Chapter 5

ELECTROMAGNETIC OPTICS I

Electromagnetic optics

Maxwell's equations in charge-free space

$$\nabla \times \mathscr{H} = \frac{\partial \mathscr{D}}{\partial t}$$
$$\nabla \times \mathscr{B} = -\frac{\partial \mathscr{B}}{\partial t}$$
$$\nabla \cdot \mathscr{D} = 0$$
$$\nabla \cdot \mathscr{B} = 0.$$

Wave equation in a medium ($c = 1/\sqrt{\epsilon\mu}$)

$$\nabla^2 u - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0$$

The scalar u is any of the components $(\mathscr{E}_x, \mathscr{E}_y, \mathscr{E}_z)$ and $(\mathscr{H}_x, \mathscr{H}_y, \mathscr{H}_z)$. The Poynting (power flow) vector is

 $\mathcal{S} = \mathcal{E} \times \mathcal{H}$

Electric and magnetic flux densities:

dipole moment

$$\swarrow$$
 per unit volume
 $\mathcal{D} = \epsilon_o \mathcal{E} + \mathcal{P}$

 $\mathcal{B} = \mu_o \mathcal{H} + \mu_o \mathcal{M}$

Boundary conditions: The tangential components of \mathscr{E} and \mathscr{K} and normal components of \mathscr{D} and \mathscr{B} are continuous

Linear, nondispersive, homogeneous, and isotropic media

$$\mathcal{P} = \epsilon_o \chi \mathcal{E} \qquad \epsilon = \epsilon_o (1 + \chi) \qquad n = \sqrt{\epsilon/\epsilon_0} = \sqrt{1 + \chi} \\ \mathcal{P} = \epsilon \mathcal{E} \qquad \mu \approx \mu_0 \qquad c = c_0/n$$

Inhomogeneous media

$$\chi = \chi(\mathbf{r}) \epsilon = \epsilon(\mathbf{r}) \qquad \nabla^2 \mathscr{E} - \frac{1}{c^2(\mathbf{r})} \frac{\partial^2 \mathscr{E}}{\partial t^2} + \nabla \left(\frac{1}{\epsilon} \nabla \epsilon \cdot \mathscr{E}\right) = 0$$

Anisotropic media

$$\mathscr{P}_i = \sum_j \epsilon_o \chi_{ij} \mathscr{E}_j \qquad \mathscr{D}_i = \sum_j \epsilon_{ij} \mathscr{E}_j$$

Orthogonally polarized modes with different $n_{\rm o}$ and $n_{\rm e}$

Dispersive media

$$\mathscr{P}(t) = \epsilon_o \int_{-\infty}^{\infty} x(t - t') \mathscr{E}(t') dt' \implies \chi = \chi(\nu) \text{ and } \epsilon = \epsilon(\nu)$$

Impulse-response function Transfer function (for frequency components of the field)

 \Rightarrow

Nonlinear media

$$\mathcal{D} = \epsilon_o \mathcal{E} + \mathcal{P}(\mathcal{E})$$
nonlinear

$$\nabla^2 \mathscr{E} - \frac{1}{c_o^2} \frac{\partial^2 \mathscr{E}}{\partial t^2} = \mu_o \frac{\partial^2 \mathscr{P}(\mathscr{E})}{\partial t^2}$$

Monochromatic waves

$$\begin{aligned} \mathscr{C}(\mathbf{r},t) &= \operatorname{Re}\{\mathbf{E}(\mathbf{r})\exp(j\omega t)\} \\ \mathscr{C}(\mathbf{r},t) &= \operatorname{Re}\{\mathbf{H}(\mathbf{r})\exp(j\omega t)\} \\ \overset{\uparrow}{\operatorname{complex amplitudes}} \Rightarrow \quad \frac{\partial}{\partial t} \to j\omega \Rightarrow \begin{cases} \nabla \times \mathbf{H} = j\omega \mathbf{D} \\ \nabla \times \mathbf{E} = -j\omega \mathbf{B} \end{cases} \\ \nabla \cdot \mathbf{D} = 0 \\ \nabla \cdot \mathbf{B} = 0. \end{cases} \end{aligned}$$

