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Lecture schedule

Tue 15 Jan: 1. Polynomials and integers
Tue 22 Jan: 2. The fast Fourier transform and fast multiplication
Tue 29 Jan: 3. �otient and remainder
Tue 5 Feb: 4. Batch evaluation and interpolation
Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data

Tue 19 Feb: Exam week — no lecture

Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs

Tue 5 Mar: Break — no lecture

Tue 12 Mar: 7. Finite fields
Tue 19 Mar: 8. Factoring polynomials over finite fields
Tue 26 Mar: 9. Factoring integers



2019 K A L E N T E R I 2019

Tammikuu Helmikuu Maaliskuu Huhtikuu Toukokuu Kesäkuu

1 Ti Uudenvuodenpäivä 1 Pe 1 Pe 1 Ma                              Vk 14 1 Ke Vappu 1 La

2 Ke 2 La 2 La 2 Ti 2 To 2 Su

3 To 3 Su 3 Su 3 Ke 3 Pe 3 Ma                              Vk 23

4 Pe 4 Ma                              Vk 06 4 Ma                              Vk 10 4 To 4 La 4 Ti

5 La 5 Ti 5 Ti Laskiainen 5 Pe 5 Su 5 Ke

6 Su Loppiainen 6 Ke 6 Ke 6 La 6 Ma                              Vk 19 6 To

7 Ma                              Vk 02 7 To 7 To 7 Su 7 Ti 7 Pe

8 Ti 8 Pe 8 Pe 8 Ma                              Vk 15 8 Ke 8 La

9 Ke 9 La 9 La 9 Ti 9 To 9 Su Helluntaipäivä

10 To 10 Su 10 Su 10 Ke 10 Pe 10 Ma                              Vk 24

11 Pe 11 Ma                              Vk 07 11 Ma                              Vk 11 11 To 11 La 11 Ti

12 La 12 Ti 12 Ti 12 Pe 12 Su Äitienpäivä 12 Ke

13 Su 13 Ke 13 Ke 13 La 13 Ma                              Vk 20 13 To

14 Ma                              Vk 03 14 To 14 To 14 Su Palmusunnuntai 14 Ti 14 Pe

15 Ti 15 Pe 15 Pe 15 Ma                              Vk 16 15 Ke 15 La

16 Ke 16 La 16 La 16 Ti 16 To 16 Su

17 To 17 Su 17 Su 17 Ke 17 Pe 17 Ma                              Vk 25

18 Pe 18 Ma                              Vk 08 18 Ma                              Vk 12 18 To 18 La 18 Ti

19 La 19 Ti 19 Ti 19 Pe Pitkäperjantai 19 Su Kaatuneiden muistopäivä 19 Ke

20 Su 20 Ke 20 Ke Kevätpäiväntasaus 20 La 20 Ma                              Vk 21 20 To

21 Ma                              Vk 04 21 To 21 To 21 Su Pääsiäispäivä 21 Ti 21 Pe Kesäpäivänseisaus

22 Ti 22 Pe 22 Pe 22 Ma 2. pääsiäispäivä 22 Ke 22 La Juhannus

23 Ke 23 La 23 La 23 Ti 23 To 23 Su

24 To 24 Su 24 Su 24 Ke 24 Pe 24 Ma                              Vk 26

25 Pe 25 Ma                              Vk 09 25 Ma                              Vk 13 25 To 25 La 25 Ti

26 La 26 Ti 26 Ti 26 Pe 26 Su 26 Ke

27 Su 27 Ke 27 Ke 27 La 27 Ma                              Vk 22 27 To

28 Ma                              Vk 05 28 To 28 To 28 Su 28 Ti 28 Pe

29 Ti 29 Pe 29 Ma                              Vk 18 29 Ke 29 La

30 Ke 30 La 30 Ti 30 To Helatorstai 30 Su

31 To 31 Su Kesäaika alkaa 31 Pe

Vuotuinen kalenteri Marcel Steinger, luotu  9.11.2018 calendar-yearly.com
Käy meillä -> www.calendar-yearly.com L = Lecture;                             hall T5,   Tue 12–14

