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Monte Carlo Integration

!1

CS-E5520 Spring 2019 
Jaakko Lehtinen 
with many slides from Frédo Durand



What is the radiance hitting my sensor? <=> 
Solution of the rendering equation



• Intro to Monte Carlo integration 
– Basics 
– Importance Sampling 
– Multiple Importance Sampling
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Today
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• Relates incident differential irradiance from every 
direction to outgoing radiance. How?
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Recap: Reflectance Equation
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Z

⌦
fr(x, l! v)L(x l) cos ✓ dl

L(x ! v) =

Recap: Reflectance Equation
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• Where does incident L come from? 
– It is the light reflected towards x from the surface point y in 

direction l ==> must compute similar integral for every l! 
• Recursive!  

• ...and if x happens  
to be on a light source,  
we add its emitted  
contribution E 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Recap: Rendering Equation
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L(x! v) =

Z

⌦
L(x l) fr(x, l! v) cos ✓ dl

E(x ! v)+

outgoing radiance =  
reflected radiance + 

emitted radiance



• The unknown in this equation is the function  
defined for all points x and all directions v 

• Analytic (exact) solution is impossible in all cases of 
practical interest 

• Lots of ways to solve approximately 
– Monte Carlo techniques use random samples for evaluating 

the integrals (today!) 
– Finite element methods (FEM) discretize the solution using 

basis functions 
• Radiosity, wavelets, precomputed radiance transfer, etc. 

– Talked about radiosity last week
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The Rendering Equation
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L(x ! v)
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Questions?

!8Stack Studios, Rendered using Maxwell

http://www.maxwellrender.com
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ZIntegrals are Everywhere
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Z



• Pixel: antialiasing 
• Light sources: Soft shadows 
• Lens: Depth of field 
• Time: Motion blur 
• BRDF: glossy reflection 
• Hemisphere: indirect lighting
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For Example...
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• Compute integral of arbitrary function 
– e.g. integral over area light source, over hemisphere, etc. 

• Continuous problem ! we need to discretize 
– Analytic integration never works because of visibility and 

other nasty details

CS-E5520 Spring 2019 – Lehtinen 

Numerical Integration
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• You know trapezoid, Simpson’s rule, etc.  
from your first engineering math class 
– Distribute N samples (evenly) in the domain 
– Evaluate function at sample points 
– Weigh samples appropriately (for 1D: 1, 4, 2, 4, ..., 2, 4, 1)
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Numerical Integration

!12

http://en.wikipedia.org/wiki/Simpson%2527s_rule


• You know trapezoid, Simpson’s rule, etc.  
from your first engineering math class 
– Distribute N samples (evenly) in the domain 
– Evaluate function at sample points 
– Weigh samples appropriately (for 1D: 1, 4, 2, 4, ..., 2, 4, 1)

CS-E5520 Spring 2019 – Lehtinen 

Why is This Bad?
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http://en.wikipedia.org/wiki/Simpson%2527s_rule


• Error scales with (some power of) grid spacing h 
•
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Why is This Bad?
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h



• Error scales with (some power of) grid spacing h 
• Bad things happen when dimension grows.. 

– And our integrals are often high-dimensional 
• Eg. motion blurred soft shadows through finite aperture = 7D!
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Why is This Bad?
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h
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n

Constant spacing, 1D
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n2

2D (yikes!)
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n3

3D (YIKES!)

!18

4D... you get the picture



• Monte Carlo integration: use random samples and 
compute average 
– We don’t keep track of spacing between samples 
– But we hope it will be 1/N on average
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Monte Carlo Integration
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• S is the integration domain 
– Vol(S) is the volume (measure) of S (1D: length, 2D: area, ...) 

