for each instance I_1 of $\Pi_1, I_2 := f(I_1)$ is an instance of Π_2 where $OPT_{\Pi_2}(I_2) \leq OPT_{\Pi_1}(I_1)$

(ii) for each feasible solution t of I_2 , $s := g(I_1, t)$ is a feasible solution of I_1 where $obj_{\Pi_1}(I_1, s) \le obj_{\Pi_2}(I_2, t)$

Approximation Preserving Reduction

Thm. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction from Π_1 to Π_2 . Then, for each factor- α approximation algorithm of Π_2 , there is a factor- α approximation algorithm of Π_1 .

Proof.

- Consider a factor- α approx. alg. A of Π_2 and an instance I_1 of Π_1 .
- Let $I_2 := f(I_1)$, $t := A(I_2)$ and $s := g(I_1, t)$
- $\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t) \leq \alpha \cdot \operatorname{OPT}_{\Pi_2}(I_2) \leq \alpha \cdot \operatorname{OPT}_{\Pi_1}(I_1)$

SteinerTree

Given: a graph G = (V, E) with edge weights $c \colon E \to \mathbb{Q}^+$ and a partition (T, S) of V into a set T of **Terminals** and a set S of **Steiner vertices**.

Find: a subtree B = (V', E') of G of minimum cost $(c(E') := \sum_{e \in E'} c(e))$ containing all terminals, i.e., $T \subseteq V'$.

optimal solution: cost 3

- Terminal
- o Steiner vertex

METRICSTEINERTREE

Restriction of STEINERTREE where the cost function is **metric**, i.e., graph G is complete (i.e., a clique) and for every triple (u, v, w) of vertices, we have $c(u, w) \leq c(u, v) + c(v, w)$.

MetricSteinerTree

Thm. There is an approximation preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. Part 1: The mapping f.

- Instance I₁ of STEINERTREE: Graph G₁ = (V, E₁), edge weights c₁, partition V = S ∪T
- Metric Instance I₂ := f(I₁): complete graph G₂ = (V, E₂), partition (T, S) as in I₁, and cost function c₂ as below.
- $c_2(u, v) := \text{length of a shortest } u-v\text{-path in } G_1$, for every $u, v \in V$ P

• $c_2(u,v) \le c_1(u,v)$ for every $(u,v) \in E$ $u \leftarrow c_2(u,v) := c_1(P)$

METRICSTEINERTREE

- **Thm.** There is an approximation preserving reduction from STEINERTREE to METRICSTEINERTREE.
- **Proof.** Part 2: $OPT(I_2) \leq OPT(I_1)$.
 - Let B^* be an optimal subtree of I_1
 - B^* is also feasible for I_2 , since $E_1 \subseteq E_2$ and the vertex sets V, S, T are the same
 - Also, recall $c_2(u, v) \leq c_1(u, v)$ for every edge uv of G.
 - Thus, $OPT(I_2) \le c_2(B^*) \le c_1(B^*) = OPT(I_1)$

MetricSteinerTree

Thm. There is an approximation preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. Part 3: The mapping g.

- Let B_2 be a steiner tree for G_2
- Construct G'₁ ⊆ G₁ from B₂ by replacing each edge (u, v) of B₂ by a shortest u-v-path in G₁.
- Note: $c_1(G'_1) \le c_2(B_2)$
- G'_1 connects all terminals
- G'_1 not necessarily a tree
- Pick B_1 as a spanning tree of G'_1
- $\rightsquigarrow B_1$ is a Steiner tree of G_1
- $c_1(B_1) \le c_1(G'_1) \le c_2(B_2)$

2-Approximation for ${\rm STEINERTREE}$

Thm. For an instance of METRICSTEINERTREE, let Bbe a minimum spanning tree (MST) of the subgraph $G[T] := (T, \{ uv \mid u, v \in T \})$ induced by the terminal set T. We have:

 $c(B) \leq 2 \cdot \mathsf{OPT}$

Proof *see

- Consider an optimal steiner tree B^{\ast}
- duplicate all edges in $B^* \rightsquigarrow$ Eulerian (Multi-)Graph B' with cost $c(B') = 2 \cdot \text{OPT}$
- Find an Eulerian tour T' in $B' \rightsquigarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$
- Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and previously visited terminals → c(H) ≤ c(T) = 2 · OPT, since G is metric.
- Note: any MST B of G[T] has c(B) ≤ c(H) ≤ 2 · OPT, since H is a spanning tree of G[T]

Is there a tight example?

i.e., is there a graph where our algorithmic solution is $2 \cdot OPT$? MST of G[T] : cost 2(n-1)terminal Optimal solution: cost n• steiner vertex $\frac{2(n-1)}{2} \rightarrow 2$ 1 \mathcal{N} 2 K_n

MultiwayCut

Given: a connected graph G = (V, E) with edge costs $c: E \to \mathbb{Q}_+$ and a set $S = \{s_1, \ldots, s_k\} \subseteq V$ of terminals. **Find:** a minimum cost **multiway-cut**, where a subset E' of Eis a multiway-cut when no path in the graph $(V, E \setminus E')$ connects two terminals.

NP-hard for each **fixed** $k \ge 3$. What about k = 2?

Isolating Cuts

An **isolating cut** for a terminal s_i is a set of edges separating s_i from all other terminals.

Can we compute a minimum isolating cut efficiently?

Yes :-)

Algorithm for $\operatorname{Multiway}Cut$

- For each terminal s_i , compute a minimum isolating cut C_i .
- Return the union of the k-1 cheapest such isolating cuts.

Thm. The above is a factor- $(2 - \frac{2}{k})$ approx. alg.

Is our approximation factor tight?

i.e., is there an example where our algorithm produces a multiway-cut whose cost is $(2 - \frac{2}{k}) \cdot OPT$?

