A

Aalto University
School of Science

CS-E4530 Computational Complexity Theory

Lecture 17: Fine-Grained Complexity, Counting and Beyond

Aalto University
School of Science
Department of Computer Science

Spring 2019

Agenda

@ Random-acccess machines
@ Hard problems in P?

@ Counting complexity

@ Towards lower bounds

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
School of Science Department of Computer Science
2/31

Limitations of Turing Machines

@ Turing machines are impractical for discussing fine-grained
complexity

» Turing machines are don't reflect all characteristics of modern
computers

» Indeed, Turing machines predate modern computers

> Perfect for computability and coarse-grained complexity (P, NP
etc), not so much for fine-grained complexity (e.g. inside P)

@ One key limitation: no random access

» For example, reading the ith entry of an array takes at least i steps
just due to moving the tape head

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
A School of Science Department of Computer Science

3/31

RAM Models

@ Various random-access machine models address this
limitation

@ A random access machine has the following features
(informally):

P An infinite number of registers, each capable of storing a single
number

> A finite instruction set (think assembly language)

» A set of addressing instructions allowing direct access to a
register specified by a value of other register

» A specific instruction for halting

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
School of Science Department of Computer Science
a3

Register Values

@ One can define different RAM models based on what values
the registers can hold:
» Real-number RAM: registers can hold arbitrary real numbers
» Integer RAM: registers can hold arbitrary positive integers
> Word RAM: registers can hold integers of size O(logn), where n
is the length of the input

@ The first two models are very powerful, yet useful for
discussing upper bounds
> Algorithm design without considering low-level implementation
details (which however may be significant in the very-large-n limit)

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
5/31

Time and Space for RAMs

@ Time for RAM models:
» Number of elementary instructions executed
» Addressing and number operations (+, —, =, <) are assumed to
be constant-time operations

@ Space for RAM models:
» Number of registers used
» Caveat: real-number and integer RAMs can solve lots of problems
in constant space by exploiting unbounded register values; this is
not reasonable in practice

A Aalto University CS-E4530 Computational Complexity Theory / Lecture 17

School of Science Department of Computer Science
6/31

Fine-grained Complexity

@ Application of RAM models: understanding the complexity
landscape inside P

@ Let L € P be a language
» What is the smallest constant ¢ > 1 such that L can be solved in
time O(n®) with random-access machines?
» This gives rise to fine-grained complexity

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
73

Fine-grained Complexity

@ Typical question: what is the relative complexity of problems
L and L2?
> Typical result: If problem L; can be solved in time O(n“~%) for
some specific constant ¢, then also problem L; can be solved in

time O(n“"%)
> Here O(n°) is usually the best currently known upper bound for L;
and L,

» This means working with reductions that

® can be computed in significantly faster than O(n¢)
® increase the instance size sub-linearly

» Though other variations on the theme are possible

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
School of Science Department of Computer Science
831

Hard Problems in P?

@ Recent work in fine-grained complexity has identified certain
problems in P that seem to be ‘canonically expressive’ in
some sense:

» Best known algorithm: O(n) for some constant c, up to
sub-polynomial factors (this is often denoted 5(n")).

» Used as a subroutine in best known algorithms for many other
problems

> Lower bound Q(n¢) would imply that many known algorithms for
other problems are optimal

@ This is not hardness in a structural complexity sense
> Useful for identifying relationships inside P
> Tells us that we are facing the same algorithmic challenge in many
problems

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
9/31

The Three-sum Problem

Given a set S of n numbers, decide if there are distinct numbers
x,y,z € Ssuchthatx+y+z=0.

e Trivial algorithm: O(n?)
o Easy algorithm: O(nz) (by sorting and testing pairs)
o Best known algorithm: O(n”(loglogn)°") /1log? n)

@ Open: Is there an O(n?>~¢) algorithm for any € > 0?

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
School of Science Department of Computer Science

10131

Matrix Multiplication

Given two matrices A and B, compute the matrix product C = AB,
where

Cik = ZA,:,‘Bjk .
J

e Trivial algorithm: O(n?)
@ Classic algorithm: O(n>8!) (V. Strassen 1969)

@ Best known algorithm: O(n>373) (V. Williams 2013, F. Le Gall
2014)

@ Open: What is the real-number complexity of matrix
multiplication?

@ Matrix multiplication is a very expressive problem with lots
of applications

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
School of Science Department of Computer Science
11/31

Min-Sum Matrix Multiplication

Given two matrices A and B, compute the min-sum matrix product
C = AB, where
Cy = mjln(A,J —I—Bjk) .

e Trivial algorithm: O(n?)
o Best known algorithm: O(n? /2°V°e") for some ¢ > 0
(R. Williams 2014)

@ Open: Is there an O(n*~#) algorithm for any € > 0?