• {xi} are independent uniform random points in S 
• That’s right: integral is average of f multiplied by size 

of domain 
– We estimate the average by random sampling 
– E.g. for hemisphere Vol(S) = 2pi
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Naive Monte Carlo Integration
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f(xi)



• Take a square 
• Take a random point (x,y) in the square 
• Test if it is inside the ¼ disc (x2+y2 < 1) 
• The probability is π /4 
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Naive Monte Carlo Computation of π

x

y Integral of the function that 
is one inside the circle, zero 
outside
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• The probability is π /4  
• Count the inside ratio n = # inside / total # trials 
•  π ≈ n * 4 
• The error depends on the number or trials
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Naive Monte Carlo Computation of π

Demo

def piMC(n):
    success = 0
    for i in range(n):
        x=random.random()
        y=random.random()
        if x*x+y*y<1: success = success+1
    return 4.0*float(success)/float(n)

!22
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Matlab Demo
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• You’re right, Monte Carlo is not very efficient for 
computing π 

• When is it useful? 
– High dimensions: Asymptotic convergence is independent of 

dimension! 
– For d dimensions, Simpson requires Nd domains (!!!) 
– Similar explosion for other quadratures (Gaussian, etc.) 

– You saw this visually a little earlier
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Why Not Use Simpson Integration?
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• You should know this from todari :) 
– Gentle reminder follows..
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Random Variables Recap
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• Distribution of random points determined by the 
Probability Distribution Function (PDF) p(x) 
– Uniform distribution means: each point in the domain equally 

likely to be picked: p(x) = 1/Vol(S) 
– Why so? PDF must integrate to 1 over S 
– (Uniform distribution is usually pretty bad for integration)
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Random Variables Recap: PDF
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• Expected value of a function g under probability 
distribution p is defined as 

• Because p integrates to 1 like a proper PDF should, this 
is just a weighted average of g over S 
– When p is uniform, this reduces to the usual average
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Recap: Expected Value (=Average)
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E{g(x)}p =

Z

S
g(x) p(x) dx

1

Vol(S)

Z

S
g(x) dx



• Variance is the average (expected) squared deviation 
from the mean 

• Standard deviation is square root of variance 

• Note that the PDF p is included in the definition! 
– Also in the computation of the mean
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Random Variables Recap: Variance
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Var(X) = E{(X � µ)2}p

µ = E{X}p

http://en.wikipedia.org/wiki/Variance
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OK, Down to Business Then!
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• Let’s drop the uniform PDF requirement 

• Important! p(x) must be nonzero where f(x) is 
nonzero!
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Non-Naive MC Integration
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Z

S
f(x) dx =

Z

S

f(x)

p(x)
p(x) dx



• Let’s drop the uniform PDF requirement
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Non-Naive MC Integration

!31

Z

S
f(x) dx =

Z

S

f(x)

p(x)
p(x) dx

= E{f(x)
p(x)

}p



• Let’s drop the uniform PDF requirement
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Non-Naive MC Integration

!32

Z

S
f(x) dx =

Z

S

f(x)

p(x)
p(x) dx

= E{f(x)
p(x)

}p

⇡ 1

N

X

i

f(xi)

p(xi)

Note that the 
uniform case 
reduces to the 
same because 
p(x)==1/Vol(S)
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“Importance Sampling”
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Sample from non-uniform PDF 
Intuitive justification: Sample more in places where there are 

likely to be larger contributions to the integral
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“Importance Sampling”
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• Integral over hemisphere 
• BRDF times cosine times incoming light
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Example: Glossy Reflection
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Slide courtesy of Jason Lawrence

http://www.cs.virginia.edu/~jdl/
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Sampling a BRDF

5 Samples/Pixel
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Slide courtesy of Jason Lawrence
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Sampling a BRDF
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Slide modified from Jason Lawrence’s

5 Samples/Pixel, no importance sampling
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Sampling a BRDF
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Slide modified from Jason Lawrence’s

5 Samples/Pixel, with importance sampling
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Sampling a BRDF

25 Samples/Pixel

!39

Slide courtesy of Jason Lawrence
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Sampling a BRDF

75 Samples/Pixel

Slide courtesy of Jason Lawrence
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Sampling a BRDF

75 Samples/Pixel, no importance sampling

Slide modified from Jason Lawrence’s

!41
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Sampling a BRDF Slide modified from Jason Lawrence’s
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75 Samples/Pixel, with importance sampling



