Lecture 9: Gaussian and Particle Smoothers

Simo Särkkä

March 13, 2019

Simo Särkkä Lecture 9: Gaussian and Particle Smoothers

Learning Outcomes

- Summary of the Last Lecture
- 2 Extended and linearized smoothers
- Gaussian RTS Smoothing
- Particle Smoothing
- 1 Rao-Blackwellized Particle Smoothing

- Bayesian smoothing is used for computing estimates of state trajectories given the measurements on the whole trajectory.
- Rauch-Tung-Striebel (RTS) smoother is the closed form smoother for linear Gaussian models.
- RTSS is fixed-interval smoother, there are also fixed-point and fixed-lag smoothers.

Non-linear Gaussian state space model:

$$\begin{aligned} \mathbf{x}_k &= \mathbf{f}(\mathbf{x}_{k-1}) + \mathbf{q}_{k-1} \\ \mathbf{y}_k &= \mathbf{h}(\mathbf{x}_k) + \mathbf{r}_k, \end{aligned}$$

• We want to compute Gaussian approximations to the smoothing distributions:

$$p(\mathbf{x}_k | \mathbf{y}_{1:T}) \approx \mathsf{N}(\mathbf{x}_k | \mathbf{m}_k^s, \mathbf{P}_k^s).$$

Extended Rauch-Tung-Striebel Smoother Derivation

• The approximate joint distribution of **x**_k and **x**_{k+1} is

$$\boldsymbol{\rho}(\mathbf{x}_k, \mathbf{x}_{k+1} | \mathbf{y}_{1:k}) = \mathsf{N}\left(\begin{bmatrix}\mathbf{x}_k\\\mathbf{x}_{k+1}\end{bmatrix} \mid \mathbf{m}_1, \mathbf{P}_1\right),$$

where

$$\mathbf{m}_{1} = \begin{pmatrix} \mathbf{m}_{k} \\ \mathbf{f}(\mathbf{m}_{k}) \end{pmatrix}$$
$$\mathbf{P}_{1} = \begin{pmatrix} \mathbf{P}_{k} & \mathbf{P}_{k} \mathbf{F}_{x}^{T}(\mathbf{m}_{k}) \\ \mathbf{F}_{x}(\mathbf{m}_{k}) \mathbf{P}_{k} & \mathbf{F}_{x}(\mathbf{m}_{k}) \mathbf{P}_{k} \mathbf{F}_{x}^{T}(\mathbf{m}_{k}) + \mathbf{Q}_{k} \end{pmatrix}.$$

• The rest of the derivation is analogous to the linear RTS smoother.

Extended Rauch-Tung-Striebel Smoother

The equations for the extended RTS smoother are

$$\mathbf{m}_{k+1}^{-} = \mathbf{f}(\mathbf{m}_k)$$
$$\mathbf{P}_{k+1}^{-} = \mathbf{F}_{\mathbf{x}}(\mathbf{m}_k) \mathbf{P}_k \mathbf{F}_{\mathbf{x}}^T(\mathbf{m}_k) + \mathbf{Q}_k$$
$$\mathbf{G}_k = \mathbf{P}_k \mathbf{F}_{\mathbf{x}}^T(\mathbf{m}_k) [\mathbf{P}_{k+1}^{-}]^{-1}$$
$$\mathbf{m}_k^s = \mathbf{m}_k + \mathbf{G}_k [\mathbf{m}_{k+1}^s - \mathbf{m}_{k+1}^{-}]$$
$$\mathbf{P}_k^s = \mathbf{P}_k + \mathbf{G}_k [\mathbf{P}_{k+1}^s - \mathbf{P}_{k+1}^{-}] \mathbf{G}_k^T$$

where the matrix $\mathbf{F}_{\mathbf{x}}(\mathbf{m}_k)$ is the Jacobian matrix of $\mathbf{f}(\mathbf{x})$ evaluated at \mathbf{m}_k .

