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Recap

Last time: Lorenz’ equations and the butterfly — a strange attractor.

z = o(y—xz)
U rT — Y — T2
 — xy — bz

Continuous time.
This time: Discrete time and another iconic plot

Bifurcation Diagram

(Note! It says
‘bifurcation diagram’
in the header. Strictly, ..
this is an orbit
diagram, since
unstable branches are
not plotted.)

08|

Population

o
S
T

0.0 . . . . -
238 30 32 34 36 38 40

Growth Rate



One-Dimensional Maps

New class of dynamical systems: time is discrete, not continuous.

Example of one-dimensional map:

Sequence x, X1, X,, ... is the orbit starting from x,,.

Maps arise:

1) As tools for analyzing differential equations. Ex. Lorenz map
shows that the Lorenz attractor is not just a long-period limit
cycle.

2) As models of natural phenomena: digital electronics, economics
and finance theory, impulsively driven mechanics, ...

3) As simple examples of chaos: points hop along their orbits —
non-smooth behavior, wilder dynamics.

Successful predictions of routes to chaos by using maps.



Fixed Points and Cobwebs

Tnt1 = f(Tn)

f1is a smooth function from the real line to itself.
Fixed point x°
f(z7) = a”
Tn=2" = Tnt1 = f(an) = f(27) =27

Stability of x” (consider an orbit sweeping past x*: x,, = x* +1n,,)

2"+ g1 = Tpgr = f@ 4+ 0n) = f@*) + /(@) + O(n;)
M1 = f' (%) + O(n;)

M1 ~ f (")



Fixed Points and Cobwebs

Linearized system

Nn+1 7 f/(m*)nn

A = f'(x7)1is the eigenvalue or multiplier.
N1~ Ao, Mo ~ AL~ A°Ng, ... = N ~ A"
IfA=1f(z")) <1 — n,—0, asn—
x"is linearly stable.

If |A] = |f'(x*)] > 1— x is linearly unstable.

Conclusions from linearization also hold for the nonlinear map,
except in the marginal case [A] = [f'(x")] = 1 ; here the
neglected higher-order terms 0 (n3) determine the local stability.



Example

2

Fixed points

r* = (%) — 2*=0,2"=1
A= f'(z*) = 2z"

x =0isstable (|[A] = 0 < 1), x =1isunstable (|A] = 2 > 1).

Fixed points with A4 = 0 are superstable: convergence is
extremely fast. 7,41 = An, + 0(n3) — perturbations decay like

M~ NG, M2~ 15 ~ Ty = N ~ 1



Cobwebs

Xn+1 = f(x,),initial condition x,,.

1) Draw a vertical line from x, until it
intersects the graph of f: the height
of the intersection point is x;.

2) Draw horizontal line from current
point to the diagonal.

3) Move vertically to the curve again

4) Etc.

X9

The process is repeated n times to generate the first n points in

the orbit.

Cobwebs are particularly useful when linear analysis fails.



Example I

Tp+1 = SIN Ty,

Fixed points

=0 — f'(z¥)=cosz* =1

Xn - & Marginal case:
/ T ¥ Linear analysis is
The cobweb & | inconclusive.
shows that x* =0 |
is locally stable. |
|

Xn

x* =0 1s in fact globally stable, since any x is sent to the interval
-1< x <1, from which it converges to the fixed point.



Example II

Fixed points

¥ =cosx® — 2 =0.739...

Xn 41

N/

X4 = COS X,

x*=0.739 is globally stable. Since A = —sin x*=— 0.6735..< 0,
convergence occurs via damped oscillations, as opposed to the
monotonic behavior observed when 4 > 0.



Logistic Map: Numerics
Logistic map (Robert May (1976))

Tpi1 =TTp(l — )

x,20,r=>0.

n<

Discrete-time analog of the |
logistic equation for population .
growth, N =7rN (1 — %)

Focus: Choose 0 < v < 4 — the map
sends points x € [0, 1] to points x € _
[0,1] (map of population density x,
into population density).




Period-Doubling
Tpi1 =TTp(l —xp)

Fix r and choose some initial population x, What happens?

Forr <1, x,— 0 as n — . (Extinction.)

For 1 < r < 3, the population grows and reaches a non-zero
steady state.

LO T r=28
Time series.
(Discrete points
(n, x,) connected 4 |
by segments for
clarity.)