Z

S
f(x) dx ⇡ 1

N

X

i

f(xi)

p(xi)

• Clearly this is not the right answer!
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Monte Carlo Integration Error

!43



def
= ÎI

def
=

• Clearly this is not the right answer! 
– The value     of the estimate is a random variable itself 
– Error manifests itself as variance, which shows up as noise
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Monte Carlo Integration Error

!44

Î
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i

f(xi)

p(xi)

http://en.wikipedia.org/wiki/Variance


• Clearly this is not the right answer! 
– The value     of the estimate is a random variable itself 
– Error manifests itself as variance, which shows up as noise 

• For MC, variance is proportional to 1/N and the 
variance of f/p 
– Avg. error is proportional 1/sqrt(N) 
– To halve error, need 4x samples (!!) 

• Remember: avg. error = sqrt(Var)CS-E5520 Spring 2019 – Lehtinen 

Monte Carlo Integration Error

Î

def
= ÎI

def
=

Z

S
f(x) dx ⇡ 1

N

X

i

f(xi)

p(xi)

!45

http://en.wikipedia.org/wiki/Variance


• “Variance of    proportional to 1/N and Var(f/p)”  
 
 
 
 
 
 
==> 
If f/p is constant, there is no noise (clearly!) 
– Corollary: If we use a good PDF, we will have less noise...
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Variance of the MC Result

!46

Î

Var(Î) =
Vol(S)2

N
Var(f/p) =

Vol(S)2

N
E{(f(x)

p(x)
� E{f/p})2}p



• What if p mimics f perfectly? I.e., let’s take 

• This has the same shape as f, but normalized so it 
integrates to 1 
– Note: need non-negative f for this to work
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What’s a Good PDF?

!47

p(x) =
f(x)R

S f(x) dx



• What if p mimics f perfectly? I.e., let’s take 

• This has the same shape as f, but normalized so it 
integrates to 1 
– Note: need non-negative f for this to work 

• But now f/p IS constant and we have no noise at all! 
– Alas: to come up with this p, we need the integral of f, which 

is what we are trying to compute in the first place :)
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What’s a Good PDF?

!48

p(x) =
f(x)R

S f(x) dx



• One that mimics the shape of f, but is easy to sample 
from 

• Because p is in the denominator, should try to avoid 
cases where p is low and f is high 
– These samples will increase variance a LOT
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What’s a Good PDF?
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This is precisely the difference between sampling directions 
vs. sampling light source area for direct illumination (you saw this earlier)



Questions?

runes.nu, rendered using Maxwell



• Remember: computation of irradiance means 
integrating incident radiance and cosine on hemisphere: 

• We usually can’t make assumptions about the lighting, 
but we do know the cosine weighs the samples near the 
horizon down => makes sense to importance sample 
with  
– Why pi? Remember that          integrates to pi over 

hemisphere, so to get a proper PDF must normalize!
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Importance Sampling Example

!52

E =

Z

⌦
Lin(!) cos ✓ d!

p(!) = cos ✓/⇡

cos ✓



• In your assignment, you’re lifting points from the unit 
disk onto the unit hemisphere, i.e., you’re mapping 

• If we have unit density of points on the disk, i.e., 
p(x,y)=1/pi, what’s the density of points on the 
hemisphere? 

• Instance of “transform sampling”
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But How? You’re Doing This Already

!53

X = x, Y = y, Z(x, y) =
p

1� x2 � y2 P = (X,Y, Z)



• Let’s take the infinitesimal square dA = dx*dy and map 
it to the hemisphere  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But How? You’re Doing This Already

!54

X = x, Y = y, Z(x, y) =
p

1� x2 � y2

dx
dy

dP

dxdP

dy

P = (X,Y, Z)



• Let’s take the infinitesimal square dA = dx*dy and map 
it to the hemisphere; then, remembering the properties 
of the cross product, compute its area by  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But How? You’re Doing This Already
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X = x, Y = y, Z(x, y) =
p

