7. Finite fields

CS-E4500 Advanced Course on Algorithms

Spring 2019

Petteri Kaski

Department of Computer Science
Aalto University

Lecture schedule

Tue 15 Jan:	1. Polynomials and integers
Tue 22 Jan:	2. The fast Fourier transform and fast multiplication
Tue 29 Jan:	3. Quotient and remainder
Tue 5 Feb:	4. Batch evaluation and interpolation
Tue 12 Feb:	5. Extended Euclidean algorithm and interpolation from erroneous data
Tue 19 Feb:	Exam week - no lecture
Tue 27 Feb:	6. Identity testing and probabilistically checkable proofs
Tue 5 Mar:	Break - no lecture
Tue 12 Mar:	7. Finite fields
Tue 19 Mar:	8. Factoring polynomials over finite fields
Tue 26 Mar:	9. Factoring integers

CS-E4500 Advanced Course in Algorithms (5 ECTS, III-IV, Spring 2019)

L = Lecture;
$\mathrm{Q}=\mathrm{Q}$ \& A session
D = Problem set deadline;
hall T5, Tue 12-14
hall T5, Thu 12-14
T = Tutorial (model solutions); hall T6, Mon 16-18

Recap of last week

- We look at yet further applications of the evaluation-interpolation duality and randomization in algorithm design
- Randomized identity testing for polynomials and matrices (exercise)
- Delegating computation and proof systems
- Completeness and soundness of a proof system, cost of preparing a proof, cost of verifying a proof
- Williams's (2016) [30] probabilistic proof system for \#CNFSAT
- Coping with errors in computation using error-correcting codes with multiplicative structure (Reed-Solomon codes revisited)
- Proof systems that tolerate errors during proof preparation (Björklund \& K. 2016) [3]
- An extension of Shamir's secret sharing to delegating a computation to multiple counterparties (delegating matrix multiplication, exercise)

Motivation for this week

- This week we switch topic somewhat compared with earlier weeks (which focused on the near-linear-time toolbox and its applications)
- Namely, our goal is to develop our understanding of finite fields further
- We proceed from prime fields (finite fields of prime order, that is \mathbb{Z}_{p} for p prime) to finite fields of prime power order, that is, \mathbb{F}_{q} for $q=p^{d}$ with p prime and $d \in \mathbb{Z}_{\geq 1}$
- We develop some structure theory for finite fields to enable our subsequent study of factoring algorithms for univariate polynomials with coefficients in a finite field

Further motivation for this week and what follows

- A tantalizing case where the connection between polynomials and integers apparently breaks down occurs with factoring
- Namely, it is known how to efficiently factor a given univariate polynomial over a finite field into its irreducible components, whereas no such algorithms are known for factoring a given integer into its prime factors
- Indeed, the best known algorithms for factoring integers run in time that scales moderately exponentially in the number of digits in the input

Finite fields
(von zur Gathen and Gerhard [11],
Sections 14.1-2, 25.3-4)

Modern Computer Algebra
Third Edition
Joachim von zur Gathen and Jürgen Gerhard

Finite fields

(Lidl and Niedderreiter [19])

Key content for Lecture 7

- Prime fields (the integers modulo a prime)
- Irreducible polynomial, existence of irreducible polynomials
- Fermat's Little Theorem and its generalization (exercise)
- Finite fields of prime power order via irreducible polynomials (exercise)
- The characteristic of a ring; fields have either zero or prime characteristic
- Extension field, subfield, degree of an extension
- Algebraic and transcendental elements of a field extension; the minimal polynomial of an algebraic element
- Multiplicative order of a nonzero element in a finite field; the multiplicative group of a finite field is cyclic
- Formal derivative of a polynomial with coefficients in a field (exercise)

(Finite) prime field

- Let p be a prime
- $\mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$ equipped with addition and multiplication modulo p is a field
- Indeed, since p is prime, we have that $\operatorname{gcd}(a, p)=1$ for all $a \in \mathbb{Z}_{p} \backslash\{0\}$, and using the extended Euclidean algorithm we can recover Bézout coefficients $s, t \in \mathbb{Z}$ with as $+t p=1$; reducing s modulo p, we have that every $a \in \mathbb{Z}_{p} \backslash\{0\}$ has a multiplicative inverse

Finite fields beyond prime fields?

- But are there other finite fields besides the fields of prime order?

