Chapter 5
ELECTROMAGNETIC OPTICS I

Electromagnetic optics

Maxwell's equations in charge-free space

$$
\begin{aligned}
\nabla \times \mathscr{E} & =-\frac{\partial \mathscr{B}}{\partial t} \\
\nabla \cdot \mathscr{D} & =0 \\
\nabla \cdot \mathscr{B} & =0 .
\end{aligned}
$$

Electric and magnetic flux densities:

$$
\mathscr{D}=\epsilon_{o} \mathscr{E}+\mathscr{P}{ }_{\mathscr{B}}^{\text {dipole moment }}=\mu_{o} \mathscr{H}+\mu_{o} \mathscr{M}
$$

$\Rightarrow \quad$ Wave equation in a medium $(c=1 / \sqrt{\varepsilon \mu})$

$$
\nabla^{2} u-\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}=0
$$

The scalar u is any of the components $\left(\mathscr{E}_{x}, \mathscr{E}_{y}, \mathscr{E}_{z}\right)$ and $\left(\mathscr{H}_{x}, \mathscr{H}_{y}, \mathscr{H}_{z}\right)$. The Poynting (power flow) vector is

$$
\mathscr{S}=\mathscr{E} \times \mathscr{H}
$$

Boundary conditions: The tangential components of \mathcal{E} and \mathscr{K} and normal components of \mathscr{D} and \mathscr{B} are continuous

Linear, nondispersive, homogeneous, and isotropic media

$$
\begin{array}{lll}
\mathscr{P}=\epsilon_{o} \chi^{\mathscr{E}} & \epsilon=\epsilon_{o}(1+\chi) & n=\sqrt{\epsilon / \epsilon_{0}}=\sqrt{1+\chi} \\
\mathscr{D}=\epsilon \mathscr{E} & \mu \approx \mu_{0} & c=c_{0} / n
\end{array}
$$

Inhomogeneous media

$$
\begin{aligned}
& \chi=\chi(\mathbf{r}) \\
& \epsilon=\epsilon(\mathbf{r})
\end{aligned}
$$

$$
\nabla^{2} \mathscr{E}-\frac{1}{c^{2}(\mathbf{r})} \frac{\partial^{2} \mathscr{E}}{\partial t^{2}}+\nabla\left(\frac{1}{\epsilon} \nabla \epsilon \cdot \mathscr{E}\right)=0
$$

Anisotropic media

$$
\mathscr{D}_{i}=\sum_{j} \epsilon_{o} \chi_{i j} \mathscr{E}_{j} \quad \mathscr{D}_{i}=\sum_{j} \epsilon_{i j} \mathscr{E}_{j} \quad \begin{aligned}
& \text { Orthogonally polarized modes } \\
& \text { with different } n_{\mathrm{o}} \text { and } n_{\mathrm{e}}
\end{aligned}
$$

Dispersive media

$$
\mathscr{P}(t)=\epsilon_{o} \int_{-\infty}^{\infty} x\left(t-t^{\prime}\right) \mathscr{E}\left(t^{\prime}\right) d t^{\prime} \Rightarrow \quad \begin{aligned}
& \chi=\chi(v) \text { and } \epsilon=\epsilon(v)
\end{aligned}
$$

Nonlinear media

$$
\mathscr{D}=\underset{o}{\epsilon_{o} \mathscr{E}+\mathscr{P}(\mathscr{E})} \underset{\text { nonlinear }}{\mathscr{C}} \quad \Rightarrow \quad \nabla^{2} \mathscr{E}-\frac{1}{c_{o}^{2}} \frac{\partial^{2} \mathscr{E}}{\partial t^{2}}=\mu_{o} \frac{\partial^{2} \mathscr{P}(\mathscr{E})}{\partial t^{2}}
$$

Monochromatic waves

$$
\begin{aligned}
& \mathscr{E}(\mathbf{r}, t)=\operatorname{Re}\{\mathbf{E}(\mathbf{r}) \exp (j \omega t)\} \\
& \mathscr{H}(\mathbf{r}, t)=\operatorname{Re}\{\mathbf{H}(\mathbf{r}) \exp (j \omega t)\} \\
& \text { complex amplitudes }
\end{aligned} \Rightarrow \frac{\partial}{\partial t} \rightarrow j \omega \Rightarrow\left\{\begin{array}{c}
\nabla \times \mathbf{H}=j \omega \mathbf{D} \\
\nabla \times \mathbf{E}=-j \omega \mathbf{B} \\
\nabla \cdot \mathbf{D}=0 \\
\nabla \cdot \mathbf{B}=0 .
\end{array}\right.
$$

The Poynting vector is $\mathscr{S}=\operatorname{Re}\left\{\mathbf{E} e^{j \omega t}\right\} \times \operatorname{Re}\left\{\mathbf{H} e^{j \omega t}\right\}$

$$
\begin{gathered}
\Rightarrow\langle\mathscr{S}\rangle=\frac{1}{4}\left(\mathbf{E} \times \mathbf{H}^{*}+\mathbf{E} * \times \mathbf{H}\right)=\frac{1}{2}\left(\mathbf{S}+\mathbf{S}^{*}\right)=\operatorname{Re}\{\mathbf{S}\}, \text { where } \\
\frac{\stackrel{\uparrow}{\uparrow}=\frac{1}{2} \mathbf{E} \times \mathbf{H}^{*}}{\text { complex }} \\
\frac{I=\operatorname{Re}\{\mathrm{S}\}}{\text { intensity }}
\end{gathered}
$$

The wave equation is $\nabla^{2} U+k^{2} U=0$ (Helmholtz equation), where $k=\omega / c$.