1� x2 � y2

(
@X

@x
,
@Y

@x
,
@Z

@x
) (

@X

@y
,
@Y

@y
,
@Z

@y
)⇥k k

=

s
|x|2

x2 + y2 � 1
+

|y|2
x2 + y2 � 1

+ 1
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But...
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s
|x|2

x2 + y2 � 1
+

|y|2
x2 + y2 � 1

+ 1

=

s
|x|2
|Z|2 +

|y|2
|Z|2 +

|Z|2
|Z|2

=
1

|Z|
p
|X|2 + |Y |2 + |Z|2

= 1/Z



• In polar coordinates, z = 
• So: a small area on disk gets mapped to one whose area 

is divided by          ; density is inversely propotional, 
i.e.,                             => samples are cosine-weighted!
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Ha!
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s
|x|2

x2 + y2 � 1
+

|y|2
x2 + y2 � 1

+ 1

=

s
|x|2
|Z|2 +

|y|2
|Z|2 +

|Z|2
|Z|2

=
1

|Z|
p
|X|2 + |Y |2 + |Z|2

= 1/Z

p(!) = cos ✓/⇡

cos ✓

cos ✓

Remember: original density 
on disk is 1/pi!



• We’ll use the lifting to turn uniform points on the disk 
onto cosine-distributed points on hemisphere, then  
 
 
 
 
but                        , so
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MC Irradiance w/ Cosine Importance

!58

E =

Z

⌦
Lin(!) cos ✓ d! ⇡ 1

N

NX

i=1

Lin(!i)

p(!i)
cos ✓i

p(!) = cos ✓/⇡

E ⇡ ⇡

N

NX

i=1

Lin(!i)

Irradiance is just an average 
of the incoming radiance 
when the samples are drawn 
under the cosine distribution



• You’re doing rejection sampling in your assignment 
– I.e., draw uniformly from a larger area (square), reject samples 

not in the domain (disk) 

• Better way is to sample the disk uniformly and 
continuously map the square to disk 
– Better than rejection sampling, don’t need to test and 

potentially regenerate 
– Also easily allows  

stratification 
– See Shirley & Chiu 97
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How to Draw Samples on the Disk?
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http://en.wikipedia.org/wiki/Rejection_sampling
http://www.tml.tkk.fi/~jaakko/T111-5310/K2013/JGT-97.pdf
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Pseudocode

!60

Vec3f result;

for i=1:n
   // can implement through rejection or Shirley&Chiu
   Vec2f disk = uniformPointUnitDisk();
   // lift disk point to hemisphere..
   Vec3f Win( disk, sqrt(1.0f - disk.x*disk.x - disk.y*disk.y) );
   // get incoming lighting and add to result
   Vec3f Lin = getRadiance(Win);
   result += Lin;
end

result = result * pi * (1.0f/N);
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Pseudocode

!61

Vec3f result;

for i=1:n
   // can implement through rejection or Shirley&Chiu
   Vec2f disk = uniformPointUnitDisk();
   // lift disk point to hemisphere..
   Vec3f Win( disk, sqrt(1.0f - disk.x*disk.x - disk.y*disk.y) );
   // get incoming lighting and add to result
   Vec3f Lin = getRadiance(Win);
   result += Lin;
end

result = result * pi * (1.0f/N);

This is almost a path tracer! 
Just missing getRadiance() 

and BRDF.



• For a fixed outgoing angle, the specular Phong lobe is 

• C is normalization constant 2pi/(q+1) (see Wolfram 
Alpha), r returns the mirror vector, q is shininess 

• Can you derive a formula for a PDF              that is 
proportional to the Phong lobe for fixed r? 
– Hint: Note that the lobe is radially symmetric around r => 

you can concentrate on a canonical situation, e.g., r = (0,0,1) 
– The general case follows by rotation

CS-E5520 Spring 2019 – Lehtinen 

Homework: Phong Lobes

!62

fr(!in) = C(r(!out) · !in)
q

p(!in)

http://bit.ly/13a0d73
http://bit.ly/13a0d73


• Because you often need different PDFs, you don’t 
really want to write all the code for picking random 
points/directions directly in your inner loop 