Irreducible polynomial

- Let F be a field (for example, take $F=\mathbb{Z}_{p}$ for a prime p)
- We say that a polynomial $f \in F[x]$ is irreducible if $f \notin F$ and for any $g, h \in F[x]$ with $f=g h$ we have $g \in F$ or $h \in F$
- Let us also recall that we say that $f \in F[x]$ is monic if its leading coefficient is 1

Fermat's little theorem

Theorem 14 (Fermat's little theorem)
Let q be a prime power. For all $a \in \mathbb{F}_{q}$ it holds that $a^{q}=a$ and thus $a^{q-1}=1$ whenever $a \neq 0$. Furthermore, we have

$$
x^{q}-x=\prod_{a \in \mathbb{F}_{q}}(x-a) \in \mathbb{F}_{q}[x]
$$

Proof of Fermat's little theorem

- Let us recall Lagrange's theorem: for a finite group G and a subgroup $H \leq G$ it holds that $|H|$ divides $|G|$; in particular, for any $g \in G$ we can consider the cyclic subgroup generated by g in G to conclude that $g^{|G|}=1_{G}$, where 1_{G} is the identity of G
- The multiplicative group $\mathbb{F}_{q}^{\times}=\mathbb{F}_{q} \backslash\{0\}$ has $\left|\mathbb{F}_{q}^{\times}\right|=q-1$
- Thus, for all nonzero $a \in \mathbb{F}_{q} \backslash\{0\}$ it holds that $a^{q-1}=1$
- Consequently, for all $a \in \mathbb{F}_{q}$ we conclude that $a^{q}=a$
- From $a^{q}=a$ it follows that $x-a$ divides $x^{q}-x$
- Since $\operatorname{gcd}(x-a, x-b)=1$ for all distinct $a, b \in \mathbb{F}_{q}$, we have that $\prod_{a \in \mathbb{F}_{q}}(x-a)$ divides $x^{q}-x$
- Both $\prod_{a \in \mathbb{F}_{q}}(x-a)$ and $x^{q}-x$ are monic of degree q, so we must have $\prod_{a \in \mathbb{F}_{q}}(x-a)=x^{q}-x$

Extended Fermat's little theorem

- Fermat's little theorem is the $d=1$ special case of the following theorem

Theorem 15 (Extended Fermat's little theorem)
Let q be a prime power and let $d \in \mathbb{Z}_{\geq 1}$. Then, $x^{q^{d}}-x \in \mathbb{F}_{q}[x]$ is the product of all monic irreducible polynomials in $\mathbb{F}_{q}[x]$ whose degree divides d

Proof.
Exercise

Existence of irreducible polynomials

- The following lemma shows that irreducible polynomials exist for all prime powers $q \geq 2$ and $n \geq 2$, apart possibly from the case $q=2$ and $n=2$, where it is easily verified that $x^{2}+x+1 \in \mathbb{F}_{2}[x]$ is irreducible

Lemma 16 (Number of irreducible polynomials)
Let q be a prime power and $n \in \mathbb{Z}_{\geq 1}$. Then, the number $I(n, q)$ of monic irreducible polynomials of degree n in $\mathbb{F}_{q}[x]$ satisfies

$$
\frac{q^{n}-2 q^{n / 2}}{n} \leq I(n, q) \leq \frac{q^{n}}{n}
$$

Proof of Lemma 16 I

- Let f_{n} be the product of all monic irreducible polynomials of degree n in $\mathbb{F}_{q}[x]$
- Thus, $\operatorname{deg} f_{n}=n \cdot I(n, q)$
- From Theorem 15 we thus have

$$
\begin{equation*}
x^{q^{n}}-x=\prod_{d \mid n} f_{d}=f_{n} \prod_{d \mid n, d<n} f_{d} \tag{33}
\end{equation*}
$$

- Taking degrees on both sides of (33), we have

$$
q^{n}=\operatorname{deg} f_{n}+\sum_{d \mid n, d<n} \operatorname{deg} f_{d}
$$

and thus we have the upper bound

$$
\begin{equation*}
q^{n} \geq \operatorname{deg} f_{n}=n \cdot I(n, q) \tag{34}
\end{equation*}
$$

