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What is the radiance hitting my
Solution of the rendering equation




Today

* Intro to Monte Carlo integration

—Basics
—Importance Sampling
—Multiple Importance Sampling
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Recap: Reflectance Equation

» Relates incident differential irradiance from every
direction to outgoing radiance. How?
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Recap: Reflectance Equation
L(:E — V) — <; outgoing radiance

j> / fr(x,1 = v)L(x <+ 1) cosfdl
integral ’ /\ G /\

over

hemisphere BRDF incoming cosine of
radiance Incident

angle
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Recap: Rendering Equation

outgoing radiance =
reflected radiance +
emitted radiance

Lix —v) = / L(x <1 f.(x,]1 = v) cosfdl
: + F(x — V)

e Where does incident L come from?

—1It 1s the light reflected towards x from the surface point y in
direction / ==> must compute similar integral for every /!

e Recursive!

e ...and 1f x happens
to be on a light source,
we add its emitted
contribution £
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The Rendering Equation

* The unknown in this equation is the function L(x — v)
defined for all points x and all directions v

* Analytic (exact) solution i1s impossible 1n all cases of
practical interest

 Lots of ways to solve approximately

—Monte Carlo techniques use random samples for evaluating
the integrals (today!)

—Finite element methods (FEM) discretize the solution using
basis functions
« Radiosity, wavelets, precomputed radiance transfer, etc.

—Talked about radiosity last week
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http://www.maxwellrender.com

Integrals are Everywhere
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For Example...

* Pixel: antialiasing / / / / / L(z,y,t,u,v)dr dy dt dudv
* Light sources: Soft shadows

* Lens: Depth of field
* Time: Motion blur

 BRDF: glossy reflection
* Hemisphere: indirect lighting




Numerical Integration

» Compute integral of arbitrary function

—e.g. integral over area light source, over hemisphere, etc.

» Continuous problem = we need to discretize

+ Analytic integration never works because of visibility and
other nasty details
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Numerical Integration

* You know trapezoid, Simpson’s rule, etc.
from your first engineering math class

+ Distribute N samples (evenly) in the domain

- Evaluate function at sample points

-Weigh samples appropriately (for 1D: 1,4, 2,4, ...,2,4, 1)

CS-E5520 Spring 2019 — Lehtinen

12


http://en.wikipedia.org/wiki/Simpson%2527s_rule

Why is This Bad?

* You know trapezoid, Simpson’s rule, etc.
from your first engineering math class

+ Distribute N samples (evenly) in the domain

- Evaluate function at sample points

-Weigh samples appropriately (for 1D: 1,4, 2,4, ...,2,4, 1)

CS-E5520 Spring 2019 — Lehtinen
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Why is This Bad?

» Error scales with (some power of) grid spacing 4

AN T

h
= —
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Why is This Bad?

» Error scales with (some power of) grid spacing 4

* Bad things happen when dimension grows..

L And our integrals are often high-dimensional

* Eg. motion blurred soft shadows through finite aperture = 7D!

AN T

K=> —_—
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Constant spacing, 1D
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2D (yikes!)

17
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Monte Carlo Integration

* Monte Carlo integration: use random samples and
compute average

+We don’t keep track of spacing between samples
+But we hope 1t will be 1/N on average
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Naive Monte Carlo Integration

[ s@ae = S pa
IS 1=1

* S 1s the integration domain
—VoI(S) 1s the volume (measure) of S (1D: length, 2D: area, ...)

* {Xi} are independent uniform random points in S

» That’s right: integral 1s average of f multiplied by size
of domain

— We estimate the average by random sampling
—E.g. for hemisphere Vol(S) = 2p1

CS-E5520 Spring 2019 — Lehtinen
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Naive Monte Carlo Computation of &

» Take a square

» Take a random point (X,y) in the square
 Test 1f 1t 1s 1insi1de the Y4 disc (x2+y2< 1)
e The probability 1s x /4

Integral of the function that
IS one Inside the circle, zero
outside

CS-E5520 Spring 2019 — Lehtinen
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Naive Monte Carlo Computation of &

e The probability 1s 7 /4
 Count the inside ratio n = # inside / total # trials
e T=n *4

