Final Document: Kyytipalvelu
T-111.4360: Design of WWW services

Phase: Final Pha e
Group number: 16

1. Introduction and design
1.1 Introduction
1.2 User group analysis
1.3 Scenarios and use cases
1.3.1 User Scenarios
1.3.2 Use cases
1.4 Main features
1.5 Structure of the site
1.5.1 Landing page
1.5.2 Account page
1.5.3 Login page
1.5.4 Search page
1.5.5 Offer page
1.6 Reflection
2. Content
2.1 Content production and update
2.1 Reflection
3. User Interface and interaction
3.1 User Interface
3.2 Reflection
4. Architecture and technologies
4.1 Architecture
4.2 Database
4.3 Performance
4.4 Security
4.5 HTML & CSS
4.6 Browser dependencies
4.7 Technologies and Installation
4.7.1 Technologies and libraries
4.7.2 Running and deploying the service
5. Dynamic functionality
5.1 Reflection
6. Design of the project
6.1 Work breakdown structure
6.2 Time schedule
6.3 Use of time
6.4 Reflection
7. Final reflection
7.1 Extra bonus points

1. Introduction and design

1.1 Introduction

Have you ever looked at cars on the road and wondered: "So many empty seats in every car
going to the same direction. Why couldn't they use the same vehicle"? A car driving from town to
town with all seats taken is a rarity. Usually there are from one to four vacant seats that could be
used by other people that have the same ftrip.

Our project for this course is a service that helps drivers get passengers for their vacant seats
and passengers to find cars with vacant seats. The main functionalities include authentication,
offering a route, searching for vacant seats on a route and reserving a seat. Our routing
functionality utilizes an API offered by Google maps. User profiles include preferences for trips
and there is a referral system for tackling trust issues.

Similar services exist, such as kyydit.net in Finland. However, sharing rides in Finland is not as
popular as it is in some other European countries, and e.g. France has quite a bit more
advanced services for sharing rides (e.g._http://www.covoiturage.fr/), including preferences of
different characteristics of the trip, such as chatting or pets, and also the possibility to ask for a
fee for the trip. In other European countries the pay for a ride has often settled to a little bit under
the price a train or other public transport would charge for that trip. In Finland, where trips by train
are notoriously expensive - and often late, a good service for sharing rides is needed.

This documents sections 1. and 2. are based on the design document which was done earlier
on the course. In those sections new areas are marked with blue text as suggested by the
course staff.

1.2 User group analysis

The main user group for our service includes young (from 18 to 35 year old) Finns. The group is
further divided to students, students who own a car, regular travelers, and users on holiday, and
users interested in public events such as music festivals.

Below you will find justifications for each of our user-group choices.

e Young people
o Youngsters are our main user group since they travel more and are generally
more prone to new experiences, such as getting to a car with a stranger. There
are also more youngsters without a car and thus in need of a lift than there are
middle-aged and elderly people.

e Finns
o The service includes Finnish cities and cities close by.
e Students
o Students rather often move away from their hometown to study and thus take
trips to their hometown more often than an average person.
e Students who own a car
o Students who own a car form a separate user group, since it is highly relevant to
have seat providers, so the service has to appeal to this group.
e Regular travelers
o Travelers who travel regularly due to reasons such as relationships or work might
require different aspects of the service than one-time users.
e People on vacation
o People on vacation might want to take detours to see the scenery or stay in a city
for a few days and continue with a different driver.
e People interested in festivals
o Our service will be most valuable during events targeted at young people such as
music festivals due to numerous possible users sharing a destination.

Other possible relevant user properties include whether people have a car, a holiday, a work trip,
pets, a specific taste of music or a long trip or want to chat during the trip, take the scenery
route, or are motivated to use the service in order to save money, nature or to have company on
a trip.

1.3 Scenarios and use cases

1.3.1 User Scenarios
In this chapter user scenarios for two personas are presented.

Mikko

Autumn semester is almost over and Mikko starts to plan his trip to visit his parents in
Tampere for christmas. His last exam is 20.12 and he wants to leave as soon as
possible, but the trains are rather expensive for him. He opens our page and searches
for a ride, filling in the date and destination of the trip. He is taken to a page with offers of
three rides, one on 21st at 11:00 am, second on 22nd at 3:00 pm and third on 27th of
December at 5:00 pm.

He checks information on the first two trips, as the third one would be too late. The driver
of the first offer is talkative, but he has a dog on board. As Mikko is allergic to dogs, he
chooses the ride that leaves 22.12. He clicks “order” and is prompted to register. He
registers with his email accountifis-r-seme-personal-characteristicsthat-he-wantsthe
driverto-see and books the ride, suggesting that he would be picked up at 3:00pm from
Pasila’s railway station.

After a few days Mikko receives an email that the driver has confirmed his ride. He has
saved quite a bit by not taking the train, and possibly he’ll have a fun chat on the trip.

Teemu

Teemu is planning a trip to the Provinssirock festival in Seindjoki 27.6.-28.6. He opens
our page and wants to offer a ride for 3 festive people in his car. Teemu wants to be able
to pick the people his riding with, so that the trip to the festival will be part of the party.
First he-registers-logs in with his Google account and leaves information that he is
18-years-old student from Oulu, he has a nice Toyota car and he loves to party.

Then he fills in a form for sharing a ride. Teemu wants to travel from Oulu to Seinédjoki at
27.6. starting at 08 a.m. In an open text message for potential passengers he types “a
trip to the festival to party!” He sends and confirms the form and is directed to his
account page. He wants to ride back from Seinéjoki at 29.6. starting at 11 a.m. He fills,
sends and confirms another form for his second ride offer. He gets directed to his
account page, where he can review his open offers. He closes the application and starts
waiting for responses.

After a few days Teemu gets-a-message messages from two people that they thattwe
peoepite have booked a ride with him. He-ean-new-seethe-profiles-ofthese-people—and
decide-whether-to-confirmtheride-ernot They seem like fun travelling companions, so
Teemu eonfirms-the-rides-and is happily planning further his upcoming festival
experience.