Proof of Lemma 16 II

- To set up the lower bound, use (34) and $q \geq 2$ to observe that

$$
\sum_{d \mid n, d<n} \operatorname{deg} f_{d} \leq \sum_{1 \leq d \leq n / 2} \operatorname{deg} f_{d} \leq \sum_{1 \leq d \leq n / 2} q^{d}<\frac{q^{n / 2+1}-1}{q-1} \leq 2 q^{n / 2}
$$

- Thus,

$$
n \cdot I(n, q)=\operatorname{deg} f_{n}=q^{n}-\sum_{d \mid n, d<n} \operatorname{deg} f_{d} \geq q^{n}-2 q^{n / 2}
$$

which establishes the lower bound

- Let p be a prime and let $d \in \mathbb{Z}_{\geq 1}$
- Let $f \in \mathbb{Z}_{p}[x]$ be an irreducible monic polynomial of degree d
- Then, $F=\mathbb{Z}_{p}[x] /\langle f\rangle$ is a finite field with p^{d} elements
- Indeed, we can identify the elements of F with the set of all polynomials of degree at most $d-1$ in $\mathbb{Z}_{p}[x]$
- Addition and multiplication in F are as in $\mathbb{Z}_{p}[x]$, except that multiplication is reduced by taking the polynomial remainder with respect to f so that the result has degree at most d - 1
- Since f is irreducible, for every nonzero element $a \in F$ we have $\operatorname{gcd}(a, f)=1$; accordingly, a has a multiplicative inverse $a^{-1}=s$ in F, which can be computed by running the extended Euclidean algorithm to obtain the Bézout coefficients $s, t \in \mathbb{Z}_{p}[x]$ with as $+f t=1$

The characteristic of a ring

- Let R be a ring (commutative and nontrivial with $0_{R} \neq 1_{R}$)
- For $k \in \mathbb{Z}_{\geq 0}$, let us write $k \cdot 1_{R}$ for $k \cdot 1_{R}=1_{R}+1_{R}+\ldots+1_{R}$, where we take the sum of k copies of 1_{R}, the multiplicative identity of R
- The characteristic of R is the minimum positive integer k such that $k \cdot 1_{R}=0_{R}$
- When no such positive k exists for R, we define the characteristic of R to be 0

The characteristic of a field

- The characteristic of a field F is either zero (in which case F is infinite) or prime
- Indeed, suppose that F has characteristic n with $n=a b$ for $a, b \in \mathbb{Z}_{\geq 2}$
- Then $a \cdot 1_{F} \in F$ is a zero divisor since by definition of characteristic we have $a \cdot 1_{F} \neq 0_{F}, b \cdot 1_{F} \neq 0_{F}$, and $\left(a \cdot 1_{F}\right)\left(b \cdot 1_{F}\right)=(a b) \cdot 1_{F}=0_{F}$
- But this is a contradiction since a zero divisor cannot be a unit (exercise), and all nonzero elements in a field are units
- Thus, we conclude that every finite field has prime characteristic

Extension field, subfield

- Let E and F be fields such that $F \subseteq E$
- We say that E is an extension field of F, and, conversely, that F is a subfield of E
- Example:

Let F be a finite field. The set $P=\left\{k \cdot 1_{F}: k \in \mathbb{Z}_{\geq 0}\right\}$ is a subfield of F of order p, where p is the (prime) characteristic of F

Finite extension, degree of an extension

- Let E be an extension field of a field F
- We may view E as a vector space over F
- If the dimension of E as a vector space over F is finite, we say that E is a finite extension of F
- If E is a finite extension of F, we say that the degree of the extension is the dimension of E as a vector space over F
- Since every finite field has prime characteristic and a subfield of prime order, every finite field is a finite extension of a field of prime order
- Thus, for every finite field F there exists a prime p and an integer $d \in \mathbb{Z}_{\geq 1}$ such that $|F|=p^{d}$.

Algebraic and transcendental elements, algebraic extension

- Let E be an extension field of a field F
- We say that an element $\alpha \in E$ is algebraic over F if there exists a nonzero polynomial $f \in F[x]$ with coefficients in F such that $f(\alpha)=0$
- Elements that are not algebraic are transcendental
- If all elements of E are algebraic over F, we say that E is an algebraic extension of F
- All finite extensions are algebraic (exercise)