* The error depends on the number or trials

Demo

def piMC(n):
success = 0
for 1 in range(n):
x=random.random( )
y=random.random( )
if x*x+y*y<l: success = success+l
return 4.0*float(success)/float(n)
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Matlab Demo

Pl pprox 3.080000

36
1 ~ ’__ )
O . O = 5 OQ.
O ':l'_') 34 B
0.8 o o o %
o o :
o © Qo o _—
©9o o < 2 3.2t
o S VT
o o0 o)
O o © O
© 00 © o 5
o O 3
O O
04} o b a5
O
O 5 O o O
® o s 2R < oy
0.2 = OOO o OO i
O O
o P oS
O o O . O
ol Q-0 o P 26+
0 0.2 04 0.6 0.8 1 1000 2000 3000 4000 5000 6000 7FO0O0OO 8000 9000 10000

CS-E5520 Spring 2019 — Lehtinen



Why Not Use Simpson Integration?

* You’re right, Monte Carlo 1s not very efficient for
computing 7

* When 1s 1t usetul?

—High dimensions: Asymptotic convergence 1s independent of
dimension!

—For d dimensions, Simpson requires Nd domains (!!!)

—Similar explosion for other quadratures (Gaussian, etc.)

—You saw this visually a little earlier
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Random Variables Recap

* You should know this from todari :)

—Gentle reminder follows..

CS-E5520 Spring 2019 — Lehtinen
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Random Variables Recap: PDF

* Distribution of random points

determined by the

Probability Distribution Function (PDF) p(x)

—Uniform distribution means: each point in the domain equally
likely to be picked: p(x) = 1/Vol(S)

—Why so? PDF must integrate to -

| over S

— (Uniform distribution 1s usually

pretty bad for integration)
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Recap: Expected Value (=Average)

» Expected value of a function g under probability
distribution p 1s defined as

E{g(x)}, = / 9(2) pl(z) da

S

* Because p integrates to 1 like a proper PDF should, this
1s just a weighted average of g over §

—When p 1s uniform, this reduces to the usual average

1

CS-E5520 Spring 2019 — Lehtinen 27




Random Variables Recap: Variance

 Variance 1s the average (expected) squared deviation
from the mean p = F{X},

Var(X) = E{(X — n)"},

» Standard deviation 1s square root of variance

* Note that the PDF p 1s included 1n the definition!

— Also 1n the computation of the mean

CS-E5520 Spring 2019 — Lehtinen
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http://en.wikipedia.org/wiki/Variance

OK, Down to Business Then!

CS-E5520 Spring 2019 — Lehtinen
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Non-Naive MC Integration

 Let’s drop the uniform PDF requirement

f()
/f ) da = (@) p(z)dx

* Important! p(x) must be nonzero where {(x) 1s
nonzero!

CS-E5520 Spring 2019 — Lehtinen
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Non-Naive MC Integration

 Let’s drop the uniform PDF requirement

/f ) dz = f( ) () da

CS-E5520 Spring 2019 — Lehtinen
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Non-Naive MC Integration

 Let’s drop the uniform PDF requirement

fro- 45
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Note that the
uniform case
reduces to the
same because

p(x)==1/Vol(S)
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‘Importance Sampling”

CS-E5520 Spring 2019 — Lehtinen
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‘Importance Sampling”

Sample from non-uniform PDF

Intuitive justification: Sample more in places where there are
likely to be larger contributions to the integral

CS-E5520 Spring 2019 — Lehtinen
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Example: Glossy Reflection

Slide courtesy of Jason Lawrence

* Integral over hemisphere
 BRDF times cosine times incoming light
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http://www.cs.virginia.edu/~jdl/

Sampling a BRDF

CS-E5520 Spring 2019 — Lehtinen

Slide courtesy of Jason Lawrence

5 Samples/Pixel
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Sampling a BRDF

5 Samples/Pixel, no importance sampling

Slide modified from Jason Lawrence’s




Sampling a BRDF

5 Samples/Pixel, with importance sampling

Slide modified from Jason Lawrence’s

(1)0 )
U(w,) /é

(1)0
P(o,) /




Sampling a BRDF

Slide courtesy of Jason Lawrence

25 Samples/Pixel

CS-E5520 Spring 2019 — Lehtinen
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Sampling a BRDF

Slide courtesy of Jason Lawrence

75 Samples/Pixel

CS-E5520 Spring 2019 — Lehtinen
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Sampling a BRDF

Slide modified from Jason Lawrence’s

75 Samples/Pixel, no importance sampling




Sampling a BRDF

Slide modified from Jason Lawrence’s

75 Samples/Pixel, with importance sampling




Monte Carlo Integration Error

o fw)

* Clearly this 1s not the right answer!