1.3.2 Use cases

Our service has two major use cases: booking a ride and offering a ride, which are presented in
this chapter. To give a better picture of our service, a use case diagram for booking a ride is
provided in the picture 1.

Use case: Book a ride
Actors: User and the service
Brief: The user searches for a ride and reserves a single seat from the service.
Steps:
1. The user selects the search for a ride option
2. The user has to fill a route information form
Start and end locations of the route are required

O
o Time and date are-eptienal
o {(Possibi I {ened . F . . f
o Additional result filtering is optional

3. The user sends the form to the service

4. The service validates the form and searches for matching ride offers

o If the form is missing required information the user has to provide the missing
information before advancing
o If there are no matches the user has to try again with different route information
5. The service shows a list of matching ride offers
o There must be available seats for a ride offer to shown on the list
6. The user browses the ride offers and selects one
7. The service shows the full information of the ride offer
8. The user has to login before the seat reservation option will be available
o If the user is not a member of the service a sign in flow is activated
. The user confirms the seat reservation
10. The service saves the seat reservation and sends a notification to the user and to the
owner
o (the-oewnerhasan-option-torejecttheseatreservation)

11. The user logs out

Use case: Offer a ride
Actors: User and the service
Brief: The user fills a route information form and sends it for the service. The service will
process the form and saves it for listing.
Steps:
1. The user has to login before the ride offer option will be available
o If the user is not a member of the service a sign in flow is activated
2. The user selects the offering option
3. The user has to fill a ride information form
o Start and end locations of the route are required
o Time and date are required (Possibility to utilize a pop-up calendar)
o (Possibility-to-choose-startand-endHocations-froma-interactive map)
4. The user sends the form to the service
5. The service validates the form
o If the form is missing required information the user has to provide the missing
information before advancing
6. The user has to confirm the ride information
The service saves the ride information and sends a notification to the user
8. The user logs out

~

1.4 Main features
The main features of our service include authentication, offering a ride, searching for a ride and
user profiles. This chapter elaborates further on each of these features.

e Authentication
o Registration with name and email.
o Login, sign out

o Session handling
o Google login
e Offer aride
o Offering a ride includes filling the following information:
m Point of departure
m Destination
m Free space
m Time and date
m A text field for open comments
e Search for a ride
o Searching for a ride includes filling the following information:
m Point of departure
m Destination
m Contact message and additional information for the offerer
m Preference of filtering of search results
e User profiles
o The user page includes personal information and booked and offered rides.

1.5 Structure of the site

The site is designed to work as a single-page application where the user stays on a single page.
The content of the page is changed dynamically according to the current state of the application.
In this final documentation a page may refer to a widget inside a page that can be changed
dynamically.

Overall structure of the site is represented in the site structure diagram and the functionality of
the each individual page are described below:

1.5.1 Landing page

Landing page is the front page of the site containing links to different parts of the service. The
page itself has big links to both searching for a ride and offering a ride. The site has a header
which has all necessary links for navigation: home page (By clicking the fitle), offer a ride and
search for a ride. Account page link is shown if a user is logged in, otherwise a login page link is
shown instead. The user can register from the login page.

1.5.2 Account page

Account page will be available after the user has registered and logged in to the site. On the
account page the user can view his personal information. Also all the user’s current and past
reservations and offers are listed on the page.

1.5.3 Login page

On the login page the user can login to the service. After logging in the user is redirected to the
account page and placing reservations or leaving new offers is made available. The login
credentials are stored; there will be no need to login before the credentials expire again. If the
user doesn’t have an account there is an option to register for the service. This will redirect the
user to the register subpage, which contains a form for registration.

The user must provide his user name, email address and user password on the register
subpage in order to create an account. After the provided information is validated on the server
the user can confirm the account creation. This redirects the user to the account page.

The user can choose to log in and register with his google account.

1.5.4 Search page

The search functionality is divided in multiple subpages where the user can view and reserve
rides. On the search page the user must provide either the source or the destination address or
both of the addresses in order to search for matching ride offers. The user can optionally choose
to filter the resulis by distance, time, free seats or seats in total. The search results will be listed
below the search parameters and the results may be divided on multiple pages.

Selecting a ride from the list dynamically shows more information on the ride. On the same page
there is a button for reserving a seat from the ride. This will be active only when the user is
logged in and at least one seat is available. After reserving the seat there is notification that the
reservation has succeeded.

1.5.5 Offer page

On the offer page the user can leave ride offers for others. On this page the user must provide
the source and destination addresses of the ride, departure date, the number of available seats
and optionally some text to be seen by the possible future passenger.

When all the required information is provided and validated on the server the user can advance
to the confirmation subpage where the user can review and confirm the offer. If the user is not
logged in then the user must login before confirming the offer. After successfully leaving the offer
there is a notification.

Landing page

Account Login Offer

Register Results

Reserve

Diagram 1: A site structure diagram

1.6 Reflection

User groups, scenarios, main functionalities or the structure of the site didn’t change
that much. Some features weren’t realized, mainly to keep the page simple and because
of lack of time. For example, we didn’t do quick search button for the landing page,
because it was recommended by the assistant that the landing page should either have
the big links to search/offer or the quick search, preferably not both.

There is no ability to change user information, because we decided we don’t need the
actual name of users, and we shouldn’t ask for it if we don’t need it. That left us with
username, email address and password. The email address is used to log in, so we think it

isn’t necessary to be able to change any of them. A possibility to change the password
should be made possible in the future.

Additional offer information is shown dynamically by expanding the offer element and
showing the information and the order button. This is a lot smoother than showing an
additional page. We added Google login to make it easier to use our application.

Complicated communication between the one offering the ride and the searcher was left
fully to their responsibility, we only provide the email address. This communication
wasn'’t of high priority even if it was in our user stories, as this way the application itself
is rather light and users can use it more flexibly.

2. Content

2.1 Content production and update

Our web service depends heavily on the user-generated content. Most of the content is
generated when the users leave their ride offers or registers for the service. This means that
there will be almost no content when service is launched.