Elementary solutions of this equation are plane waves with complex amplitudes

$$
\begin{aligned}
& \mathbf{E}(\mathbf{r})=\mathbf{E}_{0} \exp (-j \mathbf{k} \cdot \mathbf{r}), \\
& \mathbf{H}(\mathbf{r})=\mathbf{H}_{0} \exp (-j \mathbf{k} \cdot \mathbf{r})
\end{aligned}
$$

Plane waves

Maxwell's equations:
$\mathbf{k} \times \mathbf{H}_{0}=-\omega \epsilon \mathbf{E}_{0}$

$\mathbf{k} \times \mathbf{E}_{0}=\omega \mu \quad \mathbf{H}_{0}$.
$\Rightarrow \frac{E_{0}}{H_{0}}=\frac{\omega \mu}{k}=\sqrt{\frac{\mu}{\epsilon}}=\eta \quad$ - Impedance $\left(\eta=\eta_{0} / n, \eta_{0} \approx 377 \Omega\right)$
The intensity is $I=\langle\operatorname{Re}\{S\}\rangle=\frac{\left|E_{0}\right|^{2}}{2 \eta}$
The energy density is $W=I / c=\frac{\epsilon\left|E_{0}\right|^{2}}{2}$

The linear momentum density is $\mathbf{G}=\epsilon \mu \operatorname{Re}\{\mathbf{S}\}=\hat{\mathbf{s}} I / c^{2}$

Spherical waves

* Oscillating electric dipoles are most common elementary sources of electromagnetic waves (atoms and molecules also radiate as dipoles)

Dipole moment
$\mathbf{r} \int_{-q}^{+q}=q \mathbf{r}_{0} \sin (\omega t)$

Electric and magnetic fields

Directivity of radiation

$$
\left.\begin{array}{c}
\mathbf{E}=\hat{\mathbf{u}}_{\theta} \frac{k^{2}}{4 \pi \varepsilon} p_{0} \sin \theta \frac{\exp (-j k r)}{r} \\
\mathbf{B}=\hat{\mathbf{u}}_{\varphi} E / c
\end{array}\right\} \Rightarrow I(\theta) \propto \frac{\sin ^{2} \theta}{r^{2}}
$$

A scalar spherical wave is given by $U(r)=\frac{1}{r} \exp (-j k r)$

The vector Gaussian beam

In the paraxial approximation, the spherical function $U(r)=\frac{A}{r} \exp (-j k r)$ is approximated by a parabolloidal scalar wave

$$
U(\mathbf{r})=A_{0} \frac{W_{0}}{W(z)} \exp \left[-\frac{\rho^{2}}{W^{2}(z)}\right] \exp \left[-j k z-j k \frac{\rho^{2}}{2 R(z)}+j \zeta(z)\right]
$$

that satisfies the paraxial Helmholtz equation. The parameters are

$$
W(z)=W_{0} \sqrt{1+\left(\frac{z}{z_{0}}\right)^{2}}, W_{0}=\sqrt{\frac{\lambda z_{0}}{\pi}}, R(z)=z\left[1+\left(\frac{z_{0}}{z}\right)^{2}\right], \zeta(z)=\tan ^{-1} \frac{z}{z_{0}}
$$

The vector Gaussian beam is described by the complex amplitude

$$
\mathbf{E}(\mathbf{r})=E_{0}\left(-\hat{\mathbf{x}}+\frac{x}{z+j z_{0}} \hat{\mathbf{z}}\right) U(\mathbf{r}), \text { and } \mathbf{B}=\hat{\mathbf{k}} \times \mathbf{E} / c .
$$

Absorption and dispersion

$$
\begin{aligned}
& k=k_{0} \tilde{n}=k_{0} \sqrt{1+\chi}=\underline{k_{0} \sqrt{1+\chi^{\prime}+j \chi^{\prime \prime}}}=k_{0}\left(n-j \frac{\alpha}{2}\right) . \\
& \quad \Rightarrow I(z)=I(0)\left|e^{-j k z}\right|^{2}=I(0) e^{-\alpha z}
\end{aligned}
$$

For weak absorption, $\chi^{\prime \prime} \ll 1+\chi^{\prime}$, the Taylor series expansion of $\sqrt{1+\chi}$ yields

$$
n=\sqrt{1+\chi^{\prime}} \text { and } \alpha=-k_{0} \chi^{\prime \prime} / n
$$

