Monte Carlo Integration

CS-E5520 Spring 2019
Jaakko Lehtinen
with many slides from Frédo Durand

What is the radiance hitting my sensor? $\Leftrightarrow \Rightarrow$ Solution of the rendering equation

Today

- Intro to Monte Carlo integration
-Basics
- Importance Sampling
-Multiple Importance Sampling

Recap: Reflectance Equation

- Relates incident differential irradiance from every direction to outgoing radiance. How?

Recap: Reflectance Equation

$$
L(x \rightarrow \mathbf{v})=\longleftarrow \text { outgoing radiance }
$$

integral over hemisphere

Recap: Rendering Equation

outgoing radiance = reflected radiance +

$$
\begin{aligned}
L(x \rightarrow \mathbf{v})=\int_{\Omega} L(x \leftarrow \mathbf{l}) f_{r}(x, \mathbf{l} & \rightarrow \mathbf{v}) \cos \theta \mathrm{d} \mathbf{l} \\
& +E(x \rightarrow \mathbf{v})
\end{aligned}
$$

- Where does incident L come from?
-It is the light reflected towards x from the surface point y in direction $\boldsymbol{l}==>$ must compute similar integral for every \boldsymbol{l} !
- Recursive!
- ...and if x happens
to be on a light source, we add its emitted contribution E

The Rendering Equation

- The unknown in this equation is the function $L(x \rightarrow \mathbf{v})$ defined for all points x and all directions \mathbf{v}
- Analytic (exact) solution is impossible in all cases of practical interest
- Lots of ways to solve approximately
- Monte Carlo techniques use random samples for evaluating the integrals (today!)
-Finite element methods (FEM) discretize the solution using basis functions
- Radiosity, wavelets, precomputed radiance transfer, etc.
- Talked about radiosity last week

Integrals are Everywhere

For Example...

- Pixel: antialiasing

$$
\iiint \iint L(x, y, t, u, v) d x d y d t d u d v
$$

- Light sources: Soft shadows
- Lens: Depth of field
- Time: Motion blur
- BRDF: glossy reflection
- Hemisphere: indirect lighting

Numerical Integration

- Compute integral of arbitrary function
- e.g. integral over area light source, over hemisphere, etc.
- Continuous problem \rightarrow we need to discretize
- Analytic integration never works because of visibility and other nasty details

Numerical Integration

- You know trapezoid, Simpson's rule, etc. from your first engineering math class
${ }^{+}$Distribute N samples (evenly) in the domain
- Evaluate function at sample points
- Weigh samples appropriately (for 1D: $1,4,2,4, \ldots, 2,4,1$)

Why is This Bad?

- You know trapezoid, Simpson's rule, etc. from your first engineering math class
${ }^{+}$Distribute N samples (evenly) in the domain
- Evaluate function at sample points
-Weigh samples appropriately (for 1D: $1,4,2,4, \ldots, 2,4,1$)

Why is This Bad?

- Error scales with (some power of) grid spacing h

Why is This Bad?

- Error scales with (some power of) grid spacing h
- Bad things happen when dimension grows..
\dagger And our integrals are often high-dimensional
- Eg. motion blurred soft shadows through finite aperture $=7 \mathrm{D}$!

Constant spacing, 1D

2D (yikes!)

○○○○○○○○○○○○
$\circ \circ \circ$
$\circ \circ \circ$
$\circ \circ \circ$

$\circ \circ \circ$
$\circ \circ \circ$
$\circ \circ \circ$
$\circ \circ \circ$
$\circ \circ \circ$

3D (YIKES!)