To solve the lack of the content in the launch we might need to create content by our self for the
launch. This can be done by recruiting people to leave ride offers before the service is started
and maybe even paying them in advance for leaving ride offers. People can be encouraged to
leave offers through social media campaigning on Twitter and Facebook and in the launch by
offering a price to a random user who has offered a ride. We could use Twitter tags to
encourage users to post about their experiences using the service, like posting a picture with the
person you're riding with and tagging it with a certain tag. Creating a feeling of community
through social media for the users would be useful for the service.

There also exists a closed group of 24000 users in facebook called kimppakyyti, which could be
used to reach our potential users.

After launching the service the content production should rapidly increase by the number of
active user the services has. Especially user that are offering rides are important for content
production.

Besides the content created by the users there are geographical content created by third party
APIs. Geographical data is needed for validating the source and destination addresses. Also the
search algorithm may need the geographical coordinates of the addresses and route
coordinates of the path from the source address to the destination address. The geographical
data is fetched on the client side using third party APIs and the data is then sent to the server
where it is stored in the database.

10

There is a notion of terms of service and contact information in the footer of the site.

Offer page
Content Geographical data User content
Reference material None None
Producer of the content Google Maps API User
Copyrights of the producer https://developers.google.com/maps/terms
Modifications None None
Time dimension Infinite When account is removed

Languages

English/Finnish

Finnish

Search page

Content

Geographical data

Reference material

None

Producer of the content

Google Maps API

Copyrights of the producer

https://developers.google.com/maps/terms

Modifications

None

Time dimension

Session duration

Languages

English/Finnish

2.1 Reflection

We didn’t have much content planned during the design phase, because the content is

mostly generated by users. However, it's important to think how to get users to create

content for the site and get them interested in it. Social media campaigning could be a

good way to interact with our main user group, young and active people. Creating

interaction between the users outside the site can also bring new users to the site.

3. User Interface and interaction

3.1 User Interface

In the feedback of our design document you requested more justification for design decisions in
the layout. The user interface was designed to be as simple as possible to take care of the core

11

tasks: offering a ride and searching for one. That’s why it consists of a header with navigation, a
footer and very simple content elements. Even the amount of header buttons was minimized by
putting registration flow inside the login page instead of it's own button in the navigation bar, and
homepage link works by clicking the title. The home page does not have a quick-search option in
order to enhance usability by not having many ways to reach the same goal, as suggested by
the course assistant.

As the application works through generating javascript, we decided to use as much css styles
as possible instead of images to optimize performance issues.

Green color was chosen to remind people of the nature-friendliness of sharing rides. White
background was chosen for simplicity and lightness. Gradient was added to look a bit more
modern. All necessary tasks were put into containers so that the user intuitively knows they
belong together.

In picture 1 you can see the home page. The middle of the page has buttons for the core
functions of the service: offering a ride and searching for a ride. The header has a navigation bar
that also includes a login button. Clicking the title would result in the user getting to this page. If
the user clicks “kirjaudu”, he’s taken to login page, which is shown in picture 2.

B Kyytipalvelu x \{fB Kyytipalvelu x fat
<« C A | [) 127.00.1:55274/Kyytipalveluhtml?gwt.codesvr=127.0.0.1:9997#home ®: O kg =
i Sovellukset I} Reittiopas S Helsingin Sanomat g Noppa - Kurssitorg.. D Image notfound [TervetuloaFaceboo... [summarybaboons &y My Drive - Google D... |0] Outlook Web App (D YouTube [Bookmarks »

Tarjoa Kyytia Etsi Kyytia | Kirjaudu =

Tervetuloa Kyytipalveluun!
Loyda tai tarjoa autokyytejd kaupunkien valilla

Etsi kyytia Tarjoa kyytia

Kyytipalvelu auttaa kyytien tarjoaiia ja niiden etsijoita lytamaan toisensa. Vastuu kyydin
miellyttavasta toteutumisesta ja siihen liittyvista jarjestelyista on kayttajilla.

Yhteydenotot: moiheikki (at) gmail com

s e 22
L TN

12

Picture 1: Homepage

In picture 2 you can see how the content area of the page changed into login page. The user is
required to add his username and password in order to log in. There’s also a link to register
subpage. The user can additionally choose to log in with his google account for which there is an
option. The register subpage is similar to this one in layout except without the google button area,
and thus a picture of it is not needed. After adding user information and clicking the login-button
the user is taken to the main page. From there he can choose to search for a ride.

P @k X <
< @ # [} 127.00.1:55274/Kyytipalveluhtmi?gwt.codesvr=127.0.0.1:9997#login By O i =
»

S5 Sovellukset £F Reittiopas #S Helsingin Sanomat @ Noppa - Kurssit erg.. WD Image notfound [Tervetuloa Faceboo... [summarybaboons &y My Drive - Geogle D... |0 Outlook Web App I YouTube [Bookmarks

Tarjoa Kyytia EtsiKyytida || Kirjaudu

Kirjaudu

Kayttajanimi

Salasana

Ei omia tunnuksia? Rekisterdidy tasta

Tai

Kirjaudu google-tunnuksillasi

{Emme jes mitazn ilman lupsssi)

Kyytipalvelu auttaa kyytien tarjoajia ja niiden etsijoita [6ytamaan toisensa. Vastuu kyydin
miellyttavasta toteutumisesta ja siihen liittyvista jarjestelyista on kayttajilla.

‘Yhteydenotot: moiheikki (at) gmail.com

)
& sl 13‘5_5014

Picture 2: login page

In picture 3 you can see how the header has changed after the user has logged in. It now has the
username of the user and the possibility to log out or enter the account page. You also see the
search page in the content area. Only the upper container is seen at first, and as the user filled in
information “Helsinki” and “Oulu” and clicked search, the website dynamically added the search
results under the search container. Each is shown only as small search results at first, but by
clicking “lisatietoja” the user is able to see all necessary information about the ride, including a
reserve button. By clicking that button he can reserve a seat in that ride - after being prompted
whether or not he’s sure of his choice.

13

® Kyytipalvelu x @ Kyytipalvelu x
€ = C A [127.00.1:55274/Kyytipalveluhtml?gwt.codesvr=127.0.0.1:9997#search
5% Sovellukset < Reittiopas HS Helsingin Sanomat '@ Noppa - Kurssit org.. HD Image not found [Tervetuloa Faceboo...

