
CS-E4530 Computational Complexity Theory

Lecture 17: Fine-Grained Complexity, Counting and Beyond

Aalto University
School of Science
Department of Computer Science

Spring 2019

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

2/31

Agenda

Random-acccess machines

Hard problems in P?

Counting complexity

Towards lower bounds

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

3/31

Limitations of Turing Machines

Turing machines are impractical for discussing fine-grained
complexity
I Turing machines are don’t reflect all characteristics of modern

computers
I Indeed, Turing machines predate modern computers
I Perfect for computability and coarse-grained complexity (P, NP

etc), not so much for fine-grained complexity (e.g. inside P)

One key limitation: no random access
I For example, reading the ith entry of an array takes at least i steps

just due to moving the tape head

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

4/31

RAM Models

Various random-access machine models address this
limitation

A random access machine has the following features
(informally):
I An infinite number of registers, each capable of storing a single

number
I A finite instruction set (think assembly language)
I A set of addressing instructions allowing direct access to a

register specified by a value of other register
I A specific instruction for halting

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

5/31

Register Values

One can define different RAM models based on what values
the registers can hold:
I Real-number RAM: registers can hold arbitrary real numbers
I Integer RAM: registers can hold arbitrary positive integers
I Word RAM: registers can hold integers of size O(logn), where n

is the length of the input

The first two models are very powerful, yet useful for
discussing upper bounds
I Algorithm design without considering low-level implementation

details (which however may be significant in the very-large-n limit)

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

6/31

Time and Space for RAMs

Time for RAM models:
I Number of elementary instructions executed
I Addressing and number operations (+, −, =, ≤) are assumed to

be constant-time operations

Space for RAM models:
I Number of registers used
I Caveat: real-number and integer RAMs can solve lots of problems

in constant space by exploiting unbounded register values; this is
not reasonable in practice

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

7/31

Fine-grained Complexity

Application of RAM models: understanding the complexity
landscape inside P

Let L ∈ P be a language
I What is the smallest constant c≥ 1 such that L can be solved in

time O(nc) with random-access machines?
I This gives rise to fine-grained complexity

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

8/31

Fine-grained Complexity

Typical question: what is the relative complexity of problems
L1 and L2?
I Typical result: If problem L1 can be solved in time O(nc−ε) for

some specific constant c, then also problem L2 can be solved in
time O(nc−ε)

I Here O(nc) is usually the best currently known upper bound for L1
and L2

I This means working with reductions that
• can be computed in significantly faster than O(nc)
• increase the instance size sub-linearly

I Though other variations on the theme are possible

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

9/31

Hard Problems in P?

Recent work in fine-grained complexity has identified certain
problems in P that seem to be ‘canonically expressive’ in
some sense:
I Best known algorithm: O(nc) for some constant c, up to

sub-polynomial factors (this is often denoted Õ(nc)).
I Used as a subroutine in best known algorithms for many other

problems
I Lower bound Ω(nc) would imply that many known algorithms for

other problems are optimal

This is not hardness in a structural complexity sense
I Useful for identifying relationships inside P
I Tells us that we are facing the same algorithmic challenge in many

problems

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

10/31

The Three-sum Problem

Given a set S of n numbers, decide if there are distinct numbers
x,y,z ∈ S such that x+ y+ z = 0.

Trivial algorithm: O(n3)

Easy algorithm: O(n2) (by sorting and testing pairs)

Best known algorithm: O(n2(log logn)O(1)/ log2 n)

Open: Is there an O(n2−ε) algorithm for any ε > 0?

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

11/31

Matrix Multiplication
Given two matrices A and B, compute the matrix product C = AB,
where

Cik = ∑
j

AijBjk .

Trivial algorithm: O(n3)

Classic algorithm: O(n2.81) (V. Strassen 1969)

Best known algorithm: O(n2.373) (V. Williams 2013, F. Le Gall
2014)

Open: What is the real-number complexity of matrix
multiplication?

Matrix multiplication is a very expressive problem with lots
of applications

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

12/31

Min-Sum Matrix Multiplication

Given two matrices A and B, compute the min-sum matrix product
C = AB, where

Cik = min
j
(Aij +Bjk) .

Trivial algorithm: O(n3)

Best known algorithm: Õ(n3/2c
√

logn) for some c > 0
(R. Williams 2014)

Open: Is there an O(n3−ε) algorithm for any ε > 0?