CS-E5520 Spring 2019 — Lehtinen
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Monte Carlo Integration Error
def i f(xz) det
/f N ZL: p(xi)

* Clearly this 1s not the right answer!

|
~>

—The value I of the estimate is a random variable itself
— Error manifests itself as variance, which shows up as noise

CS-E5520 Spring 2019 — Lehtinen 44


http://en.wikipedia.org/wiki/Variance

Monte Carlo Integration Error
def i f(xz) det
/f N z; p(xi)

* Clearly this 1s not the right answer!

|
~>

—The value I of the estimate is a random variable itself
— Error manifests itself as variance, which shows up as noise

* For MC, variance 1s proportional to 1/N and the
variance of f/p
— Avg. error 1s proportional 1/sqrt(IN)
—To halve error, need 4x samples (!!)
* Remember: avg. error cs. 84356 SY6 bo1o - Lehtinen
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http://en.wikipedia.org/wiki/Variance

Variance of the MC Result

e “Variance of f proportional to 1/N and Var(f/p)”

Vol(5)* Vol(5)*

Var(I) =

Var(f/p) =

B~ B /o)),

==>
If //p 1s constant, there 1s no noise (clearly!)

—Corollary: If we use a good PDF, we will have less noise...
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What's a Good PDF?

 What if p mimics f perfectly? I.e., let’s take

W
fs f(z)dx

p(x)

» This has the same shape as f, but normalized so it
integrates to 1

—Note: need non-negative f for this to work

CS-E5520 Spring 2019 — Lehtinen
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What's a Good PDF?

 What if p mimics f perfectly? I.e., let’s take

W
fs f(z)dx

p(x)

» This has the same shape as f, but normalized so it
integrates to 1

—Note: need non-negative f for this to work

* But now {/p IS constant and we have no noise at all!

—Alas: to come up with this p, we need the integral of /, which
1s what we are trying to compute 1n the first place :)

CS-E5520 Spring 2019 — Lehtinen

48



What's a Good PDF?

* One that mimics the shape of 7, but 1s easy to sample
from

* Because p 1s 1n the denominator, should try to avoid
cases where p 1s low and f1s high

—These samples will increase variance a LOT

CS-E5520 Spring 2019 — Lehtinen
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Example of Importance Sampling

This is precisely the difference between sampling directions
vs. sampling light source area for direct illumination (you saw this earlier)

Hemispherical Solid Angle Light Source Area
4 eye rays per pixel 4 eye rays per pixel
100  rays 100 shadow rays
CS348B Lecture 8 Pat Hanrahan, Spring 2011
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runes.nu, rendered using Maxwell




Importance Sampling Example

 Remember: computation of irradiance means
integrating incident radiance and cosine on hemisphere:

E = / Lin(w) cosfdw
Q

* We usually can’t make assumptions about the lighting,
but we do know the cosine weighs the samples near the
horizon down => makes sense to importance sample
with p(w) = cosf/m
— Why p1? Remember that cos ) integrates to pi over

hemisphere, so to get a proper PDF must normalize!
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But How? You're Doing This Already

* In your assignment, you’re lifting points from the unit
disk onto the unit hemisphere 1.€., you’re mapping

X=xY=y2 = /1 — 22 — 42 P=(X,Y,7)

 If we have unit density of points on the disk, 1.e.,
p(X,y)=1/p1, what’s the density of points on the
hemisphere? A do

Q>

.....................
.....
-'..
P

* Instance of “transtform sampling”/ .-

CS-E5520 Spring 2019 — Lehtinen 53



But How? You're Doing This Already

X=2Y=y/Z =\1-22—-y2 P=(X,Y,7)