Statistically Linearized Rauch-Tung-Striebel Smoother Derivation

• With statistical linearization we get the approximation

$$p(\mathbf{x}_k, \mathbf{x}_{k+1} | \mathbf{y}_{1:k}) = \mathsf{N}\left(\begin{bmatrix}\mathbf{x}_k\\\mathbf{x}_{k+1}\end{bmatrix} | \mathbf{m}_1, \mathbf{P}_1\right),$$

where

$$\mathbf{m}_{1} = \begin{pmatrix} \mathbf{m}_{k} \\ \mathsf{E}[\mathbf{f}(\mathbf{x}_{k})] \end{pmatrix}$$
$$\mathbf{P}_{1} = \begin{pmatrix} \mathbf{P}_{k} & \mathsf{E}[\mathbf{f}(\mathbf{x}_{k})\,\delta\mathbf{x}_{k}^{T}]^{T} \\ \mathsf{E}[\mathbf{f}(\mathbf{x}_{k})\,\delta\mathbf{x}_{k}^{T}] & \mathsf{E}[\mathbf{f}(\mathbf{x}_{k})\,\delta\mathbf{x}_{k}^{T}] \mathbf{P}_{k}^{-1} & \mathsf{E}[\mathbf{f}(\mathbf{x}_{k})\,\delta\mathbf{x}_{k}^{T}]^{T} + \mathbf{Q}_{k} \end{pmatrix}.$$

- The expectations are taken with respect to filtering distribution of x_k.
- The derivation proceeds as with linear RTS smoother.

Statistically Linearized Rauch-Tung-Striebel Smoother

The equations for the statistically linearized RTS smoother are

$$\mathbf{m}_{k+1}^{-} = \mathsf{E}[\mathbf{f}(\mathbf{x}_{k})]$$
$$\mathbf{P}_{k+1}^{-} = \mathsf{E}[\mathbf{f}(\mathbf{x}_{k}) \,\delta \mathbf{x}_{k}^{T}] \,\mathbf{P}_{k}^{-1} \,\mathsf{E}[\mathbf{f}(\mathbf{x}_{k}) \,\delta \mathbf{x}_{k}^{T}]^{T} + \mathbf{Q}_{k}$$
$$\mathbf{G}_{k} = \mathsf{E}[\mathbf{f}(\mathbf{x}_{k}) \,\delta \mathbf{x}_{k}^{T}]^{T}[\mathbf{P}_{k+1}^{-}]^{-1}$$
$$\mathbf{m}_{k}^{s} = \mathbf{m}_{k} + \mathbf{G}_{k} \,[\mathbf{m}_{k+1}^{s} - \mathbf{m}_{k+1}^{-}]$$
$$\mathbf{P}_{k}^{s} = \mathbf{P}_{k} + \mathbf{G}_{k} \,[\mathbf{P}_{k+1}^{s} - \mathbf{P}_{k+1}^{-}] \,\mathbf{G}_{k}^{T},$$

where the expectations are taken with respect to the filtering distribution $\mathbf{x}_k \sim N(\mathbf{m}_k, \mathbf{P}_k)$.

Gaussian Rauch-Tung-Striebel Smoother Derivation

With Gaussian moment matching we get the approximation

$$p(\mathbf{x}_k, \mathbf{x}_{k+1} | \mathbf{y}_{1:k}) = \mathsf{N}\left(\begin{bmatrix}\mathbf{x}_k\\\mathbf{x}_{k+1}\end{bmatrix} \middle| \begin{bmatrix}\mathbf{m}_k\\\mathbf{m}_{k+1}\end{bmatrix}, \begin{bmatrix}\mathbf{P}_k & \mathbf{D}_{k+1}\\\mathbf{D}_{k+1}^T & \mathbf{P}_{k+1}^-\end{bmatrix}\right),$$

where

$$\begin{split} \mathbf{m}_{k+1}^{-} &= \int \mathbf{f}(\mathbf{x}_k) \operatorname{N}(\mathbf{x}_k \mid \mathbf{m}_k, \mathbf{P}_k) \, d\mathbf{x}_k \\ \mathbf{P}_{k+1}^{-} &= \int [\mathbf{f}(\mathbf{x}_k) - \mathbf{m}_{k+1}^{-}] \left[\mathbf{f}(\mathbf{x}_k) - \mathbf{m}_{k+1}^{-} \right]^T \\ &\times \operatorname{N}(\mathbf{x}_k \mid \mathbf{m}_k, \mathbf{P}_k) \, d\mathbf{x}_k + \mathbf{Q}_k \\ \mathbf{D}_{k+1} &= \int [\mathbf{x}_k - \mathbf{m}_k] \left[\mathbf{f}(\mathbf{x}_k) - \mathbf{m}_{k+1}^{-} \right]^T \operatorname{N}(\mathbf{x}_k \mid \mathbf{m}_k, \mathbf{P}_k) \, d\mathbf{x}_k. \end{split}$$