Minimal polynomial of an algebraic element

- Let E be an extension field of a field F
- Let $\alpha \in E$ be algebraic over F
- Let $I=\{f \in F[x]: f(\alpha)=0\}$ and observe that I is an ideal of $F[x]$
- Since $F[x]$ is an Euclidean domain, every ideal of $F[x]$ is generated by a single element
- The unique monic polynomial m_{α} of least degree in I is called the minimal polynomial of α
- m_{α} is irreducible in $F[x]$ (indeed, otherwise at least one of the nontrivial factors of m_{α} would have root α, contradicting the minimality of m_{α})
- The degree of α is $\operatorname{deg} m_{\alpha}$

Existence of elements of maximum degree

- Let F be a finite field of order $q=p^{d}$ for p prime and $d \in \mathbb{Z}_{\geq 1}$
- Let P be a subfield of F of order p
- Then, F is an extension of degree d of P, and all elements of F are algebraic over P with degree at most d
- There always exists an element $\alpha \in F$ that is algebraic of degree d over P (exercise)

Uniqueness and characterization

- Let F and \tilde{F} be finite fields of order $q=p^{d}$ for p prime and $d \in \mathbb{Z}_{\geq 1}$
- Then, F and \tilde{F} are isomorphic (details omitted)
- Thus, we have a complete characterization of finite fields - all finite fields arise by extension of a prime-order field using an irreducible polynomial with coefficients in the prime-order field
- Up to isomorphism, only the degree of the irreducible polynomial matters; all irreducible polynomials of a particular degree give rise to the same field up to isomorphism
- Thus for a prime power q it makes sense to write \mathbb{F}_{q} for the finite field of order q
- Let us next analyze the structure of \mathbb{F}_{q} in somewhat more detail ...

Multiplicative order of a nonzero element

- Let q be a prime power
- For a nonzero $a \in \mathbb{F}_{q} \backslash\{0\}$ let us write ord (a) for the least positive integer k such that $a^{k}=1$
- We say that $\operatorname{ord}(a)$ is the multiplicative order of a
- By Fermat's little theorem (Theorem 14) we have that ord(a) divides q - 1
- Indeed, suppose $\operatorname{ord}(a)$ does not divide $q-1$, and let $1 \leq r<\operatorname{ord}(a)$ be the remainder in the division of $q-1$ by $\operatorname{ord}(a)$
- Then we have $a^{r}=a^{q-1-((q-1) \text { quo ord }(a)) \operatorname{ord}(a)}=a^{q-1}\left(a^{\operatorname{ord}(a)}\right)^{-(q-1) \text { quo ord }(a)}=1 \cdot 1=1$, which contradicts the definition of ord (a) since $1 \leq r<\operatorname{ord}(a)$

The multiplicative group is cyclic

Theorem 17 (Structure of the multiplicative group)
Let q be a prime power and let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ divide $q-1$ with $p_{1}, p_{2}, \ldots, p_{k}$ distinct primes and $e_{1}, e_{2}, \ldots, e_{k} \in \mathbb{Z}_{\geq 1}$. Then,
(i) for all $a \in \mathbb{F}_{q}^{\times}$we have $\operatorname{ord}(a)=n$ if and only if $a^{n}=1$ and $a^{n / p_{j}} \neq 1$ for all $j=1,2, \ldots, k$
(ii) for all $j=1,2, \ldots, k$, there exists an $a \in \mathbb{F}_{q}^{\times}$with $\operatorname{ord}(a)=p_{j}^{e_{j}}$
(iii) for all $a, b \in \mathbb{F}_{q}^{\times}$with $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ coprime, we have $\operatorname{ord}(a b)=\operatorname{ord}(a) \operatorname{ord}(b)$
(iv) there exists an $a \in \mathbb{F}_{q}^{\times}$with $\operatorname{ord}(a)=q-1$
(v) the multiplicative group \mathbb{F}_{q}^{\times}is cyclic

Proof of Theorem 17 I

- To establish (i), we first observe that the "only if" direction is immediate from the definition of ord (a)
- To show the "if" direction, let us assume that $\operatorname{ord}(a) \neq n$
- If $\operatorname{ord}(a)>n$, then we must have $a^{n} \neq 1$ by definition of ord (a)
- So let us assume that $\operatorname{ord}(a)<n$
- Suppose that $a^{n}=1$ holds (indeed, otherwise we are done)
- If $\operatorname{ord}(a)$ divides n, then since $\operatorname{ord}(a)<n$ there exists a $j=1,2, \ldots, k$ such that $\operatorname{ord}(a)$ divides n / p_{j}; thus $a^{n / p_{j}}=1$
- If ord (a) does not divide n, then let $1 \leq r<\operatorname{ord}(a)$ be the remainder in the division of n by ord (a); in this case we have $a^{r}=a^{n-(n q u o o r d(a))} \operatorname{ord}(a)=1$, which contradicts the definition of ord (a) - this establishes (i)