®: 0=

B summarybaboons & My Drive - Google ... | 0] Outlock Web App I8 YouTube [Bookmarks »

TarjoaKyytia || EtsiKyytia || Kayttaja

Kyytihaku

Mista
Oulu
Mihin
Helsinki
Lajitteluperuste
“:EIVE v ‘
Qulu-Helsinki
¥ Lisatietoja
Vapaita paikkoja 3 Lahtbosoite 90100 Oulu, Suomi
Paikkoja yhteensa 4 Kohdeosoite Helsinki, Suomi
Terveiset kuskilta:
Kuski: Heikki com
Oulu-Helsinki

b Lisatietoja

Kyytipalvelu auttaa kyytien tarjoajia ja niiden etsijoita Ioytamaan toisensa. Vastuu kyydin
miellyttavasta toteutumisesta ja siihen liittyvista jarjestelyista on kayttajilla.
‘Yhteydenotot: moiheikki (at) gmail.com

Al o« o a

Picture 3: search page

In Picture 4 you can see how the user chooses to also offer a few rides of his own. He clicks
“tarjoa kyytia” on the navigation bar. He fills in the necessary information and uses the pop-up
calendar for choosing a date. He also fills in a text message implying that he’s talkative.

14

P S - ==
€ = C A [127.00.1:55274/Kyytipalveluhtml?gwi.codesvr=127.0.0.1:9997#offer ® O EJ =

S5 Sovellukset £F Reittiopas #S Helsingin Sanomat @ Noppa - Kurssit erg.. WD Image notfound [Tervetuloa Faceboo... [summarybaboons &y My Drive - Geogle D... |0 Outlook Web App I YouTube [Bookmarks »

TaroaKyytia || EfsiKyytia || Kayttaja

Kyytitarjous

Mista
Helsinki

Mihin

Kouvola

Willoin

ISunday. May 18, 2014

« 2014 May »
M| T W T|F &8
320 30 4|2 3|4
5|6 |7 8|8 40|

AR ARTARTIR AR A - |

19 20 21 22 23 24 5

26 |27 26 |:29.| 30. [B34)[4

Kyytipalvelu auttaa kyytien tarjoajia ja niiden et 4 l6ytamaan toisensa. Vastuu kyydin

miellyttavasta toteutumisesta ja siihen liittyvista jarjestelyista on kayttajilla.

Yhteydenotat: moiheikki (at) gmail.com

Picture 4: offer page

In picture 5 you will see the user’'s own account page. It includes his basic information
(username and email address) and all rides he has either reserved a seat in or has offered.
These ride elements can also be expanded to show more information as in the search results,
but naturally there’s no reserve button.

15

' B Kyytipalvelu x V(B Kyytipatvelu x|
€ = C A [127.00.1:55274/Kyytipalveluhtml?gwi.codesvr=127.0.0.1:9997#account ® O EJ =
i Sovellukset ¢ Reittiopas #S Helsingin Sanomat @8l Noppa - Kurssit org... WD Image not found [Tervetuloa Faceboo... [summarybaboons Ly My Drive - Google D... | 0] Outlook Web App 3 YouTube [Bookmarks »

Tarjoa Kyytia || FEtsiKyytia

moiheikki @gmail com

Paikkasi kyydeissid

Espoo-Tampere
P Lisatietoja
Tarjoamasi kyydit
Helsinki-Oulu
P Lisatietoja
Oulu-Helsinki
P Lisatietoja
Espoo-Tampere

Kyytipalvelu auttaa kyytien tarjoajia ja niiden 3 loytamaan toisensa. Vastuu kyydin

miellyttavasta toteutumisesta ja siihen littyvista jarjestelyista on kayttajilla.

Yhteydenotat: moiheikki (at) gmail.com

Picture 5: Account page

As the course requested screenshots from multiple browsers, the next one (Picture 6) is
the same page from mozilla firefox.

16

@
B Mot Visited 7 Facobock A5 HER OB YeuTuba - Recadenst.. O] Dotlesk Web pp < Reatiepas [Google-katantes @ Dma Mopps-stuivuni e My Driva - Gasgla Drive 11

- [Lok Poe - Probeague - X Bait- 2003 Agent- T 3 Seshuky [Neetla =

Kiyttija:
Huikki

Sahkopastiosaite:
maihaikkiggmail com
Paikkasi kyydeissd
Tarjeamasi kyydit
Hakbsinki Tampars
¥ Lisstiotsja
Vapaits paikkoja 1 Latnconoite Hetsinki, Finland
Paikkoja yhivenss 1 Kohdecscde 1100 Tasmpere. Finland
Tervuisat kuskina: [T
ki Hedki Sahkopost: moihedkifigmadl com

Halsinki Ouly

Picture 6: Account page in firefox

3.2 Reflection

Our original designs were boundary objects for discussion: We used them to discuss the colors
and in the spirit of “this element here is one-colored, but in reality it'll have a gradient to make it
look better”. The positioning of differents elements stayed and the colors changed to look more
modern. We held on to our idea of a very simplistic design.

4. Architecture and technologies

4.1 Architecture

The resulting architecture of the services matches almost exactly our design architecture.The
service is designed to work as a single-page application where the document content is
dynamically changed via JavaScript. As suggested in the framework’s documentation we used
model-view-presenter pattern for the service architecture. An example of the service architecture
is illustrated in the diagram below. All the views are be built using the framework’s built-in Ul
editor. The models will be stored in the database provided by Google App Engine. We are also
using a third party library to simplify the store and save process of the models. The data models
are shared between the client and server code. The presenters are responsible for handling any
Ul events and communicating with the application controller and the server. Communication
between the client and the server is done using the framework’s built-in RPC services which
also does the automatic serialization of the data models. Contrary to the original server-side

17

architecture we ended up to using our own custom solution for the user authentication and
authorization. We were first looking for third party system for user management but we were
unable to find suitable library for your technology stack. For Google Maps API integration we are
using a third party module for Google Web Toolkit that provides us clean and simple API to
access all the latest Google Maps API features.