Gaussian Rauch-Tung-Striebel Smoother

The equations for the Gaussian RTS smoother are

$$\begin{split} \mathbf{m}_{k+1}^{-} &= \int \mathbf{f}(\mathbf{x}_{k}) \, \mathrm{N}(\mathbf{x}_{k} \, | \, \mathbf{m}_{k}, \mathbf{P}_{k}) \, d\mathbf{x}_{k} \\ \mathbf{P}_{k+1}^{-} &= \int [\mathbf{f}(\mathbf{x}_{k}) - \mathbf{m}_{k+1}^{-}] \, [\mathbf{f}(\mathbf{x}_{k}) - \mathbf{m}_{k+1}^{-}]^{T} \\ &\times \, \mathrm{N}(\mathbf{x}_{k} \, | \, \mathbf{m}_{k}, \mathbf{P}_{k}) \, d\mathbf{x}_{k} + \mathbf{Q}_{k} \\ \mathbf{D}_{k+1} &= \int [\mathbf{x}_{k} - \mathbf{m}_{k}] \, [\mathbf{f}(\mathbf{x}_{k}) - \mathbf{m}_{k+1}^{-}]^{T} \mathrm{N}(\mathbf{x}_{k} \, | \, \mathbf{m}_{k}, \mathbf{P}_{k}) \, d\mathbf{x}_{k} \\ \mathbf{G}_{k} &= \mathbf{D}_{k+1} \, [\mathbf{P}_{k+1}^{-}]^{-1} \\ \mathbf{m}_{k}^{s} &= \mathbf{m}_{k} + \mathbf{G}_{k} \, (\mathbf{m}_{k+1}^{s} - \mathbf{m}_{k+1}^{-}) \\ \mathbf{P}_{k}^{s} &= \mathbf{P}_{k} + \mathbf{G}_{k} \, (\mathbf{P}_{k+1}^{s} - \mathbf{P}_{k+1}^{-}) \, \mathbf{G}_{k}^{T}. \end{split}$$

Cubature Smoother Derivation [1/2]

• Recall the 3rd order spherical Gaussian integral rule:

$$\int \mathbf{g}(\mathbf{x}) \, \mathsf{N}(\mathbf{x} \mid \mathbf{m}, \mathbf{P}) \, d\mathbf{x}$$
$$\approx \frac{1}{2n} \sum_{i=1}^{2n} \mathbf{g}(\mathbf{m} + \sqrt{\mathbf{P}} \, \boldsymbol{\xi}^{(i)}).$$

where

$$\boldsymbol{\xi}^{(i)} = \left\{ \begin{array}{ll} \sqrt{n} \, \mathbf{e}_i &, \quad i = 1, \dots, n \\ -\sqrt{n} \, \mathbf{e}_{i-n} &, \quad i = n+1, \dots, 2n, \end{array} \right.$$

where \mathbf{e}_i denotes a unit vector to the direction of coordinate axis *i*.

Cubature Smoother Derivation [2/2]

• We get the approximation

$$p(\mathbf{x}_k, \mathbf{x}_{k+1} | \mathbf{y}_{1:k}) = \mathsf{N}\left(\begin{bmatrix}\mathbf{x}_k\\\mathbf{x}_{k+1}\end{bmatrix} \middle| \begin{bmatrix}\mathbf{m}_k\\\mathbf{m}_{k+1}\end{bmatrix}, \begin{bmatrix}\mathbf{P}_k & \mathbf{D}_{k+1}\\\mathbf{D}_{k+1}^T & \mathbf{P}_{k+1}^-\end{bmatrix}\right),$$