4D... you get the picture

Monte Carlo Integration

- Monte Carlo integration: use random samples and compute average
-We don't keep track of spacing between samples
-But we hope it will be $1 / \mathrm{N}$ on average

Naive Monte Carlo Integration

- S is the integration domain
$-\operatorname{Vol}(\mathrm{S})$ is the volume (measure) of S (1D: length, 2D: area, ...)
- $\left\{\mathrm{x}_{\mathrm{i}}\right\}$ are independent uniform random points in S
- That's right: integral is average of f multiplied by size of domain
- We estimate the average by random sampling
- E.g. for hemisphere $\operatorname{Vol}(S)=2$ pi

Naive Monte Carlo Computation of π

- Take a square
- Take a random point (x, y) in the square
- Test if it is inside the $1 / 4$ disc $\left(x^{2}+y^{2}<1\right)$
- The probability is $\pi / 4$

Integral of the function that is one inside the circle, zero outside

Naive Monte Carlo Computation of π

- The probability is $\pi / 4$
- Count the inside ratio $\mathrm{n}=\#$ inside / total \# trials
- $\pi \approx \mathrm{n} * 4$
- The error depends on the number or trials

Demo

```
def piMC(n):
    success = 0
    for i in range(n):
        x=random.random()
        y=random.random()
        if x*x+y*y<1: success = success+1
    return 4.0*float(success)/float(n)
```


Matlab Demo

Why Not Use Simpson Integration?

- You're right, Monte Carlo is not very efficient for computing π
- When is it useful?
-High dimensions: Asymptotic convergence is independent of dimension!
-For d dimensions, Simpson requires Nd domains (!!!)
- Similar explosion for other quadratures (Gaussian, etc.)
- You saw this visually a little earlier

Random Variables Recap

- You should know this from todari :)
-Gentle reminder follows..

Random Variables Recap: PDF

- Distribution of random points determined by the Probability Distribution Function (PDF) $p(x)$
-Uniform distribution means: each point in the domain equally likely to be picked: $p(x)=1 / \operatorname{Vol}(\mathrm{S})$
- Why so? PDF must integrate to 1 over S
-(Uniform distribution is usually pretty bad for integration)

Recap: Expected Value (=Average)

- Expected value of a function g under probability distribution p is defined as

$$
E\{g(x)\}_{p}=\int_{S} g(x) p(x) \mathrm{d} x
$$

- Because p integrates to 1 like a proper PDF should, this is just a weighted average of g over S
- When p is uniform, this reduces to the usual average

$$
\frac{1}{\operatorname{Vol}(S)} \int_{S} g(x) \mathrm{d} x
$$

Random Variables Recap: Variance

- Variance is the average (expected) squared deviation from the mean $\mu=E\{X\}_{p}$

$$
\operatorname{Var}(X)=E\left\{(X-\mu)^{2}\right\}_{p}
$$

- Standard deviation is square root of variance
- Note that the PDF p is included in the definition!
- Also in the computation of the mean

OK, Down to Business Then!

Non-Naive MC Integration

- Let's drop the uniform PDF requirement

$$
\int_{S} f(x) \mathrm{d} x=\int_{S} \frac{f(x)}{p(x)} p(x) \mathrm{d} x
$$

- Important! $\mathrm{p}(\mathrm{x})$ must be nonzero where $\mathrm{f}(\mathrm{x})$ is nonzero!

Non-Naive MC Integration

- Let's drop the uniform PDF requirement

$$
\begin{gathered}
\int_{S} f(x) \mathrm{d} x=\int_{S} \frac{f(x)}{p(x)} p(x) \mathrm{d} x \\
=E\left\{\frac{f(x)}{p(x)}\right\}_{p}
\end{gathered}
$$

Non-Naive MC Integration

- Let's drop the uniform PDF requirement

$$
\approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

Note that the uniform case reduces to the same because $\mathrm{p}(\mathrm{x})==1 / \mathrm{Vol}(\mathrm{S})$

$$
\begin{aligned}
& \int_{S} f(x) \mathrm{d} x=\int_{S} \frac{f(x)}{p(x)} p(x) \mathrm{d} x \\
& =E\left\{\frac{f(x)}{p(x)}\right\}_{p}
\end{aligned}
$$

"Importance Sampling"

$$
\int_{S} f(x) \mathrm{d} x \approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

"Importance Sampling"

Sample from non-uniform PDF

Intuitive justification: Sample more in places where there are likely to be larger contributions to the integral