Proof of Theorem 17 II

- To establish (ii), let us study the polynomial $x^{n / p_{j}}-1=0$
- Since $n / p_{j}<q-1$, we know that there is at least one $b \in \mathbb{F}_{q}^{\times}$that is not a root of $x^{n / p_{j}}-1=0$; that is, $b^{n / p_{j}} \neq 1$
- Take $a=b^{(q-1) / p_{j}^{e_{j}}}$; we claim that $\operatorname{ord}(a)=p_{j}^{e_{j}}$ holds
- Indeed, let us verify (i) for a and $n=p_{j}^{e_{j}}$; we have

$$
a^{p_{j}^{p_{j}}}=\left(b^{(q-1) / p_{j}^{e_{j}}}\right)^{p_{j}^{p_{j}}}=b^{q-1}=1
$$

and

$$
a^{p_{j}^{e_{j}-1}}=\left(b^{(q-1) / p_{j}^{e_{j}}}\right)^{p_{j}^{e_{j}-1}}=b^{(q-1) / p_{j}} \neq 1
$$

- To establish (iii), let us verify (i) for $a b$ with $n=\operatorname{ord}(a) \operatorname{ord}(b)$

Proof of Theorem 17 III

- First, we have $(a b)^{n}=a^{\operatorname{ord}(a) \operatorname{ord}(b)} b^{\operatorname{ord}(a) \operatorname{ord}(b)}=1^{\operatorname{ord}(b)} 1^{\operatorname{ord}(a)}=1$
- Next, let p be a prime that divides n
- Since $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ are coprime, we have that p divides exactly one of ord (a) or $\operatorname{ord}(b)$; by symmetry between a and b we can assume that p divides $\operatorname{ord}(a)$
- We thus have that $(a b)^{\frac{\operatorname{ord}(a)}{P} \operatorname{ord}(b)}=a^{\frac{\operatorname{ord}(a)}{P} \operatorname{ord}(b)} b^{\frac{\operatorname{ord}(a)}{P} \operatorname{ord}(b)}=a^{\operatorname{ord}(a)} \operatorname{prd}(b)$
- Suppose we have $a^{\frac{\operatorname{ord}(a)}{p} \operatorname{ord}(b)}=1$
- Then, we must have that $\operatorname{ord}(a)$ divides $\frac{\operatorname{ord}(a)}{p} \operatorname{ord}(b)$ or otherwise we contradict the definition of $\operatorname{ord}(a)$; but we cannot have that $\operatorname{ord}(a)$ divides $\frac{\operatorname{ord}(a)}{p} \operatorname{ord}(b)$ because $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ are coprime
- Thus, we have $a^{\frac{\operatorname{ord}(a)}{\rho} \operatorname{ord}(b)} \neq 1$ - this establishes (iii)

Proof of Theorem 17 IV

- To establish (iv), let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}=q-1$ and use (ii) for each $j=1,2, \ldots, k$ to obtain an $a_{j} \in \mathbb{F}_{q}^{\times}$with ord $\left(a_{j}\right)=p_{j}^{e_{j}}$
- Then, use (iii) to conclude that ord $\left(a_{1} a_{2} \cdots a_{k}\right)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}=q-1$; thus, setting $a=a_{1} a_{2} \cdots a_{k}$ establishes (iv)
- To establish (v), observe that the element a constructed in (iv) generates \mathbb{F}_{q}^{\times}as a cyclic group since $\operatorname{ord}(a)=q-1$

Recap of Lecture 7

- Prime fields (the integers modulo a prime)
- Irreducible polynomial, existence of irreducible polynomials
- Fermat's Little Theorem and its generalization (exercise)
- Finite fields of prime power order via irreducible polynomials (exercise)
- The characteristic of a ring; fields have either zero or prime characteristic
- Extension field, subfield, degree of an extension
- Algebraic and transcendental elements of a field extension; the minimal polynomial of an algebraic element
- Multiplicative order of a nonzero element in a finite field; the multiplicative group of a finite field is cyclic
- Formal derivative of a polynomial with coefficients in a field (exercise)