An
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Period-Doubling

i = rx, (1 —x,) >3 7

For r = 3.3, the population
oscillates between two values
and x, repeats every two
iterations (period-2 cycle).

For r = 3.5, the population
oscillates between four values
(period-4 cycle)— the period
has doubled!

1.0 T

0571
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Period-Doubling

Further period-doublings occur for larger r (computer
experiments).
r, denotes the r-value where a 2"-cycle first appears

r=3 (period 2 is born)
r, = 3.449.., 4
r, = 3.54409... 8
r, =3.5644... 16
r, = 3.568759... 32
r, = 3.569946... oo

Successive bifurcations occur after shorter and shorter intervals
in 7.

The sequence {r,} converges to a limiting value r.,= 3.569946
Convergence is essentially geometric:

5 = e AR el T

n—=oo I'm4+1 — T'n




Chaos and Periodic Windows

What happens forr>r., ?

For many values of r the sequence {x,} never settles down to a
fixed point or a periodic orbit: a discrete-time version of chaos.

r=23.9

w

n
0571




Chaos and Periodic Windows
r=3.9

The cobweb diagram

r=39

21

X%H -

To see the the long-term behaviour for all » we plot the
orbit diagram =>»



Chaos and Periodic Windows
Orbit diagram T

Branches indicate periodic solutions.
Periodic doublings for r <r_= 3.57.

When r > r_, the map becomes chaotic
and the attractor changes from a
finite to an infinite set of points.

o0 .

Mixture of order and chaos: forr > r_ r
one also finds periodic windows!

Large window starting at about
=~ 3.83 contains a stable period-3
cycle.

Zooming into the window one finds
a miniature copy of the full orbit

diagram! T T T
See https://www.youtube.com/watch?v=Ptf{PDfoF- 1Y




Example

Tpi1 =TTp(l — )

0<r<4, 0<x,<1

n

Fixed points

= f(x")=ra*(1—2") — 27=0,1-1/r

" =0, Vr; 2"=1-1/r, r>1
ff(x*)y=r—-2rz" — [fO)=r;f(1-1/r)=2-r

The origin is stable for » <1 and unstable for r > 1.

x*=1-1/ris stable for 1I<r <3 (-1 <2 -r<1) and unstable for r > 3.



Example

Tpi1 = TTyn(1

0<r<4, 0<x,<1

n

Graphical analysis

1)

2)

3)

For r < 1 the parabola lies
below the diagonal — the
origin is the only fixed point.
For r > 1 the parabola crosses
the diagonal at another point
x* =1 - 1/r, while the origin
loses stability  (transcritical
bifurcation).

When r > 3 x*= 1 - 1/r loses
stability (flip bifurcation).

Xn4

_ an)




Example

The logistic map has a 2-cycle for all > 3.

2-cycle: there exist two points p and g such that f(p) = g and f(q) = p.
Equivalently,

flifip)l =flg =p — f3p) =p — p is a fixed point of the second-
iterated map f2(x) = f [f(x)].
f2(x) = x is a quartic polynomial (since
f(x) is quadratic).
x*=0and x* =1 - 1/r are trivial
solutions, as they solve
fx)=x— f3(x)=x. 2(x)
Other two solutions:
r+1++/(r—3)(r+1)

2
2-cycle exists for all r> 3 (p,q € R).

P, q =




Example

Details just to make sure...
fiz) -z =f(f(@) —2=flrz(l—2)) -2
=rire(l —x)|[1 —rxe(l—2z)] —x
=r’z(l —2)[1 —rz(l —2)] — 2

We know that f%(x) —x = h(x)x[x — (1 — %)], because

f?(x*)—x*=0and x*=0,and x* =1 —%.Do the long
division of f?%(x) — x by x[x — (1 — l)] — quadratic h(x).

r
Solve h(x* = p,q) = 0. —
r+1++/(r—=3)(r+1)
27

D, q =



Example

Atr=3x"=p=qg=1 —% = 2/3. The 2-cycle bifurcates
continuously from x*(flip bifurcation).

Near the fixed point f'(x*) ~ -1.

If f(x) is concave down at the fixed point, the cobweb tends to
produce a small stable 2-cycle close to x*.

slope = —1 |




Example

Show that the 2-cycle is stable for 3 < r < 1+v/6 = 3.449 (= the
numerically obtained value for r, at the birth of a 4-cycle).