* Let’s take the infinitesimal square d4 = dx*dy and map
it to the hemisphere
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But How? You're Doing This Already

X=uzY=y/2 = /1 — a2 — 2

* Let’s take the infinitesimal square d4 = dx*dy and map
it to the hemisphere; then, remembering the properties
of the cross product, compute its area by

H(QX oY 82) y (8X oY 07
Oxr  Ox’ Ox Oy’ Oy’ Oy

|7 yl°
= | -1
?+y*—1 x?+y* -1

CS-E5520 Spring 2019 — Lehtinen 55

)|




But...

El I
$2+y2 1 | x2+y2—1 '
z2 |y |Z2 _ 1
ZP T zZR Tz |2

CS-E5520 Spring 2019 — Lehtinen
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» In polar coordinates, z = cos

* So: a small area on disk gets mapped to one whose area
is divided by cos 0; density is inversely propotional,
i.e., p(w) = cosf/m =>samples are cosine-weighted!s

Remember: original density  ©s-E5520 Spring 2019 — Lehtinen
on disk is 1/pi!



MC Irradiance w/ Cosine Importance

* We’ll use the lifting to turn uniform points on the disk
onto cosine-distributed points on hemisphere, then

1 o= Lin(w;)
F= | L,lw)cosOdw ~ — —~" 7 cos b,
/Q () NZ p(w;)

1=1

but p(w) = cosf/m, so

Irradiance is just an average
of the incoming radiance
when the samples are drawn

under the cosine distribution s
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How to Draw Samples on the Disk?

* You’re doing rejection sampling 1n your assignment

—I.e., draw uniformly from a larger area (square), reject samples

not in the domain (disk)

» Better way 1s to sample the disk uniformly and
continuously map the square to disk

— Better than rejection sampling, don’t need to test and

potentially regenerate

—Also easily allows
stratification

—See Shirley & Chiu 97

..............

..............

.............

..............

..............

..............

..............

..............
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http://en.wikipedia.org/wiki/Rejection_sampling
http://www.tml.tkk.fi/~jaakko/T111-5310/K2013/JGT-97.pdf

Pseudocode

Vec3f result;

for i=1:n
// can implement through rejection or Shirley&Chiu
Vec2f disk = uniformPointUnitDisk();
// 1lift disk point to hemisphere..
Vec3f Win( disk, sqgrt(l.0f - disk.x*disk.x - disk.y*disk.y) );
// get incoming lighting and add to result
Vec3f Lin = getRadiance(Win);
result += Lin;
end

result = result * pi * (1.0f/N);

CS-E5520 Spring 2019 — Lehtinen
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Pseudocode

Vec3f result;

for i=1l:n
// can implement through rejection or Shirley&Chiu
Vec2f disk = uniformPointUnitDisk();
// 1lift disk point to hemisphere..
Vec3f Win( disk, sqgrt(l.0f - disk.x*disk.x - disk.y*disk.y) );
// get incoming lighting and add to result
Vec3f Lin = getRadiance(Win);
result += Lin;
end

result = result * pi * (1.0£f/N);

This is almost a path tracer!
Just missing getRadiance()
and BRDF.
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Homework: Phong Lobes

 For a fixed outgoing angle, the specular Phong lobe 1s

fr(win> — C(r(wout) ' Win)q

 C 1s normalization constant 2p1/(g+1) (see Wolfram
Alpha), r returns the mirror vector, g 1s shininess

» Can you derive a formula for a PDF p(wj,) that is
proportional to the Phong lobe for fixed r?

—Hint: Note that the lobe 1s radially symmetric around r =>
you can concentrate on a canonical situation, e.g., r = (0,0,1)

—The general case follows by rotation
CS-E5520 Spring 2019 — Lehtinen
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http://bit.ly/13a0d73
http://bit.ly/13a0d73

Abstra

ction Pays, As Usual

* Because you often need different PDFs, you don’t
really want to write all the code for picking random
points/directions directly 1n your inner loop

e Instead abstract into two functions

—1. one

function for generating the points/directions, and

— 2. anot]

ner to evaluate the PDF at any given point/direction

* (Why 2 1nstead of 1? This comes 1n handy 1f you do Multiple
Importance Sampling, next slide, where you need to evaluate PDFs
also for points drawn from different distributions)
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Questions?

