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Limitations of Turing Machines

@ Turing machines are impractical for discussing fine-grained
complexity

» Turing machines are don't reflect all characteristics of modern
computers

» Indeed, Turing machines predate modern computers

> Perfect for computability and coarse-grained complexity (P, NP
etc), not so much for fine-grained complexity (e.g. inside P)

@ One key limitation: no random access

» For example, reading the ith entry of an array takes at least i steps
just due to moving the tape head
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RAM Models

@ Various random-access machine models address this
limitation

@ A random access machine has the following features
(informally):

P An infinite number of registers, each capable of storing a single
number

> A finite instruction set (think assembly language)

» A set of addressing instructions allowing direct access to a
register specified by a value of other register

» A specific instruction for halting
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Register Values

@ One can define different RAM models based on what values
the registers can hold:
» Real-number RAM: registers can hold arbitrary real numbers
» Integer RAM: registers can hold arbitrary positive integers
> Word RAM: registers can hold integers of size O(logn), where n
is the length of the input

@ The first two models are very powerful, yet useful for
discussing upper bounds
> Algorithm design without considering low-level implementation
details (which however may be significant in the very-large-n limit)
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Time and Space for RAMs

@ Time for RAM models:
» Number of elementary instructions executed
» Addressing and number operations (+, —, =, <) are assumed to
be constant-time operations

@ Space for RAM models:
» Number of registers used
» Caveat: real-number and integer RAMs can solve lots of problems
in constant space by exploiting unbounded register values; this is
not reasonable in practice
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Fine-grained Complexity

@ Application of RAM models: understanding the complexity
landscape inside P

@ Let L € P be a language
» What is the smallest constant ¢ > 1 such that L can be solved in
time O(n®) with random-access machines?
» This gives rise to fine-grained complexity
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Fine-grained Complexity

@ Typical question: what is the relative complexity of problems
L and L2?
> Typical result: If problem L; can be solved in time O(n“~%) for
some specific constant ¢, then also problem L; can be solved in

time O(n“"%)
> Here O(n°) is usually the best currently known upper bound for L;
and L,

» This means working with reductions that

® can be computed in significantly faster than O(n¢)
® increase the instance size sub-linearly

» Though other variations on the theme are possible
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Hard Problems in P?

@ Recent work in fine-grained complexity has identified certain
problems in P that seem to be ‘canonically expressive’ in
some sense:

» Best known algorithm: O(n) for some constant c, up to
sub-polynomial factors (this is often denoted 5(n")).

» Used as a subroutine in best known algorithms for many other
problems

> Lower bound Q(n¢) would imply that many known algorithms for
other problems are optimal

@ This is not hardness in a structural complexity sense
> Useful for identifying relationships inside P
> Tells us that we are facing the same algorithmic challenge in many
problems
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The Three-sum Problem

Given a set S of n numbers, decide if there are distinct numbers
x,y,z € Ssuchthatx+y+z=0.

e Trivial algorithm: O(n?)
o Easy algorithm: O(nz) (by sorting and testing pairs)
o Best known algorithm: O(n”(loglogn)°") /1log? n)

@ Open: Is there an O(n?>~¢) algorithm for any € > 0?
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Matrix Multiplication

Given two matrices A and B, compute the matrix product C = AB,
where

Cik = ZA,:,‘Bjk .
J

e Trivial algorithm: O(n?)
@ Classic algorithm: O(n>8!) (V. Strassen 1969)

@ Best known algorithm: O(n>373) (V. Williams 2013, F. Le Gall
2014)

@ Open: What is the real-number complexity of matrix
multiplication?

@ Matrix multiplication is a very expressive problem with lots
of applications
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Min-Sum Matrix Multiplication

Given two matrices A and B, compute the min-sum matrix product
C = AB, where
Cy = mjln(A,J —I—Bjk) .

e Trivial algorithm: O(n?)
o Best known algorithm: O(n? /2°V°e") for some ¢ > 0
(R. Williams 2014)

@ Open: Is there an O(n*~#) algorithm for any € > 0?
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All-pairs Shortest Paths

Given a weighted undirected/directed graph G = (V,E), compute the
distance d(u,v) for all pairs of vertices u,v € V.

e Classic algorithm: O(n®) (R. Floyd, S. Warshall 1962)

o Best known algorithm: O(n? /2912 for some d > 0; by logn
applications of min-sum MM

@ Open: Is there an O(n~¢) algorithm for any € > 0?