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

13/31

All-pairs Shortest Paths

Given a weighted undirected/directed graph G = (V,E), compute the
distance d(u,v) for all pairs of vertices u,v ∈ V .

Classic algorithm: O(n3) (R. Floyd, S. Warshall 1962)

Best known algorithm: Õ(n3/2d
√

logn) for some d > 0; by logn
applications of min-sum MM

Open: Is there an O(n3−ε) algorithm for any ε > 0?

Closely connected to the complexity of min-sum matrix
multiplication

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

14/31

Set Cover with Two Sets

Given a set family S of size n over universe U of size m, decide if there
are two sets S1,S2 ∈ S such that S1∪S2 = U.

Trivial algorithm: O(n2m)

Open: Is there an n2−ε poly(m) algorithm for any ε > 0?

This question connects polynomial-time algorithms to
exponential-time algorithms:
I If Set Cover with Two Sets can be solved in time n2−ε poly(m),

then CNF-SAT has an algorithm with running time 2δn poly(m) for
some δ < 2

I That is, the strong exponential time hypothesis1 has
consequences for problems in P

1Exponential time hypothesis (ETH) ≈ CNF-SAT cannot be solved in time 2o(n).
Strong ETH (SETH): there is no constant c < 1 such that CNF-SAT can be solved in
time 2cn. Here n is the number of variables in the given CNF-SAT instance.

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

15/31

Counting and Enumeration

Problems in P and NP can be viewed as decision problems
of a specific type:
I The problem is defined by a polynomial-time Turing machine M

with two inputs x and y
I The question is whether for a given x ∈ {0,1}∗, there is some

y ∈ {0,1}∗ with length polynomial in |x| such that M(x,y) = 1

We can similarly ask related counting and enumeration
questions:
I Counting: Count the number of y such that M(x,y) = 1
I Enumeration: List all y such that M(x,y) = 1

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

16/31

Counting and Enumeration

Enumeration can clearly be very difficult
I The number of certificates y can be exponential in |x|

What about counting?
I If the decision problem is in P, what does this imply about

counting?
I Turns out counting is often more difficult than decision

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

17/31

Perfect Matching

Definition (Perfect matching)

Instance: Bipartite graph G = (U,V,E), where
U = {u1, . . . ,un}, V = {v1, . . . ,vn}, E ⊆ U×V .

Question: Is there a set E′ ⊆ E of n edges such that for any two
distinct edges (u,v),(u′,v′) ∈ E′, u 6= u′ and v 6= v′ (i.e., is there a
perfect matching)?

Polynomial-time algorithms for determining the existence of
perfect matchings are well known (a randomised one was
presented in an earlier example)

The related counting problem #MATCHING is to count the
number of perfect matchings in a bipartite graph

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

18/31

Permanent and #MATCHING
The perfect matching problem is related to computing the
determinant of the (symbolic) adjacency matrix AG. (Is
det(AG)≡ 0?)

The counting version is related to the problem of computing the
permanent of the adjacency matrix:

perm(AG) = ∑
π

n

∏
i=1

aG
i,π(i) = ∑

π

aG
1,π(1)a

G
2,π(2) . . .a

G
n,π(n)

(Number of nonzero terms in perm(AG).)

Example
u1 v1

u2

u3

v2

v3

AG =

(x1,1 x1,2 0
0 x2,2 x2,3
0 x3,2 x3,3

)
perm(AG) =
x1,1x2,2x3,3 + x1,1x2,3x3,2

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

19/31

Counting and Probability

Definition (Graph reliability)

Instance: An undirected graph G = (V,E), vertices s, t ∈ V .

Question: Compute the probability that there remains an s–t
path if all edges of G fail (i.e. are deleted) simultaneously and
independently with probability 1/2.

Graph reliability can be solved by counting:
I After deletions, the remaining graph can be any subgraph of G

with equal probability
I The solution is thus given by counting the subgraphs of G where s

and t are connected, and dividing this count by the number of all
subgraphs

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

20/31

Class #P

Definition
A function f : {0,1}∗→ N is in #P (pronounced ‘sharp-p’ or
’number-p’) if there exists a polynomial p : N→ N and a
polynomial-time Turing machine M such that

f (x) =
∣∣{y ∈ {0,1}p(|x|) : M(x,y) = 1}

∣∣ .
Are all functions in #P computable in polynomial time?
I In other words, is #P = FP?
I FP is the class of functions f : {0,1}∗→{0,1}∗ computable in

polynomial time

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

21/31

#P-completeness

Completeness for #P is defined in terms of oracle reductions
I Generalising prior definitions, a Turing machine with oracle access

to function f can obtain a value f (x) in a single time step,
assuming it has computed x

I For any function f : {0,1}∗→{0,1}∗, we denote by FPf the class
of functions computable by polynomial-time Turing machines with
oracle access to f

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

22/31

#P-completeness

Definition
A function f : {0,1}∗→{0,1}∗ is #P-complete if f ∈ #P and every
function g ∈ #P is in FPf .

