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Summary of the Last Lecture

@ Bayesian smoothing is used for computing estimates of
state trajectories given the measurements on the whole
trajectory.

@ Rauch-Tung-Striebel (RTS) smoother is the closed form
smoother for linear Gaussian models.

@ RTSS is fixed-interval smoother, there are also fixed-point
and fixed-lag smoothers.
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Non-Linear Smoothing Problem

@ Non-linear Gaussian state space model:

Xk = f(Xk—1) + Q1
Yk = h(Xg) +r,

@ We want to compute Gaussian approximations to the
smoothing distributions:

P(Xk | y1.7) = N(Xx | m§, Pg).
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Extended Rauch-Tung-Striebel Smoother Derivation

@ The approximate joint distribution of x, and X1 is

X
,D(Xk,Xk+1|V1:k)=N<[ k] ’m1,P1),

where

= (1m)

P, — ( Pk P« FJ(my) ) .
Fx(mg)Px  Fx(my) P Fl(my) + Qg

@ The rest of the derivation is analogous to the linear RTS
smoother.
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Extended Rauch-Tung-Striebel Smoother

Extended Rauch-Tung-Striebel Smoother

The equations for the extended RTS smoother are

m,,; = f(mg)

P, 1 = Fx(my) P« Fy(my) + Q,
G = Py Fy (M) [P 4]
mi = my + Gy [mg,; —m,_ ]
P} = Pk + Gk [P}, — P, 4] Gf,

where the matrix Fx(my) is the Jacobian matrix of f(x)
evaluated at my.
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Statistically Linearized Rauch-Tung-Striebel Smoother

Derivation

@ With statistical linearization we get the approximation
Xk
P(Xk, Xk+1 [ Y1:6) = N <[x ] ‘m1,P1> :
k+1

where

m = (E[f'?fkn)

p. — P« E[f(xx) ox]]"
T <E[f(xk)5x[] E[f(x«) 6x{] Py E[f(xk)(SX[]TJer) .

@ The expectations are taken with respect to filtering
distribution of x.

@ The derivation proceeds as with linear RTS smoother.
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Statistically Linearized Rauch-Tung-Striebel Smoother

Statistically Linearized Rauch-Tung-Striebel Smoother
The equations for the statistically linearized RTS smoother are

my = E[f(xx)]

Py 1 = E[f(xx) ox[] P, " E[f(x«) 0x{]7 + Qi
G = E[f(xk) 0%/ ] [P, 4]~
my = my + G [mg_; —my ]
Pf =Px+ Gk [Pf. 1 — P, 4]G/,

where the expectations are taken with respect to the filtering
distribution xx ~ N(my, Py).
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Gaussian Rauch-Tung-Striebel Smoother Derivation

@ With Gaussian moment matching we get the approximation
Xk my Px Dy

P(Xk; Xk+1|Y1:6) = N [ } [ — },[ - ;
{ il ) ( Xk-+1 m, DIZ+1 P

where
m, = /f(xk)N(xk | mg, Py) ax
o1 = 1060~ mic 180 - mi 17
X N(Xk | my, Pk) dxk + Qk

D1 = /[Xk —my] [f(xx) — m/?+1]TN(xk | M, Pic) dXc.
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Gaussian Rauch-Tung-Striebel Smoother

Gaussian Rauch-Tung-Striebel Smoother

The equations for the Gaussian RTS smoother are
m., = /f(xk)N(xk’mkvpk)dxk
ki1 = /[f(xk) —m ] [f(xk) — ml:+1]T
X N(Xk | my, Pk) axy + Qg
Dy.1 — /[Xk — My [f(x) — My, (] "N(Xk | My, P) dixi

Gk = Dy y1 [Pyq] ™
mi = my + G (Mg, ; —m_,)
Pi = Pk-l-Gk(Pi_H = P;JH)G;.
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Cubature Smoother Derivation [1/2]

@ Recall the 3rd order spherical Gaussian integral rule:
[ 90 N(x|m. Py ox
2n

1 .
~ 5p 2 9(m+ VPED),
i=1

where

5(,‘): ﬁe,- , I=1,....n
—v/ne;i_, , i=n+1,...,2n,

where e; denotes a unit vector to the direction of
coordinate axis i.
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Cubature Smoother Derivation [2/2]

@ We get the approximation

Xk my Pk Dk+1:|
Xy, X k) =N _ |, i
Pt e ([XHJ ' [mk+1} [DI7<-+1 Py

where

N = my + /Py é(i)

1o (i)

— I

M1 = 5, > (X
i=1

Pt = 37 Zlf ) —m D) —mi 17+ O

Dk+1:2 Z[X —my] [f(2) —mp 17
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Cubature Rauch-Tung-Striebel Smoother [1/3]

Cubature Rauch-Tung-Striebel Smoother
@ Form the sigma points:

=mg + /P €O, i=1,...,2n,

where the unit sigma points are defined as

5(,‘): ﬁe,- , I=1,....n
—vnei_, , i=n+1,....2n.