@ Closely connected to the complexity of min-sum matrix
multiplication
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Set Cover with Two Sets

Given a set family S of size n over universe U of size m, decide if there
are two sets 51,5, € § such that S{US, = U.

e Trivial algorithm: O(n’m)
@ Open: Is there an n?>~€poly(m) algorithm for any € > 0?

@ This question connects polynomial-time algorithms to
exponential-time algorithms:
> If Set Cover with Two Sets can be solved in time n>~¢ poly(m),
then CNF-SAT has an algorithm with running time 2% poly () for
some § < 2
» That s, the strong exponential time hypothesis' has
consequences for problems in P

Exponential time hypothesis (ETH) ~ CNF-SAT cannot be solved in time 2°().
Strong ETH (SETH): there is no constant ¢ < 1 such that CNF-SAT can be solved in
time 2<". Here n is the number of variables in the given CNF-SAT instance.
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Counting and Enumeration

@ Problems in P and NP can be viewed as decision problems
of a specific type:
» The problem is defined by a polynomial-time Turing machine M
with two inputs x and y
> The question is whether for a given x € {0, 1}*, there is some
y € {0,1}* with length polynomial in |x| such that M (x,y) = 1

@ We can similarly ask related counting and enumeration
questions:
» Counting: Count the number of y such that M (x,y) = 1
» Enumeration: List all y such that M (x,y) = 1
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Counting and Enumeration

@ Enumeration can clearly be very difficult
» The number of certificates y can be exponential in |x]|

@ What about counting?
» If the decision problem is in P, what does this imply about
counting?
» Turns out counting is often more difficult than decision
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Perfect Matching

Definition (Perfect matching)
@ Instance: Bipartite graph G = (U, V,E), where
U={up,...,up}, V=Avi,...,vp,},, ECUXV.
@ Question: Is there a set E' C E of n edges such that for any two
distinct edges (u,v), (u/,Vv') € E',u#u' and v #V (i.e., is there a
perfect matching)?

4

@ Polynomial-time algorithms for determining the existence of
perfect matchings are well known (a randomised one was
presented in an earlier example)

@ The related counting problem #MATCHING is to count the
number of perfect matchings in a bipartite graph
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Permanent and #MATCHING

@ The perfect matching problem is related to computing the
determinant of the (symbolic) adjacency matrix A®. (Is
det(A%) = 0?)

@ The counting version is related to the problem of computing the
permanent of the adjacency matrix:

G
perm( AG ZHal (i Zaﬁn(l)agn(z) Gy ()
T

(Number of nonzero terms in perm(A%).)

Example

X1,1 X1,2 0 G —
@v@ AS = 0 xixn; perm(4)
®A® 0 x32 x33 X1,1X2,2X33 +x1,1x2,3x3,2
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Counting and Probability

Definition (Graph reliability)
@ Instance: An undirected graph G = (V, E), vertices 5,7 € V.

@ Question: Compute the probability that there remains an s—t
path if all edges of G fail (i.e. are deleted) simultaneously and
independently with probability 1/2.

@ Graph reliability can be solved by counting:
> After deletions, the remaining graph can be any subgraph of G
with equal probability
» The solution is thus given by counting the subgraphs of G where s
and ¢ are connected, and dividing this count by the number of all
subgraphs

School of Science epartment of Computer Scienc

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
D e
19/31



Class #P

Definition

A function f: {0,1}* — Nis in #P (pronounced ‘sharp-p’ or
'number-p’) if there exists a polynomial p: N — N and a
polynomial-time Turing machine M such that

— [{y € {0,137 M(x,y) = 1}].