Theorem
If f is #P-complete and f ∈ FP, then #P = FP.

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

23/31

#P-completeness

Some examples of #P-complete problems:
I #SAT: counting satisfying assignments for a CNF formula
I #2-SAT: counting satisfying assignments for a 2-CNF formula

(note that the decision version of 2-SAT is in P)
I #MATCHING and PERMANENT (again the decision version of

MATCHING is in P)
I #HAMILTONIAN-CYCLE

In particular, counting versions of many problems in P are
#P-complete
I Not everything, though: counting spanning trees is in FP by the

’matrix-tree theorem’ from algebraic graph theory

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

24/31

Toda’s Theorem

How powerful is counting exactly?
I Clearly #P⊆ PSPACE
I Both PH and #P are generalisations of NP; what is the relationship

between these classes?

Theorem (Toda’s theorem, 1991)

PH = P#SAT

That is, all problems in PH can be solved in polynomial time
with oracle access to a #P-complete function

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

25/31

Concrete Lower Bounds?

Proving concrete lower bounds for Turing machines and
circuits seems to be out of reach

Two general lines of research related to this issue:
I Proving lower bounds for restricted models of computation
I Understanding why general lower bounds are difficult

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

26/31

Concrete Lower Bounds

Examples of models with concrete lower bounds:
I Decision trees: understanding how many input bits we need to

check in order to determine the answer
I Communication complexity:

• Alice and Bob are both holding n-bit strings, and want to compute a
function f : {0,1}n×{0,1}n→{0,1}

• How many bits do they have to communicate?
I Monotone circuits: Complexity for circuits without NOT gates

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

27/31

Circuit Lower Bounds

There are also (fairly weak) circuit lower bounds known
I AC0 is the class of problems solvable by polynomial-size,

constant-depth, unbounded fan-in circuits
I ACC is AC0 with counters (up to an arbitrary constant m)

The following represent state of the art:
I The parity function (that is, counting the number of 1’s in the input

modulo 2) is not in AC0 (J. Håstad 1987)
I NEXP 6⊆ ACC (R. Williams 2010)
I NQP 6⊆ ACC (C. Murray & R. Williams 2018)2

2NQP ∼ ’nondeterministic quasi-polynomial time’, NQP = ∪c>0NTIME(nlogc n)

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

28/31

Barriers: Relativisation

Can diagonalisation be used to prove P 6= NP?
I Diagonalisation works for undecidability and hierarchy theorems,

why not for P 6= NP?

Diagonalisation relies on specific properties of Turing
machines

(I) Turing machines can be efficiently represented as strings
(II) Turing machines can be simulated by Turing machines with small

overhead

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

29/31

Barriers: Relativisation

Properties (I) and (II) also hold for oracle Turing machines
I Implies that any statement diagonalisation proves for complexity

classes defined in terms of Turing machines, it also proves for
complexity classes defined in terms of oracle Turing machines

I This implies a limitation for diagonalisation

Theorem (T. Baker, J. Gill, R. Solovay 1975)

There exist languages A and B such that PA = NPA and PB 6= NPB.

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

30/31

Barriers: Natural Proofs

Why are circuit lower bounds difficult?

One can define a notion of natural proof for circuit lower
bounds (S. Rudich & A. Razborov 1994)
I This is a specific, technical notion!
I Most known lower bounds are natural in this sense
I It has been proven that if sufficiently strong one-way functions

exist, then natural proofs cannot prove that an explicit function f is
not in P/poly

In summary: there is non-trivial amount of research explaining
why certain ‘obvious’ proof techniques do not work for proving
lower bounds

CS-E4530 Computational Complexity Theory / Lecture 17
Department of Computer Science

31/31

Lecture 17: Summary

RAM models

Fine-grained complexity

Counting complexity and #P

Explicit lower bounds for weaker models are known

Explicit lower bounds for circuits and Turing machines seem
difficult to prove