@ Propagate the sigma points through the dynamic model:

20 12Dy, i=1,...,2n
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Cubature Rauch-Tung-Striebel Smoother [2/3]

Cubature Rauch-Tung-Striebel Smoother (cont.)

© Compute the predicted mean m,_ ,, the predicted
covariance P,_ , and the cross-covariance Dy 1:

2n
- 1 (i)
My = 2n ZXkH
Z (R —m )@, —m )T +a
k+1 2n k+1 k+1 k+1 k+1 k

2n
1 : 5 (i _
Dis1 = g 2 (4 —mi) (£, —my )T
i=1
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Cubature Rauch-Tung-Striebel Smoother [3/3]

Cubature Rauch-Tung-Striebel Smoother (cont.)

© Compute the gain G, mean mj and covariance Pj as
follows:

G = Dyyt [Pycy] ™
mi = my + Gy (mi+1 - m/:+1)
P =Py + Gy (Pi+1 - PI?+1)G['
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Unscented Rauch-Tung-Striebel Smoother [1/3]

Unscented Rauch-Tung-Striebel Smoother

@ Form the sigma points:

X[EO) = My,
X = my+Vn+ A [\ﬁpk}i

X — my— VA [\/FK} i=1,....n
1

© Propagate the sigma points through the dynamic model:

2D, =Hx™), i=o0,...,2n.
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Unscented Rauch-Tung-Striebel Smoother [2/3]

Unscented Rauch-Tung-Striebel Smoother (cont.)

© Compute predicted mean, covariance and
cross-covariance:

me,= Z W; i Xlglm

P —ZWC) 15421 mk+1)()3/$l1 m;, )7+ Q
i=0

2n
Dirt = > W () —my) (£, —mi )7,

Simo Sarkka Lecture 9: Gaussian and Particle Smoothers



Unscented Rauch-Tung-Striebel Smoother [3/3]

Unscented Rauch-Tung-Striebel Smoother (cont.)

© Compute gain smoothed mean and smoothed covariance:
as follows:

G = Dyyt [Pycy] ™
mi = my + Gy (mi+1 - m/:+1)
P =Py + Gy (Pi+1 - PI?+1)G['
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Other Gaussian RTS Smoothers

@ Gauss-Hermite RTS smoother is based on
multidimensional Gauss-Hermite integration.

@ Bayes-Hermite or Gaussian Process RTS smoother uses
Gaussian process based quadrature (Bayes-Hermite).

@ Monte Carlo integration based RTS smoothers.
@ Central differences etc.
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Particle Smoothing: Direct SIR

@ The smoothing solution can be obtained from SIR by
storing the whole state histories into the particles.

@ Special care is needed on the resampling step.

@ The smoothed distribution approximation is then of the
form

P(Xk |Y1.7) = ZWTI)‘S X)),

where x(’) is the kth component in x(’)
@ Unfortunately, the approximation is often quite degenerate.
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Particle Smoothing: Backward Simulation [1/2]

@ In backward-simulation particle smoother we simulate
individual trajectories backwards.

@ The simulated samples are drawn from the particle filter
samples.

@ Uses the previous filtering results in smoothing = less
degenerate than the direct SIR smoother.