Q = Q & A session;                   hall T5,   Thu 12–14
D = Problem set deadline;                      Sun  20:00
 T = Tutorial (model solutions);   hall T6,  Mon 16–18
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Recap of last week

I We look at yet further applications of the evaluation–interpolation duality and
randomization in algorithm design

I Randomized identity testing for polynomials and matrices (exercise)

I Delegating computation and proof systems

I Completeness and soundness of a proof system,
cost of preparing a proof, cost of verifying a proof

I Williams’s (2016) [30] probabilistic proof system for #CNFSAT

I Coping with errors in computation using error-correcting codes with multiplicative
structure (Reed–Solomon codes revisited)

I Proof systems that tolerate errors during proof preparation (Björklund & K. 2016) [3]

I An extension of Shamir’s secret sharing to delegating a computation to multiple
counterparties (delegating matrix multiplication, exercise)



Motivation for this week

I This week we switch topic somewhat compared with earlier weeks
(which focused on the near-linear-time toolbox and its applications)

I Namely, our goal is to develop our understanding of finite fields further

I We proceed from prime fields (finite fields of prime order, that is Zp for p prime) to
finite fields of prime power order, that is, Fq for q = pd with p prime and d ∈ Z≥1

I We develop some structure theory for finite fields to enable our subsequent study of
factoring algorithms for univariate polynomials with coe�icients in a finite field



Further motivation for this week and what follows

I A tantalizing case where the connection between polynomials and integers apparently
breaks down occurs with factoring

I Namely, it is known how to e�iciently factor a given univariate polynomial over a
finite field into its irreducible components, whereas no such algorithms are known for
factoring a given integer into its prime factors

I Indeed, the best known algorithms for factoring integers run in time that scales
moderately exponentially in the number of digits in the input



Finite fields

(von zur Gathen and Gerhard [11],
Sections 14.1–2, 25.3–4)



Finite fields

(Lidl and Niedderreiter [19])



Key content for Lecture 7

I Prime fields (the integers modulo a prime)

I Irreducible polynomial, existence of irreducible polynomials

I Fermat’s Li�le Theorem and its generalization (exercise)

I Finite fields of prime power order via irreducible polynomials (exercise)

I The characteristic of a ring; fields have either zero or prime characteristic

I Extension field, subfield, degree of an extension

I Algebraic and transcendental elements of a field extension;
the minimal polynomial of an algebraic element

I Multiplicative order of a nonzero element in a finite field;
the multiplicative group of a finite field is cyclic

I Formal derivative of a polynomial with coe�icients in a field (exercise)



(Finite) prime field

I Let p be a prime

I Zp = {0, 1, . . . , p − 1} equipped with addition and multiplication modulo p is a field

I Indeed, since p is prime, we have that gcd(a, p) = 1 for all a ∈ Zp \ {0}, and using the
extended Euclidean algorithm we can recover Bézout coe�icients s, t ∈ Z with
as + tp = 1; reducing s modulo p, we have that every a ∈ Zp \ {0} has a multiplicative
inverse



Finite fields beyond prime fields?

I But are there other finite fields besides the fields of prime order?



Irreducible polynomial

I Let F be a field (for example, take F = Zp for a prime p)

I We say that a polynomial f ∈ F [x] is irreducible if f < F and for any g, h ∈ F [x] with
f = gh we have g ∈ F or h ∈ F

I Let us also recall that we say that f ∈ F [x] is monic if its leading coe�icient is 1



Fermat’s li�le theorem

Theorem 14 (Fermat’s li�le theorem)
Let q be a prime power. For all a ∈ Fq it holds that aq = a and thus aq−1 = 1 whenever a , 0.
Furthermore, we have

xq − x =
∏
a∈Fq

(x − a) ∈ Fq[x]



Proof of Fermat’s li�le theorem

I Let us recall Lagrange’s theorem: for a finite group G and a subgroup H ≤ G it
holds that |H | divides |G |; in particular, for any g ∈ G we can consider the cyclic
subgroup generated by g in G to conclude that g |G | = 1G , where 1G is the identity of G