Example: Glossy Reflection

- Integral over hemisphere
- BRDF times cosine times incoming light

Sampling a BRDF

Slide courtesy of Jason Lawrence

5 Samples/Pixel

$P\left(\omega_{i}\right)$

Sampling a BRDF

Slide modified from Jason Lawrence's

5 Samples/Pixel, no importance sampling

Sampling a BRDF

Slide modified from Jason Lawrence's

5 Samples/Pixel, with importance sampling

Sampling a BRDF

Slide courtesy of Jason Lawrence

25 Samples/Pixel

$P\left(\omega_{i}\right)$

Sampling a BRDF

Slide courtesy of Jason Lawrence

75 Samples/Pixel

Sampling a BRDF

75 Samples/Pixel, no importance sampling

Sampling a BRDF

75 Samples/Pixel, with importance sampling

Monte Carlo Integration Error

$$
\int_{S} f(x) \mathrm{d} x \approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

- Clearly this is not the right answer!

Monte Carlo Integration Error

$$
I \stackrel{\text { def }}{=} \int_{S} f(x) \mathrm{d} x \approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)} \stackrel{\text { def }}{=} \hat{I}
$$

- Clearly this is not the right answer!
-The value \hat{I} of the estimate is a random variable itself
-Error manifests itself as variance, which shows up as noise

Monte Carlo Integration Error

$$
I \stackrel{\text { def }}{=} \int_{S} f(x) \mathrm{d} x \approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)} \stackrel{\text { def }}{=} \hat{I}
$$

- Clearly this is not the right answer!
- The value \hat{I} of the estimate is a random variable itself
-Error manifests itself as variance, which shows up as noise
- For MC, variance is proportional to $1 / \mathrm{N}$ and the variance of f / p
- Avg. error is proportional $1 / \mathrm{sqrt}(\mathrm{N})$
- To halve error, need 4x samples (!!)

Variance of the MC Result

- "Variance of \hat{I} proportional to $1 / \mathrm{N}$ and $\operatorname{Var}(\mathrm{f} / \mathrm{p})$ "

$$
\operatorname{Var}(\hat{I})=\frac{\operatorname{Vol}(S)^{2}}{N} \operatorname{Var}(\mathrm{f} / \mathrm{p})=\frac{\operatorname{Vol}(S)^{2}}{N} E\left\{\left(\frac{f(x)}{p(x)}-E\{f / p\}\right)^{2}\right\}_{p}
$$

If f / p is constant, there is no noise (clearly!)
-Corollary: If we use a good PDF, we will have less noise...

What's a Good PDF?

- What if p mimics f perfectly? I.e., let's take

$$
p(x)=\frac{f(x)}{\int_{S} f(x) \mathrm{d} x}
$$

- This has the same shape as f, but normalized so it integrates to 1
-Note: need non-negative f for this to work

What's a Good PDF?

- What if p mimics f perfectly? I.e., let's take

$$
p(x)=\frac{f(x)}{\int_{S} f(x) \mathrm{d} x}
$$

- This has the same shape as f, but normalized so it integrates to 1
- Note: need non-negative f for this to work
- But now f/p IS constant and we have no noise at all!
- Alas: to come up with this p, we need the integral of f, which is what we are trying to compute in the first place :)

What's a Good PDF?

- One that mimics the shape of f, but is easy to sample from
- Because p is in the denominator, should try to avoid cases where p is low and f is high
- These samples will increase variance a LOT

Example of Importance Sampling

This is precisely the difference between sampling directions
vs. sampling light source area for direct illumination (you saw this earlier)

Hemispherical Solid Angle
4 eye rays per pixel 100 rays

Light Source Area

4 eye rays per pixel 100 shadow rays

Questions?

runes.nu, rendered using Maxwell

Importance Sampling Example

- Remember: computation of irradiance means integrating incident radiance and cosine on hemisphere:

$$
E=\int_{\Omega} L_{\mathrm{in}}(\omega) \cos \theta \mathrm{d} \omega
$$

- We usually can't make assumptions about the lighting, but we $d o$ know the cosine weighs the samples near the horizon down $=>$ makes sense to importance sample with $p(\omega)=\cos \theta / \pi$
- Why pi? Remember that $\cos \theta$ integrates to pi over hemisphere, so to get a proper PDF must normalize!