• Instead abstract into two functions 
– 1. one function for generating the points/directions, and 
– 2. another to evaluate the PDF at any given point/direction 

• (Why 2 instead of 1? This comes in handy if you do Multiple 
Importance Sampling, next slide, where you need to evaluate PDFs 
also for points drawn from different distributions)
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Abstraction Pays, As Usual
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Questions?
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• If integrand f has a complex shape that consists of 
distinct features that are easy to sample from 
individually, we can use multiple PDFs and combine 
them in a nice way so that we got lower variance 
– See Veach and Guibas 1995

CS-E5520 Spring 2019 – Lehtinen 

Multiple Importance Sampling (MIS)
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http://doi.acm.org/10.1145/218380.218498
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Imp. Sampling According to BRDF
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Imp. Sampling According to Light
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• Dull gloss/diffuse surface, importance sample BRDF
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What’s Going on Here?

!68

Light source



• Dull gloss/diffuse surface, importance sample BRDF
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What’s Going on Here?

!69

Light source

Only few 
directions  

actually carry 
light, so we are 

using our 
samples poorly



• Dull gloss/diffuse surface, importance sample light
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Here Makes Sense to Sample Light

!70

Light source

Sampling the 
light uses 

sample budget 
better



• Highly glossy surface, narrow lobe, large light source, 
importance sample light
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What’s Going on Here?

!71



• Highly glossy surface, narrow lobe, large light source, 
importance sample light
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What’s Going on Here?

!72

Again we 
sample 

directions that 
do not carry 

irradiance



• Highly glossy surface, narrow lobe, large light source, 
importance sample light
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Here, Better to Sample BRDF

!73

Again, each 
sample counts 

more
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Multiple Importance Sampling

!74

✔
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MIS = Sample 
both ways and 
optimally 
combine the 
samples
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Ok, how do you do it?
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integrand f(x)

does NOT go to zero!
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Why is the Red Gaussian bad for IS?
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integrand f(x)
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Why the Red Gaussian is bad for IS

!77

integrand f(x)

p has very low values 
in places where f is 
not close to zero



CS-E5520 Spring 2019 – Lehtinen 

Why This Matters

!78

sample weight 
f(xi)/p(xi) over 
1000 trials
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Why This Matters

!79

sample weight 
f(xi)/p(xi) over 
1000 trials

spikes in cases 
where p(x) is very 
low, yet f(x) is never 
very low!
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Why This Matters

!80

sample weight 
f(xi)/p(xi) over 
1000 trials

spikes in cases 
where p(x) is very 
low, yet f(x) is never 
very low!

in our example, 
p(0.5) = 0.0027, 
p(0.9) = 10-31 ! 
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Spikes get worse with higher N

!81

sample weight 
f(xi)/p(xi) over 
100 000 trials

!!!



CS-E5520 Spring 2019 – Lehtinen 

Effect of Spikes on Integral Estimate

!82

value of 

as a function of N 
over 100 000 trials

NX

i=1

f(xi)

p(xi)
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Effect of Spikes on Integral Estimate

!83

value of 

as a function of N 
over 100 000 trials

NX

i=1

f(xi)

p(xi
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Graph of f/p (not log scale in y!)

!84

value of 

as a function of N 
over 100 000 trials

NX

i=1

f(xi)

p(xi
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Better: Let’s mix in a constant PDF

!85

integrand f(x)

MIS basically means 
sampling from the 
(weighted) sum of 
multiple PDFs (red 
and green)



• You have M sampling distributions. 
• For each sample i 

– Pick one distribution at random, let’s say it’s the jth one 
• You can’t do much better than equal chances, i.e. using probability p(j) 

= 1/M for all j (Veach 1995, Sec. 5.2) (I assume this below.) 
– Draw a sample xi from the jth distribution 
– Compute 

– Take the average of the Wi 
– Done!
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Basic MIS Recipe

!86

Wi =
f(xi)PM

j=1 p(j)pj(xi)

http://dx.doi.org/10.1145/218380.218498


• The above process generates samples with the joint 
distribution 

• Hence, we’re just computing f/p with this new PDF. 
– Note that the p(j)’s are a discrete distribution,  

their sum must be 1! 