I The multiplicative group F×q = Fq \ {0} has |F×q | = q − 1

I Thus, for all nonzero a ∈ Fq \ {0} it holds that aq−1 = 1

I Consequently, for all a ∈ Fq we conclude that aq = a

I From aq = a it follows that x − a divides xq − x

I Since gcd(x − a, x − b) = 1 for all distinct a, b ∈ Fq, we have that
∏

a∈Fq (x − a) divides
xq − x

I Both
∏

a∈Fq (x − a) and xq − x are monic of degree q, so we must have∏
a∈Fq (x − a) = xq − x



Extended Fermat’s li�le theorem

I Fermat’s li�le theorem is the d = 1 special case of the following theorem

Theorem 15 (Extended Fermat’s li�le theorem)
Let q be a prime power and let d ∈ Z≥1. Then, xqd

− x ∈ Fq[x] is the product of all monic
irreducible polynomials in Fq[x] whose degree divides d

Proof.

Exercise �



Existence of irreducible polynomials

I The following lemma shows that irreducible polynomials exist for all prime powers
q ≥ 2 and n ≥ 2, apart possibly from the case q = 2 and n = 2, where it is easily
verified that x2 + x + 1 ∈ F2[x] is irreducible

Lemma 16 (Number of irreducible polynomials)

Let q be a prime power and n ∈ Z≥1. Then, the number I (n, q) of monic irreducible
polynomials of degree n in Fq[x] satisfies

qn − 2qn/2

n
≤ I (n, q) ≤

qn

n



Proof of Lemma 16 I

I Let fn be the product of all monic irreducible polynomials of degree n in Fq[x]

I Thus, deg fn = n · I (n, q)

I From Theorem 15 we thus have

xqn
− x =

∏
d |n

fd = fn

∏
d |n,d<n

fd (33)

I Taking degrees on both sides of (33), we have

qn = deg fn +
∑

d |n,d<n

deg fd

and thus we have the upper bound

qn ≥ deg fn = n · I (n, q) (34)



Proof of Lemma 16 II

I To set up the lower bound, use (34) and q ≥ 2 to observe that∑
d |n,d<n

deg fd ≤
∑

1≤d≤n/2

deg fd ≤
∑

1≤d≤n/2

qd <
qn/2+1 − 1

q − 1
≤ 2qn/2

I Thus,

n · I (n, q) = deg fn = qn −
∑

d |n,d<n

deg fd ≥ qn − 2qn/2 ,

which establishes the lower bound



Finite fields of prime power order

I Let p be a prime and let d ∈ Z≥1

I Let f ∈ Zp[x] be an irreducible monic polynomial of degree d

I Then, F = Zp[x]/〈f 〉 is a finite field with pd elements

I Indeed, we can identify the elements of F with the set of all polynomials of degree at
most d − 1 in Zp[x]

I Addition and multiplication in F are as in Zp[x], except that multiplication is reduced
by taking the polynomial remainder with respect to f so that the result has degree at
most d − 1

I Since f is irreducible, for every nonzero element a ∈ F we have gcd(a, f ) = 1;
accordingly, a has a multiplicative inverse a−1 = s in F , which can be computed by
running the extended Euclidean algorithm to obtain the Bézout coe�icients
s, t ∈ Zp[x] with as + � = 1



The characteristic of a ring

I Let R be a ring (commutative and nontrivial with 0R , 1R)

I For k ∈ Z≥0, let us write k · 1R for k · 1R = 1R + 1R + . . . + 1R, where we take the sum of
k copies of 1R, the multiplicative identity of R

I The characteristic of R is the minimum positive integer k such that k · 1R = 0R

I When no such positive k exists for R, we define the characteristic of R to be 0



The characteristic of a field

I The characteristic of a field F is either zero (in which case F is infinite) or prime

I Indeed, suppose that F has characteristic n with n = ab for a, b ∈ Z≥2

I Then a · 1F ∈ F is a zero divisor since by definition of characteristic we have
a · 1F , 0F , b · 1F , 0F , and (a · 1F ) (b · 1F ) = (ab) · 1F = 0F