$$\begin{aligned} \mathcal{X}_{k}^{(i)} &= \mathbf{m}_{k} + \sqrt{\mathbf{P}_{k}} \, \boldsymbol{\xi}^{(i)} \\ \mathbf{m}_{k+1}^{-} &= \frac{1}{2n} \sum_{i=1}^{2n} \mathbf{f}(\mathcal{X}_{k}^{(i)}) \\ \mathbf{P}_{k+1}^{-} &= \frac{1}{2n} \sum_{i=1}^{2n} [\mathbf{f}(\mathcal{X}_{k}^{(i)}) - \mathbf{m}_{k+1}^{-}] \, [\mathbf{f}(\mathcal{X}_{k}^{(i)}) - \mathbf{m}_{k+1}^{-}]^{T} + \mathbf{Q}_{k} \\ \mathbf{D}_{k+1} &= \frac{1}{2n} \sum_{i=1}^{2n} [\mathcal{X}_{k}^{(i)} - \mathbf{m}_{k}] \, [\mathbf{f}(\mathcal{X}_{k}^{(i)}) - \mathbf{m}_{k+1}^{-}]^{T}. \end{aligned}$$

Cubature Rauch-Tung-Striebel Smoother [1/3]

Cubature Rauch-Tung-Striebel Smoother

Form the sigma points:

$$\mathcal{X}_k^{(i)} = \mathbf{m}_k + \sqrt{\mathbf{P}_k} \, \boldsymbol{\xi}^{(i)}, \qquad i = 1, \dots, 2n,$$

where the unit sigma points are defined as

$$\boldsymbol{\xi}^{(i)} = \begin{cases} \sqrt{n} \, \mathbf{e}_i &, \quad i = 1, \dots, n \\ -\sqrt{n} \, \mathbf{e}_{i-n} &, \quad i = n+1, \dots, 2n. \end{cases}$$

Propagate the sigma points through the dynamic model:

$$\hat{\mathcal{X}}_{k+1}^{(i)} = \mathbf{f}(\mathcal{X}_k^{(i)}), \quad i = 1, \dots, 2n.$$

Cubature Rauch-Tung-Striebel Smoother (cont.)

Compute the predicted mean m⁻_{k+1}, the predicted covariance P⁻_{k+1} and the cross-covariance D_{k+1}:

$$\mathbf{m}_{k+1}^{-} = \frac{1}{2n} \sum_{i=1}^{2n} \hat{\mathcal{X}}_{k+1}^{(i)}$$
$$\mathbf{P}_{k+1}^{-} = \frac{1}{2n} \sum_{i=1}^{2n} (\hat{\mathcal{X}}_{k+1}^{(i)} - \mathbf{m}_{k+1}^{-}) (\hat{\mathcal{X}}_{k+1}^{(i)} - \mathbf{m}_{k+1}^{-})^{T} + \mathbf{Q}_{k}$$
$$\mathbf{D}_{k+1} = \frac{1}{2n} \sum_{i=1}^{2n} (\mathcal{X}_{k}^{(i)} - \mathbf{m}_{k}) (\hat{\mathcal{X}}_{k+1}^{(i)} - \mathbf{m}_{k+1}^{-})^{T}.$$

Cubature Rauch-Tung-Striebel Smoother [3/3]

Cubature Rauch-Tung-Striebel Smoother (cont.)

Compute the gain G_k, mean m^s_k and covariance P^s_k as follows:

$$\mathbf{G}_{k} = \mathbf{D}_{k+1} [\mathbf{P}_{k+1}^{-}]^{-1} \\ \mathbf{m}_{k}^{s} = \mathbf{m}_{k} + \mathbf{G}_{k} (\mathbf{m}_{k+1}^{s} - \mathbf{m}_{k+1}^{-}) \\ \mathbf{P}_{k}^{s} = \mathbf{P}_{k} + \mathbf{G}_{k} (\mathbf{P}_{k+1}^{s} - \mathbf{P}_{k+1}^{-}) \mathbf{G}_{k}^{T}.$$

Unscented Rauch-Tung-Striebel Smoother [1/3]