To analyze the stability of a cycle, reduce the problem to a
question about the stability of the relevant fixed point:

Both p and g are solutions of f%(x) = x, that is, fixed points for f=.
Accordingly, we compute the multiplier

d

A=l f(F@)a=p = FIF0IF (0) = f(0) f ()

By symmetry of the final term the same A is obtained at x = 4.
Makes sense: The p and g branches must Dbifurcate

simultaneously.



Example
= A= r(l—2q)r(1—2p)
= [l = 2(p+q) +4pq]
= r[1-20r+1)/r+4(r+1)/r?

= 4+ 2r—1r?
The 2-cycle is linearly stable for

44+2r—r?|<1 — 3<r<1++6
|

Partial bifurcation diagram:

X




Periodic Windows

There are periodic windows after the |
onset of chaos, r > r_= 3.5699.

For many values of r the sequence {x,,} 1
never settles down to a fixed or a

periodic orbit. Instead the long-term
behaviour is aperiodic: chaos. However,  «| -
there are intervals in r where periodic
motion prevails.

o

These periodic windows are

interspersed between chaotic clouds of .
dots. For example: the large window
starting near r = 3.83 (upper diagram)
contains a stable 3-cycle. The blow-up ol .
(lower diagram) reveals self-similarity.




Periodic Windows

The 3-cycle for 3.8284 <r <3.8415. x,,,5 =f 3(x,,).

Key: The third-iterated map f3(x).

Problem: this is an 8™ degree T~ A A
polynomial, so analytical 0.8.[{ /\ / <|
solution is impossible. e %' \. : / \\ I/ L
Graphically: (r = 3.835) The [ ® | \ / \ /|
intersections are the solutions |
to f 3(x) = x. Two solutions are i
period-1 fixed points, f(x) = x, 0 : |

. . 0 0.2 0.4 0.6 0.8 1
and not interesting. X

04 ¢

0.2

The other six solutions (dots in the figure) are period-3 fixed
points: three stable (the slope I3 (x)| <1),
three unstable (1 (x)| > 1).



Periodic Windows

Decrease r towards the chaotic regime: The hills move down and
the valleys rise. =» The intersections vanish. Hence, for some

r €[3.8, 3.835] f°(x) must have become tangent to the diagonal:
the stable and unstable 3-cycles coalesce and annihilate in a

tangent bifurcation. So, this point (r =1 +1/8=13.8284... ) defines
the minimum value of r in the periodic window.

tangent bifurcation = 06 L
saddle-node bifurcation; f*(x)
(as r increases 3-cycle

appears out of blue sky 0.2[:'»
and splits into a stable
and unstable 3-cycle)




Intermittency

Interesting behaviour for r just below the period-3 window.

nearly

gy TR

0 50 160 l§0
n
Part of the orbit looks like a stable 3-cycle, which alternates with

chaotic behavior.

There cannot be a 3-cycle because we are below the tangent
bifurcation: it is the ghost of the 3-cycle! No surprise, because the
tangent bifurcation is a saddle-node bifurcation.

The orbit returns repeatedly onto the cycle with intermittent
bouts of chaos between visits: intermittency.



Intermittency

(b) L—'
()
0.8 H

0.6 H
3
f(x)
04
0.2

E

|

!

L . |

. 1 ; 1 l / [
0 0.2 0.4 0.6 0.8 1 |

X

Cobweb: The system takes a long time to pass through the
channels between the diagonal and the curve; here f3(x) ~ x — 3-
cycle.

Eventually the system leaves the channel and it moves
chaotically until it hits a channel again.

When r moves further away from the periodic window, chaotic
behavior is more frequent, periodic behavior becomes
increasingly rare and disappears (intermittency route to chaos).



Period-doubling in the window

Just after the 3-cycle is created,
the slope of f3(x) at the black
dots (stable cycles) is close to +1.
As 1 increases, the slope at the
black dots goes down and
eventually reaches -1: after that
the cycle becomes unstable and
a flip bifurcation occurs.

At flip bifurcation the black dot
“splits in two”(the dot splits in
two in the 4t iterate f*(x)): the
3-cycle doubles its period and
becomes a 6-cycle.

The same mechanism
generates a 12-cycle, a 24-
cycle, ... 3-2" cycles.