Diagram2: An illustration of the client architecture

Using the architecture described above provided us very robust and easily modifiable
architecture with functionalities needed for our service. Using the frameworks integrated Ul editor
and simultaneous programming of the server and client code allowed us rapidly to develop our
service and achieve our goals. Also using a single programming language for both client and
server development made the application and server-client communication debugging much
more easier and also allowed us to easily shared client and server side tasks.

4.2 Database

The database of our service is implemented using Google App Engine’s DataStore API which
provides us a schemaless NoSQL datastore. This means that the entities of same kind stored in
the datastore can have different properties. Also we can create all the database tables in the

18

code during runtime without needing to execute any external scripts. This allowed us to easily
modify our database structure without needing to do any changes to entities previously stored in
the database. The queries that can be executed are more restrictive in this system because of
the way how the entities are indexed.

Diagram3: Database structure of the service

The structure of our service’s database is a very compact. The service has five different kind of
entities and the most important ones are the User and Offer entities. User entity stores all the
user information which is includes unique identifier, email address, user’s nickname and the
offers and reservations made by the user. The login information is stored in a separate entity.

19

GoogleUser and CustomUser entities hold the login information. GoogleUser entity is used when
the user sign-in using Google Account and CustomUser entity is used in other cases. User’s
password is encrypted and random salted when it is stored in the CustomUser entity.

Offer represents a trip that the user can leave to the services and from which other user can
reserve seats. Offer entity contain source and target address which stores the street, postcode,
city and location of the address. These values are filled by the client using the Google Maps API.
The street and postcode are not required and may be empty in some cases. The location of the
address is most important information because it is used by the search algorithm. The other
properties can be used on the client side to sort the results.

The Offer entity also contains the date of the trip, number of seats, number of free seats and the
keys to the reservations made by the other users. Reservation entity holds the information about
the reservation including number of seats reserved and the user who made the reservation.

4.3 Performance

On the client side the performance of the service depends heavily on the browser’s JavaScript
performance because all the Uls are created dynamically. The JavaScript code generated by the
GWT framework is highly optimized and browser independent. We are also using asynchronous
functions to keep our Uls responsive when doing heavy work (for example loading other Ul’s) and
communicating with the server or third party libraries. We have tried to avoid any extra traffic
caused by images with minimizing their usage and relying on using plaing css-styles.

The search algorithm used to find offers is our biggest bottleneck. To improve the performance
we have divided some of the task between client and server. The client does all the address
parsing and location finding using the Google Maps API. The server only needs to compare the
location coordinates to the coordinates stored in the database. Because of the automatic
caching and synchronization of the Google App Engine the database queries should be really
fast even when the queries are reasonable large. We didn’t have enough time to further optimize
the queries but in the future version we could use geohashing to encode our geographic
coordinates. This should greatly increase the speed of the search queries because we could
filter out much more results when doing the query to the database. Currently most of the filtering
is done after the query.

4.4 Security

For user authentication and authorization we planned to use a third party library that could handle
securely all the user registration and sign in flows for us. But unfortunately we couldn’t find a
suitable working solution for our service because of the technologies and dependencies we

have. We implemented our own user management system that stores the user password using
BCrypt and random salting. This should ensure that the passwords shouldn’t be easily crackable
if passwords are stolen.

20

To fight against other type of attacks we have followed strictly Google Web Toolkit’s security
guidelines. Instead of directly modifying the html code we rely on the component abstraction
provided by the GWT framework. GWT framework is very secure against the XSS vulnerabilities
because of the abstraction. Also all communication between the client and server is secured
using HTTPS communications protocol. Users are always redirected to use HTTPS over
insecure HTTP communication protocol. Unfortunately we didn’t have enough time to implement
GWT framework’s built-in XSRF token service which would have protected us against cross-site
request forgery attacks.

4.5 HTML & CSS

Google Web Toolkit mostly creates the html by itself - in some specific cases we wrote some
html ourselves. CSS were written by hand and can be found in Kyytipalvelu.css. We decided to
include them in a single file instead of nesting multiple files.The HTML Google Web Toolkit
creates is defined through an XML-file and leads to well formed and valid HTML. The validation
was tested with w3schools HTML validator. CSS can be found in Kyytipalvelu.css. We decided
to include them in a single file instead of nesting multiple files.

4.6 Browser dependencies

All the browser compatibility issues are handled by the Google Web Toolkit. This means that we
didn’t need use any time to work on ensuring that the service works on all browser. The only
dependency is that the browser must have JavaScript enabled otherwise the service will not
work at all. All other features are created using JavaScript supported by all the browsers. The
css-styles should work at least in the tested browser. The services has been mostly tested with
Google Chrome and Mozilla Firefox. Also some smoke testing have been done with Internet
Explorer (version 6 or lower of the Internet Explorer is not supported anymore by the Google
Web Toolkit).

4.7 Technologies and Installation

The main technologies used in the development were Google Web Toolkit (GWT) framework
and Google App Engine (GAE) service. These two technologies are the core of your service
infrastructure. The GWT framework handles both client side and server side logic. Also with the
GWT’s Ul editor we were able to implement Ul's rapidly. The GAE services provide us the
databases for storing our data and the hosting for the service. We have also used couple of third
party plugin-ins with GWT framework that includes Google Maps API integration and simplified
data storing to GAE services.

4.7.1 Technologies and libraries

Name Version Link

21

Google Web Toolkit 2.51 hitp://www.gwtproject.org

The Google Web Toolkit (GWT) provided us the infrastructure to build the service easily with
Java programming language without needing to code single line of JavaScript or any other
language. Also both the client and the server side programming were done in a same project
workspace. This greatly reduced any communication errors between the server and client. Also
debugging of the service was really easy because were able to simultaneously debug both the
client and the server with the debugger provided by the Java framework.