I But this is a contradiction since a zero divisor cannot be a unit (exercise), and all
nonzero elements in a field are units

I Thus, we conclude that every finite field has prime characteristic



Extension field, subfield

I Let E and F be fields such that F ⊆ E

I We say that E is an extension field of F , and, conversely, that F is a subfield of E

I Example:
Let F be a finite field. The set P = {k · 1F : k ∈ Z≥0} is a subfield of F of order p, where
p is the (prime) characteristic of F



Finite extension, degree of an extension

I Let E be an extension field of a field F

I We may view E as a vector space over F

I If the dimension of E as a vector space over F is finite, we say that E is a finite
extension of F

I If E is a finite extension of F , we say that the degree of the extension is the dimension
of E as a vector space over F

I Since every finite field has prime characteristic and a subfield of prime order, every
finite field is a finite extension of a field of prime order

I Thus, for every finite field F there exists a prime p and an integer d ∈ Z≥1 such that
|F | = pd .



Algebraic and transcendental elements, algebraic extension

I Let E be an extension field of a field F

I We say that an element α ∈ E is algebraic over F if there exists a nonzero polynomial
f ∈ F [x] with coe�icients in F such that f (α ) = 0

I Elements that are not algebraic are transcendental

I If all elements of E are algebraic over F , we say that E is an algebraic extension of F

I All finite extensions are algebraic (exercise)



Minimal polynomial of an algebraic element

I Let E be an extension field of a field F

I Let α ∈ E be algebraic over F

I Let I = {f ∈ F [x] : f (α ) = 0} and observe that I is an ideal of F [x]

I Since F [x] is an Euclidean domain, every ideal of F [x] is generated by a single element

I The unique monic polynomial mα of least degree in I is called the minimal
polynomial of α

I mα is irreducible in F [x] (indeed, otherwise at least one of the nontrivial factors of mα
would have root α , contradicting the minimality of mα )

I The degree of α is deg mα



Existence of elements of maximum degree

I Let F be a finite field of order q = pd for p prime and d ∈ Z≥1

I Let P be a subfield of F of order p

I Then, F is an extension of degree d of P , and all elements of F are algebraic over P
with degree at most d

I There always exists an element α ∈ F that is algebraic of degree d over P (exercise)



Uniqueness and characterization

I Let F and F̃ be finite fields of order q = pd for p prime and d ∈ Z≥1

I Then, F and F̃ are isomorphic (details omi�ed)

I Thus, we have a complete characterization of finite fields – all finite fields arise by
extension of a prime-order field using an irreducible polynomial with coe�icients in
the prime-order field

I Up to isomorphism, only the degree of the irreducible polynomial ma�ers; all
irreducible polynomials of a particular degree give rise to the same field up to
isomorphism

I Thus for a prime power q it makes sense to write Fq for the finite field of order q

I Let us next analyze the structure of Fq in somewhat more detail ...



Multiplicative order of a nonzero element

I Let q be a prime power

I For a nonzero a ∈ Fq \ {0} let us write ord(a) for the least positive integer k such that
ak = 1

I We say that ord(a) is the multiplicative order of a

I By Fermat’s li�le theorem (Theorem 14) we have that ord(a) divides q − 1

I Indeed, suppose ord (a) does not divide q − 1, and let 1 ≤ r < ord(a) be the remainder
in the division of q − 1 by ord(a)

I Then we have ar = aq−1−((q−1) quo ord(a)) ord(a) = aq−1 (aord(a) )−(q−1) quo ord(a) = 1 · 1 = 1,
which contradicts the definition of ord(a) since 1 ≤ r < ord(a)



The multiplicative group is cyclic

Theorem 17 (Structure of the multiplicative group)

Let q be a prime power and let n = pe1
1 pe2

2 · · · p
ek
k divide q − 1 with p1, p2, . . . , pk distinct

primes and e1, e2, . . . , ek ∈ Z≥1. Then,

(i) for all a ∈ F×q we have ord(a) = n if and only if an = 1 and an/pj , 1 for all j = 1, 2, . . . , k