1
3 l \ \
a 0.41 \ / “\ g‘j

l 1 | i 1
i
0.8

0.6

0.2

0 1 1 1

All periodic windows have
similar period-doubling
sequences. This mechanism
leads to the “miniature copies”
in the orbit diagram.



Liapunov exponent

Aperiodic motion found in logistic map: are we sure it is chaos?
Sensitive dependence on initial conditions?
Initial condition x,, nearby point x,+6, with 6, very small.

O, = separation after n iterates

If 15,1~ 19,le™, 4 is called the Liapunov exponent.

A positive Liapunov exponent is a signature of chaos.

1. |\ f"(®o+d0) — f"(x0) (1lim )
n 50 do—0
1

In |(f™)"(zo)|



Liapunov exponent

>
2

[terative linearisations (chain rule;

see the first example in “Ruling out

limit cycles”):

— In

S

1 On
E h’l %
L | f™(xo +do) — f™(0) -
_— 5 (o
~n| (£ (o)

n—1

(f™) (o) = | (=)
1=0

1:[ £ ()

1n—1
_ 1 / ;
o 2 Inlf (e)



Liapunov exponent

n—oo

- _
Define \ — Jim l Z In | 1! (x;)|| asthe Liapunov exponent.
n
. =0 _

A depends on the initial condition x,, but it is the same for all x
in the basin of attraction of a given attractor.

For stable fixed points and cycles 1 is negative, for chaotic
attractors A is positive.



Example I

f (x) has a stable p-cycle containing the point x,. Determine A.
Xy 1s an element of the p-cycle — x is a fixed point of f7(x).

The p-cycle is stable — |(fp)’ (x)| <1 — In|(f P)’(x)| <O.

- n—1 ] p—1
1 1
A= lim |— In|f'(x;)|| = — In|f'(x;
fi |23l | = 3l )

" 1
A= - Zln!f’(fvz')\ = ]—jln\(fp)’(xo)\ <0

If the p-cycle is superstable, then |(f 7)'(x,)| = 0and
A =1n(0)/p = — co.



Example II

The tent map

re, for 0 < x
or z <u

<
<

— DN |



Example II

The tent map
ro, for 0 <z §%
/(@) {r—m: for %g <1

= Inr
n—od

. n—1 j
1
fl(x) =xr, Vx — M= lim " Zln‘f’(%‘”

For1<r < 2,1 > 0 — chaotic regime.



Example III

Compute numerically 4 for the logistic map f(x) = rx(1 —x) in
the interval 3 <r < 4.

Procedure:

1) Given a value of r, start from a random initial condition.

2) Iterate the map long enough to let transients decay (300
iterates are usually sufficient).

3) Compute a large number of iterations after that (say 10000).

4) Compute In|f’'(x,)|=In|r —2rxn| for the sequence of
values.

5) Divide the result by the number of terms (here 10000).

6) Repeat the procedure for another r value, until the desired
range is covered.



Example III

1-0

A stays negative for all

= 5.57. ol

A is zero at the period-doubling W
bifurcations. 1 o f H

A returns negative also for r > 7., { L{

in some windows (periodic -os}

windows).

The dips correspond to [ — / e
superstable cycles (4 = -e; not r

seen due to finite resolution).

Remark: since each cycle starts with multiplier f'(x) = 1and
progressively goes until f'(x) < —1, when it becomes unstable,
it must cross the point f '(x) = 0 (superstability).



Universality and experiments

The sine map

Tpi1 = TSINTE,

0 % |

Unimodal map (concave down, single maximum), like the
logistic map.



Universality and experiments

1.000000

Sine map -

0,125000

0,000000
0,700000 0,760000 0,820000 0,680000 0,940000 1,000000

1,000000

Logistic map o

0,125000

0,000000
2,800000 3,040000 3,280000 3.520000 3,760000 4.,000000




Universality and experiments

Qualitative dynamics of the two maps are identical: period-
doubling routes to chaos, followed by interspersed periodic
windows.

Remarkable: periodic windows occur in the same order and same
relative sizes.

Example: period-3 window is the largest and is preceded by two
large windows (period-5 and period-6).

Quantitative differences: period doubling bifurcations occur
later in the logistic map, and the periodic windows are narrower.



Qualitative universality: the
U-sequence

Theorem (Metropolis et al. 1973): for all unimodal maps x,,;=
rf(x,), where f(0) = f(1) =0, stable cycles occur in the same
order.