Name Version Link

Google App Engine 1.9.1 https://developers.google.com/appengine/

The Google App Engine (GAE) provided us the database to store our data and also the hosting
services for our service. Because of the GAE’s schemaless datastore it was easy for us to
change the database structure by our needs during the development. Also the GAE integrates
seamlessly to the GWT framework this meant that we didn’t need to spent time on setting up or
deploying our service. Everything was done by a single click in the IDE. Hosting services
provided us the security and stability to run our service. All communication is done over secured
connection and the server and database status can be monitored from the GAE’s administrative
pages.

Name Version Link
GWT-Maps-VS-Api 3.10.0 A|pha 7 https://qgithub.com/branflake2267/GWT-Maps-V3-Api
th-ajaxloader (required) 1.1.0 https://code.google.com/p/gwt-google-apis/

With the GWT maps APl we were able to query locational information from the Google Maps API
using simple Java callbacks on the client-side. The implementation took only few lines of code.
Unfortunately we didn’t have enough time to use any interactive maps and we only used it to
check the addresses get from the user input and fetching the geographical coordinates of the
addresses.

Name Version Link
Objectify 50 https://code.google.com/p/objectify-appengine/
Objectify-GWT 1.0 https://code.google.com/p/objectify-appengine/

22

Objectify library is data access API for the Google App Engine’s DataStore API which simplifies
loading, saving and querying when using GAE’s data storing services. It hides the lower level API
of the DataStore and provides us simpler API to use. Using Java’s annotations and generics we
were able to reduce the complexity of saving and loading information in our service and with
GWT support we could use the object model also on the client side. This meant that we didn’t
need to create duplicate models for the client-side.

4.7.2 Running and deploying the service

The Eclipse IDE is required to run or deploy the service. You will also need the Google Web
Toolkit plug-in for the Eclipse IDE. Google App Engine libraries should come with the GWT
framework but after the installation you may need to update the existing libraries to the latest
versions using Eclipse IDE’s update functionality. The latest version of the GWT framework
(2.6.0) has an issue that prevents the users to open the Ul editor, because of that we used 2.5.1
version of the GWT framework. After installing the frameworks and importing the project files the
service should runnable and deployable from the Eclipse IDE. Below are step-by-step
instructions to run and deploy the service.

1. Install Google Web Toolkit Plugin For Eclipse IDE using the instructions from

http://www.gwtproject.org/download.html

Select “Google Plugin for Eclipse”, “GWT Designer for GPE” and “SDKs” to install

Update Google App Engine libraries by checking for new updates from the Eclipse IDE

Import the “Kyytipalvelu” project as an existing project to the Eclipse IDE

Check that the Google Web Toolkit and Google App Engine are included in the project’s

build path (also check that all the third party libraries are included)

Select “Kyytipalvelu.gwt.xml” located in “src/fi/aalto/kyytipalvelu/” using the file explorer

Choose run or debug from the selection menu to start the service

8. To deploy the service you have to press the GDT pulldown icon (blue google icon) from
the Eclipse IDE

9. Selecting the “Deploy to App Engine...” will start the deployment wizard

akrwnN

N o

5. Dynamic functionality

As an example of the site’s dynamic functionality we have decided to show how the site’s search
system works. The flow of the system is described below and it is also presented as an diagram
in the picture below.

The idea behind the search system is that the user can search for ride offers that matches to the
given search parameters. The search parameters that the user can input are source and target
addresses. Both target and source addresses are not required but at least one them must be
given. Before sending the search parameters to the server two things are done. First the target
and source addresses processed with Google Maps API. This process will resolve the real

23

address and location of the address inputted by the user. The Google Maps API can find us the
missing information if the user didn’t provide all the needed information. For example if the input
address is missing city name, the API can guess the correct city from the address provided. It
also provides us clean and formatted address of the input. The most important functionality of
the APl is the fetching of the geographical coordinates of address. For any address it can resolve
the geographical coordinates and return them using latitude and longitude values. This is crucial
for the search algorithm used by server. If the API can’t resolve the address inputted by the user
the process returns an empty address which the client must handle properly. If at least one of
the addresses inputted by the user is resolved the client will send search request to the server.
Request is asynchronous and it doesn’t block the Ul but the search button is disabled while
waiting for the response. This to avoid spamming of the same search request. If none of the
addresses were resolved the client will show a message stating that the addresses couldn’t be
resolved.

When the server gets the search request it will first validate the search query parameters by
checking the target and source addresses and throwing an error if they are not valid. The client
will catch the exception in the server response and acts correctly. After validation the server will
begin the search for nearby offers. Due to the restrictions of the Google App Engine we first
must make a query that returns all offers that are after the date get from the search parameters.
After that the query results are processed in a loop where the source and target address of the
offer are compared to the search request’s source and target address. This done by using an
algorithm that can calculate distance between two geographical coordinates and return the
distance in meters. Also the offer must have enough seats to be accepted. This is repeated until
all offers returned by the query are compared or the maximum limit of search results is reached.
Currently the maximum limit and distance are constants determined by the server. The server
will return a response containing an array of offers that matched to the search request
parameters. The array may be empty if no matching offer are found.

After receiving the response from the server the client empties and fills the results container with
the results from the response. If no offers were found a message stating that the user should try
again with different search parameters is shown. ltems in the results container are filtered by the
currently active filtering mode which the user can change any time. The default option for sorting
is by distance from closest to furthest. Each item shows information of the offer. This includes
formatted address of the source and target addresses, number of seats, number of available
seats and information about the owner of the offer.

To reserve a seat from the offer the user must press the reserve button in the drop down menu
of the item. This triggers the reservation process where the user must first confirm the
reservation via popup window. After that a new reservation request is sent to the server. The
server will check that the user is logged in and throws an exception if it fails. Next the server will
check that the offer has enough seats available for the reservation. If the check fails the
reservation is discarded and an exception is thrown. If succeeded the reservation is saved in the
database and added to the offer. The offer is also updated and saved in the database. The

24

server will return a response containing the created reservation. The client will show either
success or failure message according to the returned response state. Also the offer where the
reservation was made is updated.

