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Summary of the Last Lecture

Bayesian smoothing is used for computing estimates of
state trajectories given the measurements on the whole
trajectory.
Rauch-Tung-Striebel (RTS) smoother is the closed form
smoother for linear Gaussian models.
RTSS is fixed-interval smoother, there are also fixed-point
and fixed-lag smoothers.
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Non-Linear Smoothing Problem

Non-linear Gaussian state space model:

xk = f(xk−1) + qk−1

yk = h(xk ) + rk ,

We want to compute Gaussian approximations to the
smoothing distributions:

p(xk |y1:T ) ≈ N(xk |ms
k ,P

s
k ).
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Extended Rauch-Tung-Striebel Smoother Derivation

The approximate joint distribution of xk and xk+1 is

p(xk ,xk+1 |y1:k ) = N

([
xk

xk+1

] ∣∣∣m1,P1

)
,

where

m1 =

(
mk

f(mk )

)
P1 =

(
Pk Pk FT

x (mk )
Fx (mk ) Pk Fx (mk ) Pk FT

x (mk ) + Qk

)
.

The rest of the derivation is analogous to the linear RTS
smoother.
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Extended Rauch-Tung-Striebel Smoother

Extended Rauch-Tung-Striebel Smoother

The equations for the extended RTS smoother are

m−k+1 = f(mk )

P−k+1 = Fx(mk ) Pk FT
x (mk ) + Qk

Gk = Pk FT
x (mk ) [P−k+1]−1

ms
k = mk + Gk [ms

k+1 −m−k+1]

Ps
k = Pk + Gk [Ps

k+1 − P−k+1] GT
k ,

where the matrix Fx(mk ) is the Jacobian matrix of f(x)
evaluated at mk .
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Statistically Linearized Rauch-Tung-Striebel Smoother
Derivation

With statistical linearization we get the approximation

p(xk ,xk+1 |y1:k ) = N

([
xk

xk+1

] ∣∣∣m1,P1

)
,

where

m1 =

(
mk

E[f(xk )]

)
P1 =

(
Pk E[f(xk ) δxT

k ]T

E[f(xk ) δxT
k ] E[f(xk ) δxT

k ] P−1
k E[f(xk ) δxT

k ]T + Qk

)
.

The expectations are taken with respect to filtering
distribution of xk .
The derivation proceeds as with linear RTS smoother.
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Statistically Linearized Rauch-Tung-Striebel Smoother

Statistically Linearized Rauch-Tung-Striebel Smoother

The equations for the statistically linearized RTS smoother are

m−k+1 = E[f(xk )]

P−k+1 = E[f(xk ) δxT
k ] P−1

k E[f(xk ) δxT
k ]T + Qk

Gk = E[f(xk ) δxT
k ]T [P−k+1]−1

ms
k = mk + Gk [ms

k+1 −m−k+1]

Ps
k = Pk + Gk [Ps

k+1 − P−k+1] GT
k ,

where the expectations are taken with respect to the filtering
distribution xk ∼ N(mk ,Pk ).
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Gaussian Rauch-Tung-Striebel Smoother Derivation

With Gaussian moment matching we get the approximation

p(xk ,xk+1 |y1:k ) = N

([
xk

xk+1

] ∣∣∣∣∣
[

mk
m−k+1

]
,

[
Pk Dk+1

DT
k+1 P−k+1

])
,

where

m−k+1 =

∫
f(xk ) N(xk |mk ,Pk ) dxk

P−k+1 =

∫
[f(xk )−m−k+1] [f(xk )−m−k+1]T

× N(xk |mk ,Pk ) dxk + Qk

Dk+1 =

∫
[xk −mk ] [f(xk )−m−k+1]T N(xk |mk ,Pk ) dxk .
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Gaussian Rauch-Tung-Striebel Smoother

Gaussian Rauch-Tung-Striebel Smoother

The equations for the Gaussian RTS smoother are

m−k+1 =

∫
f(xk ) N(xk |mk ,Pk ) dxk

P−k+1 =

∫
[f(xk )−m−k+1] [f(xk )−m−k+1]T

× N(xk |mk ,Pk ) dxk + Qk

Dk+1 =

∫
[xk −mk ] [f(xk )−m−k+1]T N(xk |mk ,Pk ) dxk

Gk = Dk+1 [P−k+1]−1

ms
k = mk + Gk (ms

k+1 −m−k+1)

Ps
k = Pk + Gk (Ps

k+1 − P−k+1) GT
k .
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Cubature Smoother Derivation [1/2]

Recall the 3rd order spherical Gaussian integral rule:∫
g(x) N(x |m,P) dx

≈ 1
2n

2n∑
i=1

g(m +
√

P ξ(i)),

where

ξ(i) =

{ √
n ei , i = 1, . . . ,n
−
√

n ei−n , i = n + 1, . . . ,2n,

where ei denotes a unit vector to the direction of
coordinate axis i .
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Cubature Smoother Derivation [2/2]