• This is an unbiased estimate, just like regular MC.
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What’s Going On?
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p̄(x) =
MX

j=1

p(j)pj(x)
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Ha!

!88

sample weight 
f(xi)/p(xi) over 
1000 trials
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Integral Estimate, No MIS, 100k samples

!89

value of 

as a function of N 
over 100 000 trials

NX

i=1

f(xi)

p(xi
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Integral Estimate, MIS, 1k samples

!90

value of 

as a function of N 
over 1 000 trials

NX

i=1

f(xi)P
j p(j)pj(xi)

(100x fewer than previous terrible non-MIS result)
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Integral Estimate, MIS, 1k samples

!91

value of 

as a function of N 
over 1 000 trials

NX

i=1

f(xi)P
j p(j)pj(xi)

✔

(100x fewer than previous terrible non-MIS result)



• This is the basic intuition and approach. 

• Veach’s 1995 paper contains a long treatment on how 
to choose the relative weighting between the PDFs and 
more general ways of constructing         based on the 
individual distributions. 

• However, we won’t go into this. This process is really 
general and applies wherever MC can be applied.

CS-E5520 Spring 2019 – Lehtinen 

Bells And Whistles

!92

p̄(x)

http://dx.doi.org/10.1145/218380.218498


• Apart from the direct eye ray, our basic path tracer only 
accounts for light through shadow rays 
– If the extension ray, which is sampled from the BRDF, hits a 

light source, we set its contribution to zero. 
– Is this the best we can do? 

• Indeed, we can repurpose the extension ray for another 
purpose: we’ll try to make the light connection by both 
light sampling and BRDF sampling. 
– However we deterministically use both samplers, no random 

picking.
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Example: Use in a Path Tracer

!93
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Multiple Importance Sampling

!94

✔
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MIS = Sample 
both ways and 
optimally 
combine the 
samples
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Questions?
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http://www.maxwellrender.com


• Few restrictions on the integrand 
– Doesn’t need to be continuous, smooth, ... 
– Only need to be able to evaluate at a point 

• Extends to high-dimensional problems 
– Same convergence: variance proportional to 1/N 

• Very important, kind of astounding really 

• Conceptually straightforward
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Advantages of MC Integration

!96



• Noisy 
• Slow convergence 

– But generally still better than regular sampling for anything 
more than 3D (say) 

• Good implementation needs care
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Disadvantages of MC

!97



• Images by Veach and Guibas, SIGGRAPH 95
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Questions?

Naïve sampling strategy Optimal sampling strategy
!98

Veach and Guibas, SIGGRAPH 1995 
(Multiple Importance Sampling)

http://doi.acm.org/10.1145/218380.218498
http://doi.acm.org/10.1145/218380.218498
http://doi.acm.org/10.1145/218380.218498


• With uniform sampling, we can get unlucky 
– E.g. all samples clump in a corner 
– If we don’t know anything of the integrand,  

we want a relatively uniform sampling 
• Not regular, though, because of aliasing! 

• To prevent clumping, subdivide domain Ω  
into non-overlapping regions Ωi 

– Each region is called a stratum 

• Take one random sample per Ωi
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Extra: Stratified Sampling

!99



• When supersampling, instead of taking KxK regular 
sub-pixel samples, do random jittering within each 
KxK sub-pixel
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Stratified Sampling Example

!100



• Cheap and effective 
• But mostly for low-dimensional domains (< 4D) 

– Again, subdivision of N-D needs Nd domains like trapezoid, 
Simpson’s, etc.! 

• With very high dimensions, Monte Carlo is pretty 
much the only choice 

• Stratified sampling is a special case of low-discrepancy 
sampling
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Stratified Sampling Analysis

!101

https://sites.google.com/site/qmcrendering/
https://sites.google.com/site/qmcrendering/
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Example (Uniform)
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Example (Low Discrepancy)
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• Image from the ARNOLD Renderer by Marcos Fajardo
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Questions?

!104