CS-E5520 Spring 2019 — Lehtinen
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Multiple Importance Sampling (MIS)

* If integrand f has a complex shape that consists of
distinct features that are easy to sample from
individually, we can use multiple PDFs and combine
them 1n a nice way so that we got lower variance

—See Veach and Guibas 1995
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Imp. Sampling According to BRDF

loss

increasing g




to Light

ing

iIng Accordi

Imp. Sampl

SSo|b Buiseauoul




What's Going on Here?

* Dull gloss/diffuse surface, importance sample BRDF

Light source

cmv —p-ey =319 — Lehtinen
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What's Going on Here?

* Dull gloss/diffuse surface, importance sample BRDF

Light source

7. O

‘. Only few

e directions
S actually carry
. light, so we are

Y using our
.& %I samples poorly

e meeme —prey =319 — Lehtinen 69



Here Makes Sense to Sample Light

* Dull gloss/diffuse surface, importance sample light

Light source

Sampling the
light uses

oo sample budget

cmv —prey =319 — Lehtinen 70




What's Going on Here?

* Highly glossy surface, narrow lobe, large light source,
importance sample light

A 4
N g
5

CS-E5520 Spring 2019 — Lehtinen
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What's Going on Here?

* Highly glossy surface, narrow lobe, large light source,
importance sample light

Again we
. ~ sample

.. directions that
" / do not carry
. ’ irradiance
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Here, Better to Sample BRDF

* Highly glossy surface, narrow lobe, large light source,
importance sample light

7

\~ )
N // Again, each
N 7 sample counts
.. / more
»
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Multiple Importance Sampling ‘/

MIS = Sample : .
both ways and

optimally

combine the

samples

(7))
(/)
O
(@)
(@)
=
/p
©
)
-
@)
=




Ok, how do you do it?

integrand f(x)

\_ does NOT go to zero!

CS-E5520 Spring 2019 — Lehtinen
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Why is the Red Gaussian bad for IS?

integrand f(x)

CS-E5520 Spring 2019 — Lehtinen
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Why the Red Gaussian is bad for IS

integrand f(x)

p has very low values
_\Inplaces where fis
"\ hot close to zero

CS-E5520 Spring 2019 — Lehtinen
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Why This Matters

60 I T I I T I I T I

sample weight

f(xi)/p(xi) over -
1000 trials
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Why This Matters

60

sample weight
« Spikes in cases f(xi)/p(xi) over
where p(Xx) is very 1000 trials
low, yet f(X) is never
very low!

|
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Why This Matters

sample weight
« Spikes in cases f(xi)/p(xi) over -
where p(Xx) is very 1000 trials
.. low, yet f(X) Is never |
very low!

INn our example,
p(0.5) =0.0027,
| p(0.9)=[10-31 |

10 -
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Spikes get worse with higher N

sample weight
f(xi)/p(xi) over -
100 000 trials

CS-E5520 Spring 2019 — Lehtinen
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Effect of Spikes on Integral Estimate

value of
N
o~ Z f(x;)
- [ — p(z;)
A as a function of N
over 100 000 trials
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Effect of Spikes on Integral Estimate

1.6

1.4
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value of

N i
Z / (%‘)

= plw ‘
as a function of N
over 100 000 trnials
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Graph of f/p (not log scale in y!)
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Better: Let's mix in a constant PDF

integrand f(x)

MIS basically means -

sampling from the
(weighted) sum of
multiple PDFs (red
and green)
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Basic MIS Recipe

* You have M sampling distributions.
* For each sample i

—Pick one distribution at random, let’s say it’s the jth one

* You can’t do much better than equal chances, 1.€. using probability p(j)
= 1/M for all j (Veach 19935, Sec. 5.2) (I assume this below.)

—Draw a sample x; from the jth distribution

—Compute |
W; = —— f (5’7@)
ijl p(J)p;j(z;i)
—Take the average of the W,
—Done!