@ ldea:

e Assume now that we have already simulated X 1.7 from
the smoothing distribution.
e From the Bayesian smoothing equations we get

P(Xk | Xk11,Y1:7) < P(Xk41 | Xk) P(Xk | Y1:k)-
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Particle Smoothing: Backward Simulation [2/2]

Backward simulation particle smoother

Given the weighted set of particles {W(i), XE(/) } representing the
filtering distributions:

@ Choose %7 = x!/) with probability w!".
@ Fork=T-1,...,0:
@ Compute new weights by

Wilker o W p(Ricrr [ X))

@ Choose %, = x{ with probability w, ),

Given S iterations resulting in ig{)T forj=1,...,Sthe
smoothing distribution approximation is

1 L
pP(X1.7|Y1.7) ~ 3 25("17 _ ng:)T)_
J
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Particle Smoothing: Reweighting [1/2]

@ The reweighting particle smoother is based on computing

new weights ,QFHT for the SIR filter particles such that:
(i)

P(Xk+1 | Y1.7) = Z W/El_,)_1|7-5(xk+1 — X q):
i
@ Recall the smoothing equation

,O(Xk+1 ‘Xk)p(Xk_H ‘y1:T):|
. ) = ox _ dx
pP(Xk [y1.7) = P( ky1.k)/[ P(Xer1 | V1K) o

@ We use SIR filter samples to form approximations as
follows:

(1)
P(Xk11 | Xk) P(Xici1 | Y1:7) () P(Xi1 | Xk)
/ Xkt | Y1) Xkt Z k11T ()
P(Xk41 | Y1:k P(X 1 | Y1:k)

P(Xk+1 | Y1:6) = ZWk p(xki1|xP)
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Particle Smoothing: Reweighting [2/2]

Reweighting Particle Smoother

|

Given the weighted set of particles {W(’), Xy )} representing the
filtering distribution, we can form approximations to the
marginal smoothing distributions as follows:

@ Start by setting WT|T = W-(,-) fori=1,...,n.

@ Foreachk=T —1,...,0do the foIIowmg:
o Compute new importance weights by

wd
p(xk 1 |xk )
Wk|TO(Z k+1|T W) +(, :
|5 e 1))

At each step k the marginal smoothing distribution can be
approximated as

P(Xk |y1.7) = ZWk|T 5(xk —x\).
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Rao-Blackwellized Particle Smoothing: Direct SIR

@ Recall e.g. the hierarchical the Rao-Blackwellized particle
filtering model:

Uk ~ p(uk |ug_1)
Xk = A(Uk_1) Xk_1 + Ok, ax ~ N(0,Q)
Y = H(ug) Xk + rg, rx ~ N(0,R)
@ The direct SIR based Rao-Blackwellized particle smoother:

@ During filtering store the whole sampled state and Kalman
filter histories to the particles.

@ At the smoothing step, apply Rauch-Tung-Striebel
smoothers to each of the Kalman filter histories.

@ The smoothing distribution approximation:

N
P(Xk, Uk | Y1.7) = Z W(T') o(uk — u ) N(X | ms (1) pkv(’)).

@ Also has the degeneracy problem.
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Rao-Blackwellized Particle Smoothing: Other Types

@ The RB backward-sampling smoother can be implemented
in many ways:

e Sample both the components backwards (leads to a pure
sample representation).

e Sample the latent variables only — requires quite
complicated backward Kalman filtering computations.

e Kim’s approximation: just use the plain backward-sampling
to the latent variable marginal.

@ The RB reweighting particle smoothing is not possible
exactly, but can be approximated using the above ideas.
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@ Extended, statistically linearized and unscented RTS
smoothers are the approximate nonlinear smoothers
corresponding to EKF, SLF and UKF.

@ Gaussian RTS smoothers: cubature RTS smoother,
Gauss-Hermite RTS smoothers and various others

@ Particle smoothing can be done by storing the whole state
histories in SIR algorithm.

@ Rao-Blackwellized particle smoother is a combination of
particle smoothing and RTS smoothing.
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Matlab Demo: Pendulum [1/2]

@ Pendulum model:

<x,1) < Xy +x2_, At > ( 0 )
s =1, " +
Xic Xi_1 — g sin(Xg_q) At k1

f(Xk—1)
Vi = sin(x) +7k,
——
h(xk)

@ The required Jacobian matrix for ERTSS:

Fu(x) = <—g cos1(x1)At A1t>
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Matlab Demo: Pendulum [2/2]

@ The required expected value for SLRTSS is

my + mo At
A= <m2 —g sin(r1n1) exzp(—Pﬂ/Q) At)

@ And the cross term:

E[f(x) (x — m)7] = (C” "12) ,

Co1 Co2
where
Ci1 = P11+ At Py
Ciz = P2+ At P
Co1 = P12 — g At cos(my) Pyy exp(—P11/2)
Coo = P22 = gAt COS(m1) P12 exp(—P11/2)
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