@ Are all functions in #P computable in polynomial time?
» In other words, is #P = FP?
> FPis the class of functions f: {0,1}* — {0,1}* computable in
polynomial time
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#P-completeness

@ Completeness for #P is defined in terms of oracle reductions

» Generalising prior definitions, a Turing machine with oracle access
to function f can obtain a value f(x) in a single time step,
assuming it has computed x

> For any function f: {0,1}* — {0,1}*, we denote by FP/ the class
of functions computable by polynomial-time Turing machines with
oracle access to f
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#P-completeness

Definition
A function f: {0,1}* — {0,1}* is #P-complete if f € #P and every
function g € #P is in FP/ .

Theorem
Iff is #P-complete and f € FP, then #P = FP. J
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#P-completeness

@ Some examples of #P-complete problems:

P #SAT: counting satisfying assignments for a CNF formula

P #2-SAT: counting satisfying assignments for a 2-CNF formula
(note that the decision version of 2-SAT is in P)

> #MATCHING and PERMANENT (again the decision version of
MATCHING is in P)

> #HAMILTONIAN-CYCLE

@ In particular, counting versions of many problems in P are
#P-complete

» Not everything, though: counting spanning trees is in FP by the
‘matrix-tree theorem’ from algebraic graph theory

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
School of Science Department of Computer Science

23/31



Toda’s Theorem

@ How powerful is counting exactly?

» Clearly #P C PSPACE
» Both PH and #P are generalisations of NP; what is the relationship
between these classes?

Theorem (Toda’s theorem, 1991)

PH — p#SAT

@ That is, all problems in PH can be solved in polynomial time
with oracle access to a #P-complete function
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Concrete Lower Bounds?

@ Proving concrete lower bounds for Turing machines and
circuits seems to be out of reach

@ Two general lines of research related to this issue:

» Proving lower bounds for restricted models of computation
» Understanding why general lower bounds are difficult
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Concrete Lower Bounds

@ Examples of models with concrete lower bounds:

» Decision trees: understanding how many input bits we need to
check in order to determine the answer
» Communication complexity:
® Alice and Bob are both holding n-bit strings, and want to compute a
function f: {0,1}" x {0,1}" — {0,1}
® How many bits do they have to communicate?
» Monotone circuits: Complexity for circuits without NOT gates
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Circuit Lower Bounds

@ There are also (fairly weak) circuit lower bounds known
» AC is the class of problems solvable by polynomial-size,
constant-depth, unbounded fan-in circuits
> ACC is AC? with counters (up to an arbitrary constant )

@ The following represent state of the art:
» The parity function (that is, counting the number of 1’s in the input
modulo 2) is not in AC? (J. Hastad 1987)
> NEXP ¢ ACC (R. Williams 2010)
> NQP Z ACC (C. Murray & R. Williams 2018)2

2NQP ~ ’nondeterministic quasi-polynomial time’, NQP = UC>QNTIME(n1°gL")
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Barriers: Relativisation

@ Can diagonalisation be used to prove P 7~ NP?

» Diagonalisation works for undecidability and hierarchy theorems,
why not for P £ NP?

@ Diagonalisation relies on specific properties of Turing
machines
(I) Turing machines can be efficiently represented as strings
(1) Turing machines can be simulated by Turing machines with small
overhead
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Barriers: Relativisation

@ Properties (I) and (ll) also hold for oracle Turing machines

» Implies that any statement diagonalisation proves for complexity
classes defined in terms of Turing machines, it also proves for
complexity classes defined in terms of oracle Turing machines

> This implies a limitation for diagonalisation

Theorem (T. Baker, J. Gill, R. Solovay 1975)
There exist languages A and B such that P4 = NP4 and PP - NP2. J
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Barriers: Natural Proofs

@ Why are circuit lower bounds difficult?

@ One can define a notion of natural proof for circuit lower
bounds (S. Rudich & A. Razborov 1994)
» This is a specific, technical notion!
» Most known lower bounds are natural in this sense
» It has been proven that if sufficiently strong one-way functions
exist, then natural proofs cannot prove that an explicit function f is
notin P /0y

@ In summary: there is non-trivial amount of research explaining
why certain ‘obvious’ proof techniques do not work for proving
lower bounds
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Lecture 17: Summary

RAM models
Fine-grained complexity

Counting complexity and #P

Explicit lower bounds for weaker models are known

Explicit lower bounds for circuits and Turing machines seem
difficult to prove
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