Unscented Rauch-Tung-Striebel Smoother

Form the sigma points:

$$\begin{aligned} \mathcal{X}_{k}^{(0)} &= \mathbf{m}_{k}, \\ \mathcal{X}_{k}^{(i)} &= \mathbf{m}_{k} + \sqrt{n+\lambda} \left[\sqrt{\mathbf{P}_{k}} \right]_{i} \\ \mathcal{X}_{k}^{(i+n)} &= \mathbf{m}_{k} - \sqrt{n+\lambda} \left[\sqrt{\mathbf{P}_{k}} \right]_{i}, \quad i = 1, \dots, n. \end{aligned}$$

Propagate the sigma points through the dynamic model:

$$\hat{\mathcal{X}}_{k+1}^{(i)} = \mathbf{f}(\mathcal{X}_k^{(i)}), \quad i = 0, \dots, 2n.$$

Unscented Rauch-Tung-Striebel Smoother [2/3]

Unscented Rauch-Tung-Striebel Smoother (cont.)

Compute predicted mean, covariance and cross-covariance:

$$\mathbf{m}_{k+1}^{-} = \sum_{i=0}^{2n} W_i^{(m)} \hat{\mathcal{X}}_{k+1}^{(i)}$$
$$\mathbf{P}_{k+1}^{-} = \sum_{i=0}^{2n} W_i^{(c)} (\hat{\mathcal{X}}_{k+1}^{(i)} - \mathbf{m}_{k+1}^{-}) (\hat{\mathcal{X}}_{k+1}^{(i)} - \mathbf{m}_{k+1}^{-})^T + \mathbf{Q}_k$$
$$\mathbf{D}_{k+1} = \sum_{i=0}^{2n} W_i^{(c)} (\mathcal{X}_k^{(i)} - \mathbf{m}_k) (\hat{\mathcal{X}}_{k+1}^{(i)} - \mathbf{m}_{k+1}^{-})^T,$$

Unscented Rauch-Tung-Striebel Smoother [3/3]

Unscented Rauch-Tung-Striebel Smoother (cont.)

Compute gain smoothed mean and smoothed covariance: as follows:

$$\mathbf{G}_{k} = \mathbf{D}_{k+1} [\mathbf{P}_{k+1}^{-}]^{-1} \mathbf{m}_{k}^{s} = \mathbf{m}_{k} + \mathbf{G}_{k} (\mathbf{m}_{k+1}^{s} - \mathbf{m}_{k+1}^{-}) \mathbf{P}_{k}^{s} = \mathbf{P}_{k} + \mathbf{G}_{k} (\mathbf{P}_{k+1}^{s} - \mathbf{P}_{k+1}^{-}) \mathbf{G}_{k}^{T}.$$

- Gauss-Hermite RTS smoother is based on multidimensional Gauss-Hermite integration.
- Bayes-Hermite or Gaussian Process RTS smoother uses Gaussian process based quadrature (Bayes-Hermite).
- Monte Carlo integration based RTS smoothers.
- Central differences etc.

Particle Smoothing: Direct SIR

- The smoothing solution can be obtained from SIR by storing the whole state histories into the particles.
- Special care is needed on the resampling step.
- The smoothed distribution approximation is then of the form

$$\rho(\mathbf{x}_k | \mathbf{y}_{1:T}) \approx \sum_{i=1}^N w_T^{(i)} \delta(\mathbf{x}_k - \mathbf{x}_k^{(i)}),$$

where $\mathbf{x}_{k}^{(i)}$ is the *k*th component in $\mathbf{x}_{1:T}^{(i)}$.

• Unfortunately, the approximation is often quite degenerate.

Particle Smoothing: Backward Simulation [1/2]

- In backward-simulation particle smoother we simulate individual trajectories backwards.
- The simulated samples are drawn from the particle filter samples.
- Uses the previous filtering results in smoothing ⇒ less degenerate than the direct SIR smoother.
- Idea:
 - Assume now that we have already simulated $\tilde{\mathbf{x}}_{k+1:T}$ from the smoothing distribution.
 - From the Bayesian smoothing equations we get

$$p(\mathbf{x}_k \,|\, \tilde{\mathbf{x}}_{k+1}, \mathbf{y}_{1:T}) \propto \, p(\tilde{\mathbf{x}}_{k+1} \,|\, \mathbf{x}_k) \, p(\mathbf{x}_k \,|\, \mathbf{y}_{1:k}).$$

Particle Smoothing: Backward Simulation [2/2]

Backward simulation particle smoother

Given the weighted set of particles $\{w_k^{(i)}, \mathbf{x}_k^{(i)}\}$ representing the filtering distributions:

• Choose $\tilde{\mathbf{x}}_T = \mathbf{x}_T^{(i)}$ with probability $w_T^{(i)}$.