School of Science Department of Computer Sci

Aalto University CS-E4530 Computation: al Comple ty'rheo y/Lec(ure17
12 31

All-pairs Shortest Paths

Given a weighted undirected/directed graph G = (V,E), compute the
distance d(u,v) for all pairs of vertices u,v € V.

e Classic algorithm: O(n®) (R. Floyd, S. Warshall 1962)

o Best known algorithm: O(n? /2912 for some d > 0; by logn
applications of min-sum MM

@ Open: Is there an O(n~¢) algorithm for any € > 0?

@ Closely connected to the complexity of min-sum matrix
multiplication

School of Science epartment of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
D
13/31

Set Cover with Two Sets

Given a set family S of size n over universe U of size m, decide if there
are two sets 51,5, € § such that S{US, = U.

e Trivial algorithm: O(n’m)
@ Open: Is there an n?>~€poly(m) algorithm for any € > 0?

@ This question connects polynomial-time algorithms to
exponential-time algorithms:
> If Set Cover with Two Sets can be solved in time n>~¢ poly(m),
then CNF-SAT has an algorithm with running time 2% poly () for
some § < 2
» That s, the strong exponential time hypothesis' has
consequences for problems in P

Exponential time hypothesis (ETH) ~ CNF-SAT cannot be solved in time 2°().
Strong ETH (SETH): there is no constant ¢ < 1 such that CNF-SAT can be solved in
time 2<". Here n is the number of variables in the given CNF-SAT instance.

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
School of Science Department of Computer Science
14/31

Counting and Enumeration

@ Problems in P and NP can be viewed as decision problems
of a specific type:
» The problem is defined by a polynomial-time Turing machine M
with two inputs x and y
> The question is whether for a given x € {0, 1}*, there is some
y € {0,1}* with length polynomial in |x| such that M (x,y) = 1

@ We can similarly ask related counting and enumeration
questions:
» Counting: Count the number of y such that M (x,y) = 1
» Enumeration: List all y such that M (x,y) = 1

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
School of Science Department of Computer Science
15/31

Counting and Enumeration

@ Enumeration can clearly be very difficult
» The number of certificates y can be exponential in |x]|

@ What about counting?
» If the decision problem is in P, what does this imply about
counting?
» Turns out counting is often more difficult than decision

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
16/31

Perfect Matching

Definition (Perfect matching)
@ Instance: Bipartite graph G = (U, V,E), where
U={up,...,up}, V=Avi,...,vp,},, ECUXV.
@ Question: Is there a set E' C E of n edges such that for any two
distinct edges (u,v), (u/,Vv') € E',u#u' and v #V (i.e., is there a
perfect matching)?

4

@ Polynomial-time algorithms for determining the existence of
perfect matchings are well known (a randomised one was
presented in an earlier example)

@ The related counting problem #MATCHING is to count the
number of perfect matchings in a bipartite graph

A

CS-E4530 Computation: al Comple tyTheo y/Leclure17
Department of Computer Sci
17) 31

Aalto University
School of Science

Permanent and #MATCHING

@ The perfect matching problem is related to computing the
determinant of the (symbolic) adjacency matrix A®. (Is
det(A%) = 0?)

@ The counting version is related to the problem of computing the
permanent of the adjacency matrix:

G
perm(AG ZHal (i Zaﬁn(l)agn(z) Gy ()
T

(Number of nonzero terms in perm(A%).)

Example

X1,1 X1,2 0 G —
@v@ AS = 0 xixn; perm(4)
®A® 0 x32 x33 X1,1X2,2X33 +x1,1x2,3x3,2

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
A School of Science Department of Computer Science

18/31

Counting and Probability

Definition (Graph reliability)
@ Instance: An undirected graph G = (V, E), vertices 5,7 € V.

@ Question: Compute the probability that there remains an s—t
path if all edges of G fail (i.e. are deleted) simultaneously and
independently with probability 1/2.

@ Graph reliability can be solved by counting:
> After deletions, the remaining graph can be any subgraph of G
with equal probability
» The solution is thus given by counting the subgraphs of G where s
and ¢ are connected, and dividing this count by the number of all
subgraphs

School of Science epartment of Computer Scienc

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
D e
19/31

Class #P

Definition

A function f: {0,1}* — Nis in #P (pronounced ‘sharp-p’ or
'number-p’) if there exists a polynomial p: N — N and a
polynomial-time Turing machine M such that

— [{y € {0,137 M(x,y) = 1}].