The universal sequence in which periodic attractors occur is
called the U-sequence. The algebraic form of f(x) is irrelevant,
only the overall shape matters.

U-sequence up to period 6: 1, 2, 2x2, 6,5, 3, 2x3,5, 6,4, 6,5, 6

The U-sequence has been found in experiments on the Belousov-
Zhabotinsky chemical reaction.

The U-sequence is qualitative: it does not say anything about the
size of the windows or where they start.



Quantitative universality

Feigenbaum’s discovery in 1975

Attempt to find a formula for r,, i.e. the r-value where a 2"-cycle
first appears.

Numerical checks were done with a handheld calculator.

First observation: the r, converge geometrically to the onset of
chaos r..: the size of consecutive windows shrinks by a constant

factor 4.669...



Quantitative universality

I spent part of a day trying to fit the convergence rate value, 4.669, to the
mathematical constants I knew. The task was fruitless, save for the fact that it
made the number memorable.

At this point I was reminded by Paul Stein that period-doubling isn’t a
unique property of the quadratic map but also occurs, for example, in
X, = rsinmx,. However my generating function theory rested heavily on the
fact that the nonlinearity was simply quadratic and not transcendental. Ac-
cordingly, my interest in the problem waned.

Perhaps a month later I decided to compute the r, ’s in the transcendental
case numerically. This problem was even slower to compute than the qua-
dratic one. Again, it became apparent that the r, ’s converged geometrically,
and altogether amazingly, the convergence rate was the same 4.669 that I re-
membered by virtue of my efforts to fit it.

The same constant appears for any unimodal map!



Quantitative universality

A, =r, -1, = distance between consecutive bifurcation values.

Ap
An—|—1

d, is the smallest distance

from the maximum of f, x,,,
to the nearest point in a 2"-
cycle. x|

d,
dn—|—1

>0 = 4.669..., forn — oc

independent of the form of f. )




Experimental tests

Convection experiment by Libchaber et al. ( 1982)

A box of liquid mercury is heated from below.

Control parameter: Rayleigh number R, dimensionless measure of
the externally imposed temperature gradient.

1) For R < R, heat is conducted
upward and the liquid
remains motionless. -

2) For R > R, convection occurs: g4 |
hot fluid rises on one side,
loses heat and falls on the b

other side, in cylindrical rolls. hot




Experimental tests

Convection experiment by Libchaber et al. ( 1982)

1) If R is just above the threshold, the rolls are straight and the
motion is steady, temperature is constant in time at each
position.

2) If R is higher, a new instability sets in: a wave propagates back
and forth along each roll, and the temperature at a given
position oscillates.

Libchaber et al. wanted to stabilize the roll structure by applying
a direct current (DC) magnetic field.

Mercury has a high electrical conductivity — strong tendency of
the rolls to align with the field and to remain spatially organized.



Experimental tests

Convection experiment by Libchaber et al. ( 1982)

Result: the temperature at one point
of the fluid undergoes a sequence of
period-doublings as the Rayleigh
number R increases.

By measuring the R-values at period-
doubling bifurcations, Libchaber et
al. estimated 6 =4.4 + 0.1. (Theoretical
0 = 4.699.

R
R

o MMM
UMMM

3.65 ||

1 1 1 1
0 50 100 150 200
T(s)




Experimental tests

Results from experiments in {fluid
convection and nonlinear electronic circuits

_ Number of period
Experiment doublings 5 Authors
Hydrodynamic
water - 4.3(8) Giglio et al. (1981)
mercury 4 44(1) Libchaber et al. (1982)
Electronic
diode 4 4.5 (6) Linsay (1981)
diode 5 43(1) Testa et al. (1982)
transistor 4 4.7 (3) Arecchi and Lisi (1982)
Josephson simul. 3 45(3) Yeh and Kao (1982)

Agreement between experiments and theory impressive, given
the difficulty (and relative errors) of these measurements



What do 1-D maps have to
do with science?

Questions:

1) How can the complexity of so many different systems, which
involve many degrees of freedom, be captured by a one-
dimensional map?

2) Howcome a discrete-time map works so well on continuous-
time systems?

Example: the Rossler system (1976)

r o= —y—2z
j = z+tay
z = b4 z(x—c

Simplest possible continuous-time system with a strange
attractor.



What do 1-D maps have to
do with science?