Diagram 4: A flow diagram of the dynamic search functionality

5.1 Reflection

Our final implementation follows our original design very closely. There are some features that
were dropped because of the time limits and conflicts with the technologies used. Most
importantly our architecture stayed untouched throughout the development. This means that we
didn’t need to do any large modifications to our project in order to make some of the features
work. Also the performance estimations should be quite accurate but this cannot be confirmed
until performance analysis is done. To improve security of the service we were thinking of
implementing GWT framework’s built-in XSRF token service but we had to drop it because we
run of time. Reason for this was the unexpected problems finding a suitable user authentication
and authorization library for the project. This caused us to waste lot of time on task that was

25

considered trivial and quick and it also delayed implementations of the other features. This could
have been avoided by paying more attention to the tasks that were thought to be
“not-so-important” and trivial to implement. Browser dependencies are handled entirely by the
Google Web Toolkit and they have stayed same through the development process. For the
dynamic functionality we managed to implement almost all the features that were described in
the original design documentation. The route comparison stage from the search algorithm and
email notifications were dropped from the final version due to the time limitations. We decided to
implement algorithm that only compares start and finish coordinates instead of comparing full
path. This was because complexity of algorithm would have grown exponentially and it would
have required considerably more research and time to implement.

In overall our original design was very well planned and realistic. We didn’t need to make any
large changes to the service design after starting the development. Also the use of the more
unknown Google Web Toolkit and Google App Engine provided us lot of valuable experience
working with platforms and services that are closely tied together.

6. Design of the project

6.1 Work breakdown structure

Login page
Name Type Description Priority Estimate Used Assigned to
Layout design Design Create a sketch of the page | 2 2h 4h
y 9 g e L
Layout Client Implement the page layout | 2 2h 3h -
. . using the editor.
implementation
Page logic Client Request authentication 2 4h 3h
9 9 information from the server -
and redirect the user to the
front page. Allow users to
sign in for a new account.
Google login Client & Server Enable the user to log in 2 10h 10h
9 9 with his Google account -
Fetch account Server Authenticate the user 2 6h 10h []
information information and fetch the
in account information from the
database.
Testin Client/Server Test client and server side | 3 1h 1h
o functionalities. -
Sign in page
Name Type Description Priority Estimate Used Assigned to
Layout design Design Create a sketch of the page | 2 2h 2h
v 9 9 layout. -

26

Layout Client Implement the page layout | 2 2h 2h -
implementation using the editor.
Page logic Client Validate the account 2 4h 5h
9 9 information with the server -
and create a new account.
Redirect the user to the
account page.
Store account Server Validate the account 2 8h 20h [
information information and store it to
the database.
Testin Client/Server Test client and server side 3 1h 1
9 functionalities. -
Account page
Name Type Description Priority Estimate Used Assigned to
Lavout design Desian Create a sketch of the page | 2 2h 2h
yout desig 9 oy I
Layout Client Implement the page layout | 2 2h 2h -
implementation using the editor.
Page logic Client Fetch account information 2 4h 2h/1h _
from the server.
Show offers Client/Server Fetch and show all the offerq 3 6h 1h []
where the user is the owner
of.
Show reservations | Client/Server Fetch and show all the 3 6h 1h []
reservations of the user.
Testin Client/Server Testclient and server side [3 1h 1h
o functionalities. -
Search page
Name Type Description Priority Estimate Used Assigned to
Layout design Design Create a sketch of the page{ 1 2h 2h
layout.
Layout Client Implement the page layout | 1 2h 4h
implementation using the editor.
page Iogic Client Send the search requestto [1 4h 8h

the server and present the
search results. Show only
fixed amount of offers.

27

Filters for the Client/Server Allow users to filter search | 4 4h 3h [
search results results using distance,
date, price etc.
Search for closest Server Create an algorithm that | 1 4h 4h [
tes can find the best matching
rou routes using the route
information.
Fetch offer Server Fetch offers from the 1 2h 2h []
information database.
i i Test client and server side
Testing Client/Server Test dlent anc 3 1h 1h []
Offer information page
Name Type Description Priority Estimate Used Assigned to
i i Create a sketch of the page|
Layout design Design -y 1 2h 1h [
Lavyout Client Implement the page layout | 1 2h 2h
im?)llementation using the editor. -
i i Send a seat reservation to
Page IOgIC Client the server and redirect to 1 4n Sh -
the confirmation page.
R Check for open seats and 2 4h 4h
eserve a seat Server reserve a seat from the -
offer.
i i Test client and server side
Testing Client/Server Test dlent anc 3 1h 1h [
Landing page
Name Type Description Priority Estimate Used Assigned to
i i Create a sketch of the page layout,
LayOUt deSIgn DeSIQn decide which page it is based on. 3 2h 2h -
Layout Client Implement the page layout using | 3 4h 1h -
implementation the editor.
Offer page
Name Type Description Priority Estimate Used Assigned to
i i Create a sketch of the page|
Layout design Design Sy 1 2h 2h -
Layout Client Implement the page layout | 14 2h 1h -
implementation

28

i i Send offer information to
Page logic Client Send offer 1 4h 2h [
Validate offer Client/Server 2 2h 1h [
information
Store route Server Store the route waypoints td 2 4h 2h -
information the database. Waypoints
are used by the search
algorithm.
Store the offer information
it%:?n(::z; Server to the database. ! 2h 2h -
i i Test client and server side
Testing Client/Server Test dlent anc 3 1h 2h [
Offer/Reserve Confirmation page
Name Type Description Priority Estimate Used Assigned to
i i Create a sketch of the page
Layout design Design Sy 3 2h Oh []
Lavyout Client Implement the page layout | 1 2h 1h
im?)llementation using the editor. -
i i Show the offer or the
Page IOgIC Client reservation information. L 4h 1h -
i i Test client and server side
Testing Client/Server Test dlient anc 3 1h 0,5h [
Main layout
Name Type Description Priority Estimate Used Assigned to
Site layout design Design Create a sketch of the site layout.| 1 8h 8h -
Site Layout Client Implement the site layout using 1 8h 7h _
implementation the editor.
i i Plan and Create the site wide
Css deSIQn DeSIgn stylesheet (colors, styles etc). 2 8h 5h -
j Create a sketch of the footer and
g:saigﬁr and footer Design Create a sk 3 4h 3h [
Header and footer Client Implement the page layout using | 3 4h 3h []
implementation the editor.
i i i Implement basic site navigation
Navigation Client Implement bast 1 8h 8h [
i Rough sketches of the site
Sketches DeSIgn structure and layout. 1 4h 5h -
Testing Client Test for layout errors. 3 1h 0,5h -