@ Are all functions in #P computable in polynomial time?
» In other words, is #P = FP?
> FPis the class of functions f: {0,1}* — {0,1}* computable in
polynomial time

School of Science Department of Computer Sci

Aalto University CS-E4530 Computation: al Comple ty'rheo y/Lec(ure17
20 31

#P-completeness

@ Completeness for #P is defined in terms of oracle reductions

» Generalising prior definitions, a Turing machine with oracle access
to function f can obtain a value f(x) in a single time step,
assuming it has computed x

> For any function f: {0,1}* — {0,1}*, we denote by FP/ the class
of functions computable by polynomial-time Turing machines with
oracle access to f

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
School of Science Department of Computer Science
2131

#P-completeness

Definition
A function f: {0,1}* — {0,1}* is #P-complete if f € #P and every
function g € #P is in FP/ .

Theorem
Iff is #P-complete and f € FP, then #P = FP. J

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
School of Science Department of Computer Science
22/31

#P-completeness

@ Some examples of #P-complete problems:

P #SAT: counting satisfying assignments for a CNF formula

P #2-SAT: counting satisfying assignments for a 2-CNF formula
(note that the decision version of 2-SAT is in P)

> #MATCHING and PERMANENT (again the decision version of
MATCHING is in P)

> #HAMILTONIAN-CYCLE

@ In particular, counting versions of many problems in P are
#P-complete

» Not everything, though: counting spanning trees is in FP by the
‘matrix-tree theorem’ from algebraic graph theory

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
School of Science Department of Computer Science

23/31

Toda’s Theorem

@ How powerful is counting exactly?

» Clearly #P C PSPACE
» Both PH and #P are generalisations of NP; what is the relationship
between these classes?

Theorem (Toda’s theorem, 1991)

PH — p#SAT

@ That is, all problems in PH can be solved in polynomial time
with oracle access to a #P-complete function

School of Science Department of Computer Sci

Aalto University CS-E4530 Computation: al Comple ty'rheo y/Lec(ure17
24 31

Concrete Lower Bounds?

@ Proving concrete lower bounds for Turing machines and
circuits seems to be out of reach

@ Two general lines of research related to this issue:

» Proving lower bounds for restricted models of computation
» Understanding why general lower bounds are difficult

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
School of Science Department of Computer Science
25/31

Concrete Lower Bounds

@ Examples of models with concrete lower bounds:

» Decision trees: understanding how many input bits we need to
check in order to determine the answer
» Communication complexity:
® Alice and Bob are both holding n-bit strings, and want to compute a
function f: {0,1}" x {0,1}" — {0,1}
® How many bits do they have to communicate?
» Monotone circuits: Complexity for circuits without NOT gates

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
School of Science Department of Computer Science
26/31

Circuit Lower Bounds

@ There are also (fairly weak) circuit lower bounds known
» AC is the class of problems solvable by polynomial-size,
constant-depth, unbounded fan-in circuits
> ACC is AC? with counters (up to an arbitrary constant)

@ The following represent state of the art:
» The parity function (that is, counting the number of 1’s in the input
modulo 2) is not in AC? (J. Hastad 1987)
> NEXP ¢ ACC (R. Williams 2010)
> NQP Z ACC (C. Murray & R. Williams 2018)2

2NQP ~ ’nondeterministic quasi-polynomial time’, NQP = UC>QNTIME(n1°gL")

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
A School of Science Department of Computer Science
27131

Barriers: Relativisation

@ Can diagonalisation be used to prove P 7~ NP?

» Diagonalisation works for undecidability and hierarchy theorems,
why not for P £ NP?

@ Diagonalisation relies on specific properties of Turing
machines
(I) Turing machines can be efficiently represented as strings
(1) Turing machines can be simulated by Turing machines with small
overhead

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
28/31

Barriers: Relativisation

@ Properties (I) and (ll) also hold for oracle Turing machines

» Implies that any statement diagonalisation proves for complexity
classes defined in terms of Turing machines, it also proves for
complexity classes defined in terms of oracle Turing machines

> This implies a limitation for diagonalisation

Theorem (T. Baker, J. Gill, R. Solovay 1975)
There exist languages A and B such that P4 = NP4 and PP - NP2. J

Aalto University CS-E4530 Computational Complexi tyTheo y/Lec(ure17
School of Science Department of Computer Sci
29 31

Barriers: Natural Proofs

@ Why are circuit lower bounds difficult?

@ One can define a notion of natural proof for circuit lower
bounds (S. Rudich & A. Razborov 1994)
» This is a specific, technical notion!
» Most known lower bounds are natural in this sense
» It has been proven that if sufficiently strong one-way functions
exist, then natural proofs cannot prove that an explicit function f is
notin P /0y

@ In summary: there is non-trivial amount of research explaining
why certain ‘obvious’ proof techniques do not work for proving
lower bounds

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
School of Science Department of Computer Science
3031

Lecture 17: Summary

RAM models
Fine-grained complexity

Counting complexity and #P

Explicit lower bounds for weaker models are known

Explicit lower bounds for circuits and Turing machines seem
difficult to prove

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 17
31/31