But How? You're Doing This Already

- In your assignment, you're lifting points from the unit disk onto the unit hemisphere, i.e., you're mapping

$$
X=x, Y=y, Z(x, y)=\sqrt{1-x^{2}-y^{2}} \quad P=(X, Y, Z)
$$

- If we have unit density of points on the disk, i.e., $p(x, y)=1 /$ pi, what's the density of points on the hemisphere?
- Instance of "transform sampling"

But How? You're Doing This Already

$$
X=x, Y=y, Z(x, y)=\sqrt{1-x^{2}-y^{2}} \quad P=(X, Y, Z)
$$

- Let's take the infinitesimal square $\mathrm{d} A=\mathrm{d} x * \mathrm{~d} y$ and map it to the hemisphere

But How? You're Doing This Already

$X=x, Y=y, Z(x, y)=\sqrt{1-x^{2}-y^{2}}$

- Let's take the infinitesimal square $\mathrm{d} A=\mathrm{d} x * \mathrm{~d} y$ and map it to the hemisphere; then, remembering the properties of the cross product, compute its area by
$\left\|\left(\frac{\partial X}{\partial x}, \frac{\partial Y}{\partial x}, \frac{\partial Z}{\partial x}\right) \times\left(\frac{\partial X}{\partial y}, \frac{\partial Y}{\partial y}, \frac{\partial Z}{\partial y}\right)\right\|$

$$
=\sqrt{\frac{|x|^{2}}{x^{2}+y^{2}-1}+\frac{|y|^{2}}{x^{2}+y^{2}-1}+1}
$$

But...

$$
\begin{aligned}
& \sqrt{\frac{|x|^{2}}{x^{2}+y^{2}-1}+\frac{|y|^{2}}{x^{2}+y^{2}-1}+1} \\
& =\sqrt{\frac{|x|^{2}}{|Z|^{2}}+\frac{|y|^{2}}{|Z|^{2}}+\frac{|Z|^{2}}{|Z|^{2}}}=\frac{1}{|Z|} \sqrt{|X|^{2}+|Y|^{2}+|Z|^{2}} \\
& \\
& =1 / Z
\end{aligned}
$$

Ha!

$$
\begin{aligned}
& \sqrt{\frac{|x|^{2}}{x^{2}+y^{2}-1}+\frac{|y|^{2}}{x^{2}+y^{2}-1}+1} \\
& \quad=\sqrt{\frac{|x|^{2}}{|Z|^{2}}+\frac{|y|^{2}}{|Z|^{2}}+\frac{|Z|^{2}}{|Z|^{2}}}=\frac{1}{|Z|} \sqrt{|X|^{2}+|Y|^{2}+|Z|^{2}} \\
& =1 / Z
\end{aligned}
$$

- In polar coordinates, $\mathrm{z}=\cos \theta$
- So: a small area on disk gets mapped to one whose area is divided by $\cos \theta$; density is inversely propotional, i.e., $p(\omega)=\cos \theta / \pi \Rightarrow>$ samples are cosine-weighted! ${ }_{57}$ Remember: original density cs-E5520 Spring 2019 - Lehtinen on disk is $1 / \mathrm{pi}$.

MC Irradiance w/ Cosine Importance

- We'll use the lifting to turn uniform points on the disk onto cosine-distributed points on hemisphere, then

$$
E=\int_{\Omega} L_{\mathrm{in}}(\omega) \cos \theta \mathrm{d} \omega \approx \frac{1}{N} \sum_{i=1}^{N} \frac{L_{\mathrm{in}}\left(\omega_{i}\right)}{p\left(\omega_{i}\right)} \cos \theta_{i}
$$

but $p(\omega)=\cos \theta / \pi$, so

$$
E \approx \frac{\pi}{N} \sum_{i=1}^{N} L_{\mathrm{in}}\left(\omega_{i}\right)
$$

Irradiance is just an average of the incoming radiance when the samples are drawn under the cosine distribution

How to Draw Samples on the Disk?