• For
$$k = T - 1, ..., 0$$
:

Compute new weights by

$$w_{k|k+1}^{(i)} \propto w_k^{(i)} p(ilde{\mathbf{x}}_{k+1} \,|\, \mathbf{x}_k^{(i)})$$

② Choose
$$\tilde{\mathbf{x}}_k = \mathbf{x}_k^{(i)}$$
 with probability $w_{k|k+1}^{(i)}$

Given *S* iterations resulting in $\tilde{\mathbf{x}}_{1:T}^{(j)}$ for j = 1, ..., S the smoothing distribution approximation is

$$p(\mathbf{x}_{1:T} | \mathbf{y}_{1:T}) \approx \frac{1}{S} \sum_{j} \delta(\mathbf{x}_{1:T} - \tilde{\mathbf{x}}_{1:T}^{(j)}).$$

Particle Smoothing: Reweighting [1/2]

• The reweighting particle smoother is based on computing new weights $w_{k+1|T}^{(i)}$ for the SIR filter particles such that:

$$p(\mathbf{x}_{k+1} | \mathbf{y}_{1:T}) \approx \sum_{i} w_{k+1|T}^{(i)} \, \delta(\mathbf{x}_{k+1} - \mathbf{x}_{k+1}^{(i)}).$$

Recall the smoothing equation

$$p(\mathbf{x}_k \mid \mathbf{y}_{1:T}) = p(\mathbf{x}_k \mid \mathbf{y}_{1:k}) \int \left[\frac{p(\mathbf{x}_{k+1} \mid \mathbf{x}_k) p(\mathbf{x}_{k+1} \mid \mathbf{y}_{1:T})}{p(\mathbf{x}_{k+1} \mid \mathbf{y}_{1:k})} \right] \mathrm{d}\mathbf{x}_{k+1}$$

 We use SIR filter samples to form approximations as follows:

$$\int \frac{p(\mathbf{x}_{k+1} \mid \mathbf{x}_k) \, p(\mathbf{x}_{k+1} \mid \mathbf{y}_{1:T})}{p(\mathbf{x}_{k+1} \mid \mathbf{y}_{1:k})} \, d\mathbf{x}_{k+1} \approx \sum_{i} w_{k+1|T}^{(i)} \frac{p(\mathbf{x}_{k+1}^{(i)} \mid \mathbf{x}_k)}{p(\mathbf{x}_{k+1}^{(i)} \mid \mathbf{y}_{1:k})}$$

$$p(\mathbf{x}_{k+1} \mid \mathbf{y}_{1:k}) \approx \sum_{j} w_k^{(j)} \, p(\mathbf{x}_{k+1} \mid \mathbf{x}_k^{(j)})$$

Reweighting Particle Smoother

Given the weighted set of particles $\{w_k^{(i)}, x_k^{(i)}\}$ representing the filtering distribution, we can form approximations to the marginal smoothing distributions as follows:

- Start by setting $w_{T|T}^{(i)} = w_T^{(i)}$ for i = 1, ..., n.
- For each k = T 1, ..., 0 do the following:
 - Compute new importance weights by

$$w_{k|T}^{(i)} \propto \sum_{j} w_{k+1|T}^{(j)} \frac{w_{k}^{(i)} \rho(\mathbf{x}_{k+1}^{(j)} | \mathbf{x}_{k}^{(i)})}{\left[\sum_{l} w_{k}^{(l)} \rho(\mathbf{x}_{k+1}^{(j)} | \mathbf{x}_{k}^{(l)})
ight]}.$$

At each step k the marginal smoothing distribution can be approximated as

$$p(\mathbf{x}_k | \mathbf{y}_{1:T}) \approx \sum_i w_{k|T}^{(i)} \, \delta(\mathbf{x}_k - \mathbf{x}_k^{(i)}).$$