CS-E5520 Spring 2019 — Lehtinen
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http://dx.doi.org/10.1145/218380.218498

What's Going On?

* The above process generates samples with the joint
distribution

* Hence, we’re just computing {/p with this new PDF.

—Note that the p(j)’s are a discrete distribution,
their sum must be 1!

» This is an unbiased estimate, just like regular MC.

CS-E5520 Spring 2019 — Lehtinen
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Integral Estimate, No MIS, 100k samples

1.8
h Jw\‘\,\\ R f'—“_'_\ ‘
\ ~ed
ﬁh\
-, rj

‘_"—‘f"-"

value of

L fa)
Z p(il?z'

1=1

as a function of N

over 100 000 trials
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Integral Estimate, MIS, 1k samples

(100x fewer than previous terrible non-MIS result)

24
2.35 - —
23 —
N .""'-,-.a-"'-',...\"',_-/ ".F.l""-‘---‘x_a,_ e s N e e il P o e,
2.25 ,h'l'| .rwr')"rsn'l,l-.._.\‘,..'_M.-v.'o.,-" $ N AT v ‘.“."'""’-.,__/_,_r.____'_____,_._.-"""‘-—/"'_-.'-'._"_.-\""rﬁ_l . N -
AV A
v
| o
I
iy
Y/ value o

L f(a)
; > p()pj(wi)

as a function of N -
over 1 000 trials

0 100 200 300 400 500 600 700 800 900 1000
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Integral Estimate, MIS, 1k samples

(100x fewer than previous terrible non-MIS result)
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Bells And Whistles

 This 1s the basic intuition and approach.

* Veach’s 19935 paper contains a long treatment on how
to choose the relative weighting between the PDFs and
more general ways of constructing p(x) based on the
individual distributions.

* However, we won’t go 1nto this. This process 1s really
general and applies wherever MC can be applied.
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http://dx.doi.org/10.1145/218380.218498

Example: Use in a Path Tracer

» Apart from the direct eye ray, our basic path tracer only
accounts for light through shadow rays

—If the extension ray, which 1s sampled from the BRDF, hits a
light source, we set 1ts contribution to zero.

—1Is this the best we can do?

* Indeed, we can repurpose the extension ray for another
purpose: we’ll try to make the light connection by both
light sampling and BRDF sampling.

—However we deterministically use both samplers, no random
picking.
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Multiple Importance Sampling ‘/
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http://www.maxwellrender.com

Advantages of MC Integration

* Few restrictions on the integrand

—Doesn’t need to be continuous, smooth, ...
—Only need to be able to evaluate at a point

» Extends to high-dimensional problems

—Same convergence: variance proportional to 1/N
* Very important, kind of astounding really

* Conceptually straightforward
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Disadvantages of MC

* Noisy
» Slow convergence

—But generally still better than regular sampling for anything
more than 3D (say)

* Good implementation needs care
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Questions?

Veach and Guibas, SIGGRAPH 1995

» Images by Veach and Guibas, SIGGRAPH G5 >

Naive sampling strategy Optimal sampling strategy
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http://doi.acm.org/10.1145/218380.218498

Extra: Stratified Sampling

* With uniform sampling, we can get unlucky

—E.g. all samples clump 1n a corner

—If we don’t know anything of the integrand,
we want a relatively uniform sampling
* Not regular, though, because of aliasing!

e To prevent clumping, subdivide domain €2
into non-overlapping regions Q2.
—Each region 1s called a stratum

» Take one random sample per Q.
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Stratified Sampling Example

 When supersampling, instead of taking KxK regular

sub-pixel samples, do random jittering within each
KxK sub-pixel
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Stratified Sampling Analysis

* Cheap and effective
* But mostly for low-dimensional domains (< 4D)

— Again, subdivision of N-D needs Nd domains like trapezoid,
Simpson’s, etc.!

* With very high dimensions, Monte Carlo 1s pretty
much the only choice

» Stratified sampling 1s a special case of low-discrepancy
sampling
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https://sites.google.com/site/qmcrendering/
https://sites.google.com/site/qmcrendering/
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Questions?

* Image from the ARNOLD Renderer by Marcos Fajardo
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