29

Server setup

project design

Name Type Description Priority Estimate Used Assigned
to
i i Determine the relations and create
Design the Design/Server ! s 1 2h 3h
a document describing the
dtatat:ase database structure.
structure
Create the databases using the
Create Server e e 1 4h 2h
databases 0091 APpS ENgine AT
Set up the server | Server Create server setup scripts. 1 4h Oh [|
Deploy the Server Deploy the server to the Google 2 2h 1h
ploy N
server Apps Engine.
Familiarize Desing/Client/Serv | Readthe framework 1 6h 7h
Working with the er documentation and tutorials.
framework
Design Documentation
Name Type Description Priority Estimate Used Assigned
to
Layout Design Cover page, contents page, 1 2h 10h
v 9 styles, headers and footers -
Design demo Documentation Design demo required by the | 1 2h 4h []
course
lllustration Documentation llustrations for the design 1 3h 3h -
document
Description of our | Documentation Introduction, user group 1 2h 6h []
work analysis and the structure of the}
site
Description of Documentation Definition of each page and the | 1 2h 4h []
content production process
Description of the | Documentation See design document 1 2h 4h -
Iayout and the instruction from noppa
user interface
Description of Documentation See design document 1 2h 4h []
dynamic instruction from noppa
functionality
Description of Documentation Time & areas of responsibility | 1 2h 4h []

Demo

30

Name Type Description Priority Estimate Used Assigned
to
Demo meeting Documentation Preparation for the meeting and | 4 3h 4h
1-3.4 the meeting itself
Final Document
Name Type Description Priority Estimate Used Assigned
to

Layout Documentation Cover page, contents page, | 1 1h 1h [
styles, headers and footers

Illustration Documentation llustrations of different sides | 1 1h 2h [
of the product

Description of our Documentation Introduction, user group 1 1h 3h []

K analysis and the structure of

worl the site

Description of Documentation Definition of each page and (1 1h 3h [

content the production process

Description of the Documentation See design document 1 1h 2h [

Iayout and the user instruction from noppa

interface

Description of Documentation See design document 1 2h 2h []

technologies and instruction from noppa

libraries

Description of Documentation See design document 1 1h 2h -

dynamic instruction from noppa

functionality

Description of Documentation Time & areas of responsibility 1 1h 2h [

project design

Retrospection Documentation What went well during the 1 6h 6h
project, what did not

31

6.2 Time schedule

Project stages
Priority 1

Design Documentation
Offer Creation page
Search Offers page
Offer/Reserve Confirmation page
Offer information page
Sign in page

Login page

Account page

Front page

Main Layout

Server setup

Final decument

Demo

Priority 2

Offer Creation page
Search Offers page
Offer/Reserve Confirmation page
Offer information page
Sign in page

Login page

Account page

Front page

Main Layout

Server setup

Priority 3

Offer Creation page
Search Offers page
Offer/Reserve Confirmation page
Offer information page
Sign in page

Login page

Account page

Front page

Main Layout

Server setup

2014
February March April

6(7|8)9|10(11(12(13|14|15|16|17|18(19(20|21 |2

May

The original Gantt chart

32

Our original Gantt chart planning can be found above. In the end the tasks were
distributed a bit more towards the end of the course, not as evenly as planned. We still
worked with the project during the whole spring, so even if the time distribution didn’t
go exactly as planned, we did our best with the time we had.

6.3 Use of time
The use of time on each tasks is depicted in the work breakdown structure above.

The approximated amount of time used by different team members:
: 95 hours

: 102 hours

: 85 hours

6.4 Reflection

The design phase of the project went smoothly with all team members having sufficient amounts
of time for the project. The implementation phase proved more difficult as all members were
rather busy with other courses and/or work. Thus the weightload of the implementation phase

got heavily weighted to the beginning and to the end of the project, midway being a rather difficult
timespan.

The prioritizing we initially made correlated with the features and was well done. The
estimations of time were done roughly and weren’t all exact. The accuracy of the estimations
depended a lot on in which order you made the tasks, since you learned more from each one.
The authentication took more time than we estimated.

7. Final reflection

We have made a good service that does roughly what we planned it would. The extra features
prioritized low were not realized. In the future the service could be developed further by realizing
the features we planned originally. Still it wouldn’t be necessary to show the Google map for the
user, since they can choose their route quicker by typing.

Our service would be useful for our target groups. At the moment there is a

Facebook-page in Finland that is used to organize shared rides. This service would be very
useful for the people using the Facebook page. For an actual application to be launched we
should take our service further and offer a bit more, opportunities for communication and a
possibility to name a price for the trip for example.

Our project succeeded mostly according to our original plans. Most of the problems came from

trying to find enough time to realize the project during the spring when all of our group members
were very busy. The authentication was surprisingly hard also.

33

The design and initial project planning were successful and the priorities set were mostly
accurate. We followed the priorities for most of the features, except when we noticed that the
lower priority features are easy to realize.

We wouldn’t do much differently. As mentioned earlier the main difficulty with the project was
finding enough time, but we did our best in the current situational environment.

We agreed on a weekly meeting on thursdays. However due to everyone’s schedules we ended
up meeting on maybe 3 thursdays with all three of us. There were problems related to
scheduling that we think wouldn’t happen in actual work life.

We’'re most proud in the project of the technical side of it, with the well-defined architecture and
asynchronous requests.

We all learned different things during the course. The architecture and asynchronous requests
and the model-view-presenter -pattern were new to some. Good designs and prioritization also
helped us to get through schedule problems.

7.1 Extra bonus points

The architecture of our application - Model-view-presenter and asynchronous requests -
is well defined, modular and enables a smooth basis for future development. Also after no
external libraries suited our authentication needs the authentication we made ourselves
works rather nicely. We think these are issues we are proud of, they can be read more
about in the technology section.

34