We get the approximation

p(xk ,xk+1 |y1:k ) = N

([
xk

xk+1

] ∣∣∣∣∣
[

mk
m−k+1

]
,

[
Pk Dk+1

DT
k+1 P−k+1

])
,

where

X (i)
k = mk +

√
Pk ξ

(i)

m−k+1 =
1

2n

2n∑
i=1

f(X (i)
k )

P−k+1 =
1

2n

2n∑
i=1

[f(X (i)
k )−m−k+1] [f(X (i)

k )−m−k+1]T + Qk

Dk+1 =
1

2n

2n∑
i=1

[X (i)
k −mk ] [f(X (i)

k )−m−k+1]T .
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Cubature Rauch-Tung-Striebel Smoother [1/3]

Cubature Rauch-Tung-Striebel Smoother
1 Form the sigma points:

X (i)
k = mk +

√
Pk ξ

(i), i = 1, . . . ,2n,

where the unit sigma points are defined as

ξ(i) =

{ √
n ei , i = 1, . . . ,n
−
√

n ei−n , i = n + 1, . . . ,2n.

2 Propagate the sigma points through the dynamic model:

X̂ (i)
k+1 = f(X (i)

k ), i = 1, . . . ,2n.
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Cubature Rauch-Tung-Striebel Smoother [2/3]

Cubature Rauch-Tung-Striebel Smoother (cont.)
3 Compute the predicted mean m−k+1, the predicted

covariance P−k+1 and the cross-covariance Dk+1:

m−k+1 =
1

2n

2n∑
i=1

X̂ (i)
k+1

P−k+1 =
1

2n

2n∑
i=1

(X̂ (i)
k+1 −m−k+1) (X̂ (i)

k+1 −m−k+1)T + Qk

Dk+1 =
1

2n

2n∑
i=1

(X (i)
k −mk ) (X̂ (i)

k+1 −m−k+1)T .
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Cubature Rauch-Tung-Striebel Smoother [3/3]

Cubature Rauch-Tung-Striebel Smoother (cont.)
4 Compute the gain Gk , mean ms

k and covariance Ps
k as

follows:

Gk = Dk+1 [P−k+1]−1

ms
k = mk + Gk (ms

k+1 −m−k+1)

Ps
k = Pk + Gk (Ps

k+1 − P−k+1) GT
k .
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Unscented Rauch-Tung-Striebel Smoother [1/3]

Unscented Rauch-Tung-Striebel Smoother
1 Form the sigma points:

X (0)
k = mk ,

X (i)
k = mk +

√
n + λ

[√
Pk

]
i

X (i+n)
k = mk −

√
n + λ

[√
Pk

]
i
, i = 1, . . . ,n.

2 Propagate the sigma points through the dynamic model:

X̂ (i)
k+1 = f(X (i)

k ), i = 0, . . . ,2n.
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Unscented Rauch-Tung-Striebel Smoother [2/3]

Unscented Rauch-Tung-Striebel Smoother (cont.)
3 Compute predicted mean, covariance and

cross-covariance:

m−k+1 =
2n∑

i=0

W (m)
i X̂ (i)

k+1

P−k+1 =
2n∑

i=0

W (c)
i (X̂ (i)

k+1 −m−k+1) (X̂ (i)
k+1 −m−k+1)T + Qk

Dk+1 =
2n∑

i=0

W (c)
i (X (i)

k −mk ) (X̂ (i)
k+1 −m−k+1)T ,
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Unscented Rauch-Tung-Striebel Smoother [3/3]

Unscented Rauch-Tung-Striebel Smoother (cont.)
4 Compute gain smoothed mean and smoothed covariance:

as follows:

Gk = Dk+1 [P−k+1]−1

ms
k = mk + Gk (ms

k+1 −m−k+1)

Ps
k = Pk + Gk (Ps

k+1 − P−k+1) GT
k .
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Other Gaussian RTS Smoothers

Gauss-Hermite RTS smoother is based on
multidimensional Gauss-Hermite integration.
Bayes-Hermite or Gaussian Process RTS smoother uses
Gaussian process based quadrature (Bayes-Hermite).
Monte Carlo integration based RTS smoothers.
Central differences etc.
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Particle Smoothing: Direct SIR

The smoothing solution can be obtained from SIR by
storing the whole state histories into the particles.
Special care is needed on the resampling step.
The smoothed distribution approximation is then of the
form

p(xk |y1:T ) ≈
N∑

i=1

w (i)
T δ(xk − x(i)

k ),

where x(i)
k is the k th component in x(i)

1:T .
Unfortunately, the approximation is often quite degenerate.
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Particle Smoothing: Backward Simulation [1/2]

In backward-simulation particle smoother we simulate
individual trajectories backwards.
The simulated samples are drawn from the particle filter
samples.
Uses the previous filtering results in smoothing⇒ less
degenerate than the direct SIR smoother.
Idea:

Assume now that we have already simulated x̃k+1:T from
the smoothing distribution.
From the Bayesian smoothing equations we get

p(xk | x̃k+1,y1:T ) ∝ p(x̃k+1 |xk ) p(xk |y1:k ).
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Particle Smoothing: Backward Simulation [2/2]

Backward simulation particle smoother

Given the weighted set of particles {w (i)
k ,x(i)

k } representing the
filtering distributions:

Choose x̃T = x(i)
T with probability w (i)

T .
For k = T − 1, . . . ,0:

1 Compute new weights by

w (i)
k|k+1 ∝ w (i)

k p(x̃k+1 |x(i)
k )

2 Choose x̃k = x(i)
k with probability w (i)

k|k+1

Given S iterations resulting in x̃(j)
1:T for j = 1, . . . ,S the

smoothing distribution approximation is

p(x1:T |y1:T ) ≈ 1
S

∑
j

δ(x1:T − x̃(j)
1:T ).
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Particle Smoothing: Reweighting [1/2]

The reweighting particle smoother is based on computing
new weights w (i)

k+1|T for the SIR filter particles such that:

p(xk+1 |y1:T ) ≈
∑

i

w (i)
k+1|T δ(xk+1 − x(i)

k+1).

Recall the smoothing equation

p(xk |y1:T ) = p(xk |y1:k )

∫ [
p(xk+1 |xk ) p(xk+1 |y1:T )

p(xk+1 |y1:k )

]
dxk+1

We use SIR filter samples to form approximations as
follows:∫

p(xk+1 |xk ) p(xk+1 |y1:T )

p(xk+1 |y1:k )
dxk+1 ≈

∑
i

w (i)
k+1|T

p(x(i)
k+1 |xk )

p(x(i)
k+1 |y1:k )

p(xk+1 |y1:k ) ≈
∑

j

w (j)
k p(xk+1 |x

(j)
k )
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Particle Smoothing: Reweighting [2/2]

Reweighting Particle Smoother

Given the weighted set of particles {w (i)
k , x (i)

k } representing the
filtering distribution, we can form approximations to the
marginal smoothing distributions as follows:

Start by setting w (i)
T |T = w (i)

T for i = 1, . . . ,n.

For each k = T − 1, . . . ,0 do the following:
Compute new importance weights by

w (i)
k|T ∝

∑
j

w (j)
k+1|T

w (i)
k p(x(j)

k+1 |x
(i)
k )[∑

l w (l)
k p(x(j)

k+1 |x
(l)
k )
] .

At each step k the marginal smoothing distribution can be
approximated as

p(xk |y1:T ) ≈
∑

i

w (i)
k |T δ(xk − x(i)

k ).
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Rao-Blackwellized Particle Smoothing: Direct SIR

Recall e.g. the hierarchical the Rao-Blackwellized particle
filtering model:

uk ∼ p(uk |uk−1)

xk = A(uk−1) xk−1 + qk , qk ∼ N(0,Q)

yk = H(uk ) xk + rk , rk ∼ N(0,R)

The direct SIR based Rao-Blackwellized particle smoother:
1 During filtering store the whole sampled state and Kalman

filter histories to the particles.
2 At the smoothing step, apply Rauch-Tung-Striebel

smoothers to each of the Kalman filter histories.

The smoothing distribution approximation:

p(xk ,uk |y1:T ) ≈
N∑

i=1

w (i)
T δ(uk − u(i)

k ) N(xk |m
s,(i)
k ,Ps,(i)

k ).

Also has the degeneracy problem.
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Rao-Blackwellized Particle Smoothing: Other Types

The RB backward-sampling smoother can be implemented
in many ways:

Sample both the components backwards (leads to a pure
sample representation).
Sample the latent variables only – requires quite
complicated backward Kalman filtering computations.
Kim’s approximation: just use the plain backward-sampling
to the latent variable marginal.

The RB reweighting particle smoothing is not possible
exactly, but can be approximated using the above ideas.
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Summary

Extended, statistically linearized and unscented RTS
smoothers are the approximate nonlinear smoothers
corresponding to EKF, SLF and UKF.
Gaussian RTS smoothers: cubature RTS smoother,
Gauss-Hermite RTS smoothers and various others
Particle smoothing can be done by storing the whole state
histories in SIR algorithm.
Rao-Blackwellized particle smoother is a combination of
particle smoothing and RTS smoothing.
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Matlab Demo: Pendulum [1/2]

Pendulum model:(
x1

k
x2

k

)
=

(
x1

k−1 + x2
k−1 ∆t

x2
k−1 − g sin(x1

k−1) ∆t

)
︸ ︷︷ ︸

f(xk−1)

+

(
0

qk−1

)

yk = sin(x1
k )︸ ︷︷ ︸

h(xk)

+rk ,

The required Jacobian matrix for ERTSS:

Fx (x) =

(
1 ∆t

−g cos(x1) ∆t 1

)
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Matlab Demo: Pendulum [2/2]

The required expected value for SLRTSS is

E[f(x)] =

(
m1 + m2 ∆t

m2 − g sin(m1) exp(−P11/2) ∆t

)
And the cross term:

E[f(x) (x−m)T ] =

(
c11 c12
c21 c22

)
,

where

c11 = P11 + ∆t P12

c12 = P12 + ∆t P22

c21 = P12 − g ∆t cos(m1) P11 exp(−P11/2)

c22 = P22 − g ∆t cos(m1) P12 exp(−P11/2)
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