- You're doing rejection sampling in your assignment -I.e., draw uniformly from a larger area (square), reject samples not in the domain (disk)
- Better way is to sample the disk uniformly and continuously map the square to disk
-Better than rejection sampling, don't need to test and potentially regenerate
- Also easily allows stratification
-See Shirley \& Chiu 97

Pseudocode

```
Vec3f result;
for i=1:n
    // can implement through rejection or Shirley&Chiu
    Vec2f disk = uniformPointUnitDisk();
    // lift disk point to hemisphere..
    Vec3f Win( disk, sqrt(1.0f - disk.x*disk.x - disk.y*disk.y) );
    // get incoming lighting and add to result
    Vec3f Lin = getRadiance(Win);
    result += Lin;
end
result = result * pi * (1.0f/N);
```


Pseudocode

```
Vec3f result;
for i=1:n
    // can implement through rejection or Shirley&Chiu
    Vec2f disk = uniformPointUnitDisk();
    // lift disk point to hemisphere..
    Vec3f Win( disk, sqrt(1.0f - disk.x*disk.x - disk.y*disk.y) );
    // get incoming lighting and add to result
    Vec3f Lin = getRadiance(Win);
    result += Lin;
end
result = result * pi * (1.0f/N);
```


This is almost a path tracer! Just missing getRadiance() and BRDF.

Homework: Phong Lobes

- For a fixed outgoing angle, the specular Phong lobe is

$$
f_{r}\left(\omega_{\mathrm{in}}\right)=C\left(\mathbf{r}\left(\omega_{\mathrm{out}}\right) \cdot \omega_{\mathrm{in}}\right)^{q}
$$

- C is normalization constant $2 \mathrm{pi} /(\mathrm{q}+1$) (see Wolfram Alpha), \mathbf{r} returns the mirror vector, q is shininess
- Can you derive a formula for a PDF $p\left(\omega_{\mathrm{in}}\right)$ that is proportional to the Phong lobe for fixed \mathbf{r} ?
-Hint: Note that the lobe is radially symmetric around $\mathbf{r}=>$ you can concentrate on a canonical situation, e.g., $\mathbf{r}=(0,0,1)$
-The general case follows by rotation

Abstraction Pays, As Usual

- Because you often need different PDFs, you don't really want to write all the code for picking random points/directions directly in your inner loop
- Instead abstract into two functions
-1 . one function for generating the points/directions, and
-2 . another to evaluate the PDF at any given point/direction
- (Why 2 instead of 1 ? This comes in handy if you do Multiple Importance Sampling, next slide, where you need to evaluate PDFs also for points drawn from different distributions)

Questions?

Multiple Importance Sampling (MIS)

- If integrand f has a complex shape that consists of distinct features that are easy to sample from individually, we can use multiple PDFs and combine them in a nice way so that we got lower variance
- See Veach and Guibas 1995

Imp. Sampling According to BRDF

Imp. Sampling According to Light

What's Going on Here?

- Dull gloss/diffuse surface, importance sample BRDF

Light source

What's Going on Here?

- Dull gloss/diffuse surface, importance sample BRDF

Light source

Only few directions actually carry light, so we are using our samples poorly

Here Makes Sense to Sample Light

- Dull gloss/diffuse surface, importance sample light

Light source

What's Going on Here?

- Highly glossy surface, narrow lobe, large light source, importance sample light

What's Going on Here?

- Highly glossy surface, narrow lobe, large light source, importance sample light

Here, Better to Sample BRDF

- Highly glossy surface, narrow lobe, large light source, importance sample light

Multiple Importance Sampling

MIS = Sample both ways and optimally combine the samples

Ok, how do you do it?

Why is the Red Gaussian bad for IS?