Dispersion is $\chi=\chi(v)$:

The Kramers-Kronig relations:

$$
\begin{aligned}
& \chi^{\prime}(\nu)=\frac{2}{\pi} \int_{0}^{\infty} \frac{s \chi^{\prime \prime}(s)}{s^{2}-\nu^{2}} d s \\
& \chi^{\prime \prime}(\nu)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\nu \chi^{\prime}(s)}{\nu^{2}-s^{2}} d s
\end{aligned}
$$

The resonant medium

The Lorentz harmonic oscillator model:

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}+\sigma \frac{d x}{d t}+\omega_{0}^{2} x=\frac{\mathscr{F}}{m} \\
& \left\{\begin{array}{l}
\mathscr{P}=N e x \\
\mathscr{P}=\epsilon_{o} \chi^{\mathscr{C}} \\
\mathscr{F}=e \mathscr{E}
\end{array} \Rightarrow \frac{d^{2} \mathscr{P}}{d t^{2}}+\sigma \frac{d \mathscr{P}}{d t}+\omega_{0}^{2} \mathscr{P}=\omega_{0}^{2} \epsilon_{o} \chi_{0} \mathscr{E}\right. \\
& \chi_{0}=e^{2} N / m \epsilon_{o} \omega_{0}^{2}
\end{aligned}
$$

For a harmonic wave, $\frac{\partial}{\partial t} \rightarrow j \omega$, and the complex amplitudes obey

$$
\begin{aligned}
&\left(-\omega^{2}+j \sigma \omega+\omega_{0}^{2}\right) P=\omega_{0}^{2} \epsilon_{o} \chi_{0} E \\
& \Rightarrow \chi(\nu)=\chi_{0} \frac{\nu_{0}}{\nu_{0}^{2} \chi(\nu)} \\
& \Rightarrow\left\{\begin{array}{l}
\nu^{2}+j \nu \Delta \nu
\end{array}, ~\right. \\
& \chi^{\prime}(\nu)=\chi_{0} \frac{\sigma}{\left(\nu_{0}^{2}-\nu^{2}\right)^{2}+(\nu \Delta \nu)^{2}} \\
& \chi^{\prime \prime}(\nu)=-\chi_{0} \frac{\nu_{0}^{2}\left(\nu_{0}^{2}-\nu^{2}\right)}{\left(\nu_{0}^{2}-\nu^{2}\right)^{2}+(\nu \Delta \nu)^{2}}
\end{aligned}
$$

Media with multiple resonances:

Far from resonance, $\chi(\nu) \approx \chi_{0} \frac{\nu_{0}^{2}}{\nu_{0}^{2}-\nu^{2}}$
Sellmeier equation for transparent media:
$n^{2} \approx 1+\sum_{i} \chi_{0 i} \frac{\nu_{i}^{2}}{\nu_{i}^{2}-\nu^{2}}=1+\sum_{i} \chi_{0 i} \frac{\lambda^{2}}{\lambda^{2}-\lambda_{i}^{2}}$
$\mathrm{SiO}_{2} n^{2}=1+\frac{0.6962 \lambda^{2}}{\lambda^{2}-(0.06840)^{2}}+\frac{0.4079 \lambda^{2}}{\lambda^{2}-(0.1162)^{2}}+\frac{0.8975 \lambda^{2}}{\lambda^{2}-(9.8962)^{2}}$
Si $\quad n^{2}=1+\frac{10.6684 \lambda^{2}}{\lambda^{2}-(0.3015)^{2}}+\frac{0.0030 \lambda^{2}}{\lambda^{2}-(1.1347)^{2}}+\frac{1.5413 \lambda^{2}}{\lambda^{2}-(1104.0)^{2}}$

Optics of conductive media

$$
\begin{gathered}
\nabla \times \mathbf{H}=j \omega \mathbf{D}+\mathbf{J}=j \omega \epsilon \mathbf{E}+\sigma \mathbf{E}=(j \omega \epsilon+\sigma) \mathbf{E}=j \omega \epsilon_{\mathrm{eff}} \mathbf{E} \\
\epsilon_{\mathrm{eff}}=\epsilon+\frac{\sigma}{j \omega} \Rightarrow n_{\mathrm{eff}}=\sqrt{\frac{\epsilon_{\mathrm{eff}}}{\epsilon_{0}}}=n-j \frac{\alpha}{2}
\end{gathered}
$$

In the Drude model, σ depends on frequency as $\sigma=\frac{\sigma_{0}}{1+j \omega \tau_{\text {rel }}}$, and at high ω, we have $\epsilon_{\text {eff }}=\epsilon_{0}\left(1-\frac{\omega_{\mathrm{p}}^{2}}{\omega^{2}}\right)$, where the plasma frequency is $\omega_{\mathrm{p}}=\sqrt{\sigma_{0} / \epsilon_{0} \tau_{\text {rel }}}=\sqrt{N e^{2} / \epsilon_{0} m}$.