$$\begin{aligned} \mathbf{P} &= \mathbf{P} = \mathbf{P} \left\{ \mathbf{E} \left\{ \mathbf{P} \right\} \right\} \\ \overset{\uparrow}{\operatorname{complex amplitudes}} \Rightarrow & \mathcal{C} = \operatorname{Re} \left\{ \mathbf{E} e^{j\omega t} \right\} \\ \overset{\bullet}{\operatorname{complex amplitudes}} \Rightarrow & \operatorname{Re} \left\{ \mathbf{H} e^{j\omega t} \right\} \end{aligned}$$

Т

The wave equation is $\nabla^2 U + k^2 U = 0$ (*Helmholtz equation*), where $k = \omega/c$.

Elementary solutions of this equation are *plane waves* with complex amplitudes

 $\mathbf{E}(\mathbf{r}) = \mathbf{E}_0 \exp(-j\mathbf{k} \cdot \mathbf{r}),$ $\mathbf{H}(\mathbf{r}) = \mathbf{H}_0 \exp(-j\mathbf{k} \cdot \mathbf{r}).$

Plane waves

Maxwell's equations:

 $\mathbf{k} \times \mathbf{H}_0 = -\omega \epsilon \mathbf{E}_0$ $\mathbf{k} \times \mathbf{E}_0 = \omega \mu \ \mathbf{H}_0.$

$$\Rightarrow \frac{E_0}{H_0} = \frac{\omega\mu}{k} = \sqrt{\frac{\mu}{\epsilon}} = \eta \quad - \text{ Impedance } (\eta = \eta_0/n, \ \eta_0 \approx 377\Omega)$$

 \Rightarrow

The intensity is
$$I = \langle \operatorname{Re}\{S\} \rangle = \frac{|E_0|^2}{2\eta}$$

The energy density is
$$W = I/c = \frac{\epsilon |E_0|^2}{2}$$

The linear momentum density is $\mathbf{G} = \epsilon \mu \operatorname{Re}{\mathbf{S}} = \hat{\mathbf{S}} I / c^2$

Spherical waves

Oscillating electric dipoles are most common elementary sources of electromagnetic waves (atoms and molecules also radiate as dipoles)

The vector Gaussian beam

In the paraxial approximation, the spherical function $U(r) = \frac{A}{r} \exp(-jkr)$ is approximated by a parabolloidal scalar wave

$$U(\mathbf{r}) = A_0 \frac{W_0}{W(z)} \exp\left[-\frac{\rho^2}{W^2(z)}\right] \exp\left[-jkz - jk\frac{\rho^2}{2R(z)} + j\zeta(z)\right]$$

that satisfies the paraxial Helmholtz equation. The parameters are

$$W(z) = W_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$
, $W_0 = \sqrt{\frac{\lambda z_0}{\pi}}$, $R(z) = z \left[1 + \left(\frac{z_0}{z}\right)^2\right]$, $\zeta(z) = \tan^{-1} \frac{z}{z_0}$.

The vector Gaussian beam is described by the complex amplitude

$$\mathbf{E}(\mathbf{r}) = E_0 \left(-\hat{\mathbf{x}} + \frac{x}{z + jz_0} \hat{\mathbf{z}} \right) U(\mathbf{r}), \text{ and } \mathbf{B} = \hat{\mathbf{k}} \times \mathbf{E}/c.$$