Why the Red Gaussian is bad for IS

Why This Matters

Why This Matters

Why This Matters

Spikes get worse with higher N

Effect of Spikes on Integral Estimate

Effect of Spikes on Integral Estimate

Graph of f / p (not log scale in $y!$)

Better: Let's mix in a constant PDF

Basic MIS Recipe

- You have M sampling distributions.
- For each sample i
-Pick one distribution at random, let's say it's the j th one
- You can't do much better than equal chances, i.e. using probability $\mathrm{p}(j)$ $=1 / \mathrm{M}$ for all j (Veach 1995, Sec. 5.2) (I assume this below.)
-Draw a sample x_{i} from the j th distribution
- Compute

$$
W_{i}=\frac{f\left(x_{i}\right)}{\sum_{j=1}^{M} p(j) p_{j}\left(x_{i}\right)}
$$

- Take the average of the W_{i}
-Done!

What's Going On?

- The above process generates samples with the joint distribution

$$
\bar{p}(x)=\sum_{j=1}^{M} p(j) p_{j}(x)
$$

- Hence, we're just computing f / p with this new PDF.
-Note that the $\mathrm{p}(\mathrm{j})$'s are a discrete distribution, their sum must be 1 !
- This is an unbiased estimate, just like regular MC.

Ha!
 sample weight $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) / \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)$ over

-

Integral Estimate, No MIS, 100k samples

Integral Estimate, MIS, 1k samples

(100x fewer than previous terrible non-MIS result)

Integral Estimate, MIS, 1k samples

(100x fewer than previous terrible non-MIS result)

Bells And Whistles

- This is the basic intuition and approach.
- Veach's 1995 paper contains a long treatment on how to choose the relative weighting between the PDFs and more general ways of constructing $\bar{p}(x)$ based on the individual distributions.
- However, we won't go into this. This process is really general and applies wherever MC can be applied.

Example: Use in a Path Tracer

- Apart from the direct eye ray, our basic path tracer only accounts for light through shadow rays
- If the extension ray, which is sampled from the BRDF, hits a light source, we set its contribution to zero.
-Is this the best we can do?
- Indeed, we can repurpose the extension ray for another purpose: we'll try to make the light connection by both light sampling and BRDF sampling.
-However we deterministically use both samplers, no random picking.

Multiple Importance Sampling

MIS = Sample both ways and optimally combine the samples

Questions?

Advantages of MC Integration

- Few restrictions on the integrand
- Doesn't need to be continuous, smooth, ...
-Only need to be able to evaluate at a point
- Extends to high-dimensional problems
-Same convergence: variance proportional to $1 / \mathrm{N}$
- Very important, kind of astounding really
- Conceptually straightforward

Disadvantages of MC

- Noisy
- Slow convergence
-But generally still better than regular sampling for anything more than 3D (say)
- Good implementation needs care

Questions?

Veach and Guibas, SIGGRAPH 1995

- Images by Veach and Guibas, SIGGRAPH 9 S

Naïve sampling strategy

Optimal sampling strategy

Extra: Stratified Sampling

- With uniform sampling, we can get unlucky
-E.g. all samples clump in a corner

- If we don't know anything of the integrand, we want a relatively uniform sampling
- Not regular, though, because of aliasing!
- To prevent clumping, subdivide domain Ω
 into non-overlapping regions Ω_{i}
-Each region is called a stratum
- Take one random sample per Ω_{i}

Stratified Sampling Example

- When supersampling, instead of taking KxK regular sub-pixel samples, do random jittering within each KxK sub-pixel

Stratified Sampling Analysis

- Cheap and effective
- But mostly for low-dimensional domains (<4D)
- Again, subdivision of $\mathrm{N}-\mathrm{D}$ needs N^{d} domains like trapezoid, Simpson's, etc.!
- With very high dimensions, Monte Carlo is pretty much the only choice
- Stratified sampling is a special case of low-discrepancy sampling

Example (Uniform)

Example (Low Discrepancy)

Questions?

- Image from the ARNOLD Renderer by Marcos Fajardo