Rao-Blackwellized Particle Smoothing: Direct SIR

• Recall e.g. the hierarchical the Rao-Blackwellized particle filtering model:

$$\begin{split} \mathbf{u}_k &\sim p(\mathbf{u}_k \,|\, \mathbf{u}_{k-1}) \\ \mathbf{x}_k &= \mathbf{A}(\mathbf{u}_{k-1}) \,\mathbf{x}_{k-1} + \mathbf{q}_k, \qquad \mathbf{q}_k \sim \mathsf{N}(\mathbf{0}, \mathbf{Q}) \\ \mathbf{y}_k &= \mathbf{H}(\mathbf{u}_k) \,\mathbf{x}_k + \mathbf{r}_k, \qquad \mathbf{r}_k \sim \mathsf{N}(\mathbf{0}, \mathbf{R}) \end{split}$$

- The direct SIR based Rao-Blackwellized particle smoother:
 - During filtering store the whole sampled state and Kalman filter histories to the particles.
 - At the smoothing step, apply Rauch-Tung-Striebel smoothers to each of the Kalman filter histories.
- The smoothing distribution approximation:

$$\rho(\mathbf{x}_k, \mathbf{u}_k | \mathbf{y}_{1:T}) \approx \sum_{i=1}^N w_T^{(i)} \, \delta(\mathbf{u}_k - \mathbf{u}_k^{(i)}) \, \mathrm{N}(\mathbf{x}_k | \mathbf{m}_k^{s,(i)}, \mathbf{P}_k^{s,(i)}).$$

• Also has the degeneracy problem.

Rao-Blackwellized Particle Smoothing: Other Types

- The RB backward-sampling smoother can be implemented in many ways:
 - Sample both the components backwards (leads to a pure sample representation).
 - Sample the latent variables only requires quite complicated backward Kalman filtering computations.
 - Kim's approximation: just use the plain backward-sampling to the latent variable marginal.
- The RB reweighting particle smoothing is not possible exactly, but can be approximated using the above ideas.

- Extended, statistically linearized and unscented RTS smoothers are the approximate nonlinear smoothers corresponding to EKF, SLF and UKF.
- Gaussian RTS smoothers: cubature RTS smoother, Gauss-Hermite RTS smoothers and various others
- Particle smoothing can be done by storing the whole state histories in SIR algorithm.
- Rao-Blackwellized particle smoother is a combination of particle smoothing and RTS smoothing.

Matlab Demo: Pendulum [1/2]

Pendulum model:

$$\begin{pmatrix} x_{k}^{1} \\ x_{k}^{2} \end{pmatrix} = \underbrace{\begin{pmatrix} x_{k-1}^{1} + x_{k-1}^{2} \Delta t \\ x_{k-1}^{2} - g \sin(x_{k-1}^{1}) \Delta t \end{pmatrix}}_{\mathbf{f}(\mathbf{x}_{k-1})} + \begin{pmatrix} 0 \\ q_{k-1} \end{pmatrix}$$

$$y_{k} = \underbrace{\sin(x_{k}^{1})}_{\mathbf{h}(\mathbf{x}_{k})} + r_{k},$$

• The required Jacobian matrix for ERTSS:

$$\mathbf{F}_{x}(\mathbf{x}) = \begin{pmatrix} 1 & \Delta t \\ -g \cos(x^{1}) \Delta t & 1 \end{pmatrix}$$

Matlab Demo: Pendulum [2/2]

The required expected value for SLRTSS is

$$\mathsf{E}[\mathbf{f}(\mathbf{x})] = \begin{pmatrix} m_1 + m_2 \,\Delta t \\ m_2 - g \,\sin(m_1) \,\exp(-P_{11}/2) \,\Delta t \end{pmatrix}$$

And the cross term:

$$\mathsf{E}[\mathbf{f}(\mathbf{x}) (\mathbf{x} - \mathbf{m})^T] = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix},$$

where

$$c_{11} = P_{11} + \Delta t P_{12}$$

$$c_{12} = P_{12} + \Delta t P_{22}$$

$$c_{21} = P_{12} - g \Delta t \cos(m_1) P_{11} \exp(-P_{11}/2)$$

$$c_{22} = P_{22} - g \Delta t \cos(m_1) P_{12} \exp(-P_{11}/2)$$