(ii) for all j = 1, 2, . . . , k, there exists an a ∈ F×q with ord(a) = p
ej

j

(iii) for all a, b ∈ F×q with ord(a) and ord(b) coprime, we have ord(ab) = ord(a) ord(b)

(iv) there exists an a ∈ F×q with ord(a) = q − 1

(v) the multiplicative group F×q is cyclic



Proof of Theorem 17 I

I To establish (i), we first observe that the “only if” direction is immediate from the
definition of ord(a)

I To show the “if” direction, let us assume that ord(a) , n

I If ord(a) > n, then we must have an , 1 by definition of ord(a)

I So let us assume that ord(a) < n

I Suppose that an = 1 holds (indeed, otherwise we are done)

I If ord(a) divides n, then since ord(a) < n there exists a j = 1, 2, . . . , k such that ord(a)
divides n/pj ; thus an/pj = 1

I If ord(a) does not divide n, then let 1 ≤ r < ord(a) be the remainder in the division of
n by ord(a); in this case we have ar = an−(n quo ord(a)) ord(a) = 1, which contradicts the
definition of ord(a) — this establishes (i)



Proof of Theorem 17 II

I To establish (ii), let us study the polynomial xn/pj − 1 = 0

I Since n/pj < q − 1, we know that there is at least one b ∈ F×q that is not a root of
xn/pj − 1 = 0; that is, bn/pj , 1

I Take a = b(q−1)/p
ej
j ; we claim that ord(a) = p

ej

j holds

I Indeed, let us verify (i) for a and n = p
ej

j ; we have

ap
ej
j =

(
b(q−1)/p

ej
j
)p

ej
j = bq−1 = 1

and

ap
ej−1

j =
(
b(q−1)/p

ej
j
)p

ej−1

j = b(q−1)/pj , 1

I To establish (iii), let us verify (i) for ab with n = ord(a) ord(b)



Proof of Theorem 17 III

I First, we have (ab)n = aord(a) ord(b)bord(a) ord(b) = 1ord(b)1ord(a) = 1

I Next, let p be a prime that divides n

I Since ord(a) and ord(b) are coprime, we have that p divides exactly one of ord(a) or
ord(b); by symmetry between a and b we can assume that p divides ord(a)

I We thus have that (ab)
ord(a)

p ord(b)
= a

ord(a)
p ord(b)b

ord(a)
p ord(b)

= a
ord(a)

p ord(b)

I Suppose we have a
ord(a)

p ord(b)
= 1

I Then, we must have that ord(a) divides ord(a)
p ord(b) or otherwise we contradict the

definition of ord(a); but we cannot have that ord(a) divides ord(a)
p ord(b) because

ord(a) and ord(b) are coprime

I Thus, we have a
ord(a)

p ord(b)
, 1 – this establishes (iii)



Proof of Theorem 17 IV

I To establish (iv), let n = pe1
1 pe2

2 · · · p
ek
k = q − 1 and use (ii) for each j = 1, 2, . . . , k to

obtain an aj ∈ F
×
q with ord(aj ) = p

ej

j

I Then, use (iii) to conclude that ord(a1a2 · · · ak ) = pe1
1 pe2

2 · · · p
ek
k = q − 1; thus, se�ing

a = a1a2 · · · ak establishes (iv)

I To establish (v), observe that the element a constructed in (iv) generates F×q as a cyclic
group since ord(a) = q − 1



Recap of Lecture 7

I Prime fields (the integers modulo a prime)

I Irreducible polynomial, existence of irreducible polynomials

I Fermat’s Li�le Theorem and its generalization (exercise)

I Finite fields of prime power order via irreducible polynomials (exercise)

I The characteristic of a ring; fields have either zero or prime characteristic

I Extension field, subfield, degree of an extension

I Algebraic and transcendental elements of a field extension;
the minimal polynomial of an algebraic element

I Multiplicative order of a nonzero element in a finite field;
the multiplicative group of a finite field is cyclic

I Formal derivative of a polynomial with coe�icients in a field (exercise)