Absorption and dispersion

$$k = k_0 \tilde{n} = k_0 \sqrt{1 + \chi} = \frac{k_0 \sqrt{1 + \chi' + j\chi''}}{k_0 \sqrt{1 + \chi' + j\chi''}} = k_0 \left(n - j\frac{\alpha}{2}\right).$$

complex

$$\Rightarrow I(z) = I(0) \left|e^{-jkz}\right|^2 = I(0)e^{-\alpha z}$$

For weak absorption, $\chi'' \ll 1 + \chi'$, the Taylor series expansion of $\sqrt{1 + \chi}$ yields

$$n=\sqrt{1+\chi^{\prime}}$$
 and $lpha=-k_0\chi^{\prime\prime}/n_0$

Dispersion is $\chi = \chi(\nu)$: The Kramers-Kronig relations: $\chi'(\nu) = \frac{2}{\pi} \int_0^\infty \frac{s \chi''(s)}{s^2 - \nu^2} \, ds$ $\chi''(\nu) = \frac{2}{\pi} \int_0^\infty \frac{\nu \chi'(s)}{\nu^2 - s^2} \, ds$ n'iO2 Amorphous selenium SrTiO As₂S₃ glass $c_{\text{group}} = \frac{\partial \omega}{\partial k}$ AgC $c_{\text{phase}} = \frac{\omega}{k} \neq c_{\text{group}}$ 2.0 EMgO Sapphire Calcite CsBr NaCl Fused silica CaF₂ NaF Quartz crystal 1.0 L 0.1 1.0 10 Wavelength (µm)

The resonant medium

The Lorentz harmonic oscillator model:

The Lorentz harmonic oscillator model:

$$\frac{d^{2}x}{dt^{2}} + \sigma \frac{dx}{dt} + \omega_{0}^{2}x = \frac{\mathscr{F}}{m}$$

$$\begin{cases} \mathscr{P} = Nex \\ \mathscr{P} = \epsilon_{o}\chi\mathscr{E} \implies \frac{d^{2}\mathscr{P}}{dt^{2}} + \sigma \frac{d\mathscr{P}}{dt} + \omega_{0}^{2}\mathscr{P} = \omega_{0}^{2}\epsilon_{o}\chi_{0}\mathscr{E} \\ \chi_{0} = e^{2}N/m\epsilon_{o}\omega_{0}^{2} \end{cases}$$
For a harmonic wave, $\frac{\partial}{\partial t} \rightarrow j\omega$, and the complex amplitudes obey
$$(-\omega^{2} + j\sigma\omega + \omega_{0}^{2})P = \omega_{0}^{2}\epsilon_{o}\chi_{0}E^{\sum \frac{P}{\epsilon_{0}\chi(v)}} \qquad x(v)$$

$$\Rightarrow \chi(v) = \chi_{0} \frac{\nu_{0}^{2}}{\nu_{0}^{2} - v^{2} + jv\Delta v}, \quad \Delta v = \frac{\sigma}{2\pi}$$

$$\Rightarrow \begin{cases} \chi'(v) = \chi_{0} \frac{\nu_{0}^{2}(v_{0}^{2} - v^{2})}{(v_{0}^{2} - v^{2})^{2} + (v\Delta v)^{2}} \\ \chi''(v) = -\chi_{0} \frac{\nu_{0}^{2}v\Delta v}{(v_{0}^{2} - v^{2})^{2} + (v\Delta v)^{2}} \\ \text{Lorenzian lineshape} \end{cases}$$

Media with multiple resonances:

Optics of conductive media

 $\nabla \times \mathbf{H} = j\omega \mathbf{D} + \mathbf{J} = j\omega\epsilon\mathbf{E} + \sigma\mathbf{E} = (j\omega\epsilon + \sigma)\mathbf{E} = j\omega\epsilon_{\text{eff}}\mathbf{E}$

$$\epsilon_{\rm eff} = \epsilon + \frac{\sigma}{j\omega} \implies n_{\rm eff} = \sqrt{\frac{\epsilon_{\rm eff}}{\epsilon_0}} = n - j\frac{\alpha}{2}$$

In the **Drude model**, σ depends on frequency as $\sigma = \frac{\sigma_0}{1+j\omega\tau_{rel}}$, and at high ω , we have $\epsilon_{eff} = \epsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2}\right)$, where the plasma frequency is $\omega_p = \sqrt{\sigma_0/\epsilon_0\tau_{rel}} = \sqrt{Ne^2/\epsilon_0m}$.

http://opt.zju.edu.cn/zjuopt2/upload/resources/chapter5%20Electromagnetic%20Optics.pc