The Rossler system

Z

T+ ay
b+ z(x — ¢)

a=>b=0.2, variable ¢
1) For c = 2.5 the attractor is a
simple limit cycle

2) As c is raised to 3.5, the pra E—
limit cycle winds twice |
before closing, with an
approximately double Q ) @
period than the original one |

3) Somewherein25<c<35a _. s

period-doubling bifurcation ™ : e M
of cycles occurs (as in 1D
maps)



What do 1-D maps have to
do with science?

.. = U
The Rossler system  y = z+ay
a=>b=0.2, variable c ¢ = btzz—c
4) Another period-doubling " s | - ces

bifurcation creates the four-
loop cycle shown for ¢ =4 - @ - |
5) After an infinite sequence of

period-doublings, one .

reaches the strange attractor =~ ™ x -1
(¢=5)



What do 1-D maps have to
do with science

The Rossler system

Lorenz map: relation between
consecutive maxima x, and x4
of one coordinate along a
trajectory on the strange
attractor.

The points fall on a 1D curve —
there is a relation between x,
and x,,;

The curve resembles the logistic
map!

14

Xmax(N+ 1)

?

e —y—z

j = a+ay
2 = btzz—c
c=5

X max (N)

14



What do 1-D maps have to
do with science?

The Rossler system

14 - - : . -
Orbit diagram for each c¢: | !

position of maximum of x (y
or z) on the attractor
corresponding to c.

xl‘l‘lll

Strong similarity with the
orbit diagram of the logistic
map.

So, in this case, as for the
Lorenz equations,
Feigenbaum’s results hold.




What do 1-D maps have to
do with science?

For Rossler and Lorenz systems the map works because the
strange attractors are essentially two-dimensional (fractal
dimension slightly above 2).

In general Lorenz maps are not one-dimensional and
Feigenbaum’s theory does not apply.

Examples: tully turbulent fluids, fibrillating hearts.



Renormalization

Let f(x,7) denote a unimodal map (smooth, concave down, single
maximum) that undergoes a period-doubling route to chaos as r
increases and x,,, be the maximum of f. Let r;; denote the value of r
at which a 2"-cycle is born and R,, denote the value of r at which a
2"-cycle is superstable.

Example: f(z,r) =r — 27
Superstable FP:  x* = Ry — (7%)*
Superstability condition: A = (0f/0x)g=z+ =0

0f/0x =2x = 2" =0 FPis the maximumof f. Ry =0
At R, there is a 2-cycle. Superstability: A = (—2p)(—2q) =0

— point x = 0 is one of the points in the 2-cycle.



Renormalization

Point x = 0 is one of the points in the 2-cycle.

— period-2 condition f%(0,R;) =0 = R; — (R1)2 =0
= R =1 (2-cycle)

General rule: A superstable cycle of a unimodal map always
contains x,, as one of its points.

— Graphical way to locate R,,: Draw a horizontal line at height
Xm. Then R, occurs where this line intersects
the figtree (= Feigenbaum) portion of the orbit diagram.



Renormalization

n < Ry < Tpat

Numerical experiments:
The spacing between
successive R, shrinks by
the universal factor

6 =~ 4.669.

!

T

n R r Ry

2



Renormalization

The renormalization theory is based on the self-similarity of the
figtree: twigs look like the earlier branches, they are only scaled
down in both the x and r directions. Mathematically, compare f
with its second iterate f? at corresponding values of r and then
renormalize one map into the other.

-~

f(xRy) AR

(@) (b)



Renormalization

f(x! RO) f2 (x’ Rl) AR RN

: , 3 £

3 3 X
LN ;'.’&(W’.é ’ :

) rescale by : £
1terate -2 3

a =-2.5.. : £

o >

5 =

§ A

00y SO P OO R SO R OO0 N

X
Renormalization of f: f(z, Ro) ~ CVf2 (a, Rl)
x x
Continue: .~ (—7 Rl) ~a’ f? <—27 RQ)
Q o

f(x, Ro) =~ ™ f2" (%,Rn)



Renormalization
Feigenbaum found numerically that

lim a” F2") (i,Rn) — go(),
an

n—oo

where g (x) is a universal function with a superstable fixed point.
The limiting function exists only if « is chosen correctly,
a =—2.5029 ...

“Universal”: go(x) is independent of f. Compare the qualitative
similarity of orbit diagrams for different f in unimodal mapping.

Self-similarity — fractals; next time.



