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Recap

One-directional maps in discrete time.

Logistic map Intl = TTp (1 — ZCn) x,20,7r=0.

Routes to chaos:
intermittency, periodic
doubling.

Universality
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Fractals and Strange Attractors

To hopefully understand the geometry of strange attractors a
little better we take this crash course on fractals...




Countable and Uncountable Sets

Are some infinities larger than others? v
es.

George Cantor invented a way to compare different infinite sets
in the late 1800’s.

Two sets X and Yare said to have the same cardinality, that is, the
same number of elements if there is an invertible mapping that
pairs each element x € X with precisely one y € Y. Such a
mapping is called a one-to-one correspondence.

The set of natural numbers N = {1,2,3,4, ...} is an infinite set.

If another set X can be put into one-to-one correspondence with
N, then X is said to be countable. Otherwise X is uncountable.



Countable Sets

Example 1. The set of even numbers E = {2,4,6, ... } is countable
because the invertible mapping 1 © 2,2 & 4,3 < 6, ... is one-to-
one. So, there are exactly as many even numbers as natural
numbers.

An equivalent characterisation of countable sets: A set X is
countable if it can be written as a list {xq, x5, x3, ... }, with every x €
X appearing somewhere in the list. In other words, given any x,
there is some finite n such that x,, = x. Recipe: find an algorithm
that systematically counts the elements of X.

Example 2. Show that integers are countable.

Solution: An algorithm for listing all integers; the list is
{0,1,—-1,2,-2,3, -3, ... }. Any particular integer appears
eventually, so the integers are countable.



Countable Sets

Example 3. The positive rational numbers are countable: Make a
table where the pg-th entry is p/q. Any given is p/q is reached
after a finite number of steps.
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Uncountable Sets

Example 1. Let X denote the set of real numbers between 0 and 1.
Show that X is uncountable.

Solution: Proof by contradiction. If X were countable, we could
list all the numbers between 0 and 1 as a set {xq, x5, X3, ... }.
Rewrite these in decimal form:

L1 = O.£811$123’)13 ce
Lo = O.$21$223’523 ce
Ly = O.$31$32$33 ce

Show that there’s a number r that’s not on the list.

Diagonal argument by Cantor: The first digit of r is anything other
than x4, the second digit is anything other than x,,. In general,

the nth digit is X,,,,.
=1 = f11f22f33 ...1s not on the list - r # X1, T + AW nr

— X 1s uncountable.



Cantor Set

The Cantor set is a simple fractal set, related to the geometry of
strange attractors.

Construction of the Cantor set:
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Cantor Set C Seo

Start with Sy = [0,1] and remove 1,3 leaving the endpoints. —
3’3 & P

Closed intervals of S;. Keep repeating — The limiting set C = S,
is the Cantor set that consists of an infinite number of infinitesimal
pieces separated by various-sized gaps.



Fractal Properties of the Cantor Set

1. € has structure at arbitrarily small scales.

2. C is self-similar. In other words, C contains smaller copies of
itself at all scales. (Take the left or right of C and enlarge it by

three: the original C results. Note: More general fractals are only
approximately self-similar.)

3. The dimension of C is not an integer. The dimension of C is
In2/In 3 = 0.63.



Other Properties of the Cantor Set

C has a measure zero.

C can be covered by intervals whose total length is arbitrarily
small.

Each set S;, covers completely all the sets coming after it.
— C = S, is covered by each of the sets 5.

— The total length of C is less than the total length ot §,,.

The lengths of the sets: Lo = 1,L; = %,Lz = (%)2 . — (E)n.

The length of C: L, = lim L, = 0.

n—oo

C is uncountable.

This can be proven by Cantor’s diagonal argument.



Dimension of Self-Similar Fractals

A conventional intuitive idea of the dimension is that it is the
minimum number of coordinates needed to describe every point
in the set. For example, every point on a smooth curve is
determined by one number.

This idea of the dimension breaks down for fractal objects.

Consider the von Koch curve. / \\
5

Start with a line segment Sj.

Generate S; by deleting the middle _A_> ZJ\* s,
third of Sy and replacing it with the méf o
other two sides of an equilateral L
triangle. Repeat recursively: the wgv?m%g
limiting set K = S, is the Koch 3 1 s,

curve.

von Koch curve K



Dimension of Self-Similar Fractals

The Koch curve K h

as infinite arc length.

1. The length of Sy is L.

2 Sl: L]_ = gLO

3. Recursion: L, = (

47?,
§) Ly > o asn — oo,

By similar reasoning, the arc length
between any two points on K is infinite.
So, points on K are not determined by

their arc length from

a particular point;

every point is infinitely far from each

other! — K is more than one-dimensional.
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von Koch curve K

On the other hand, K does not have an area, so it is not two-

dimensional either.

—1<d<?.

So



Dimension of Self-Similar Fractals

Similarity Dimension

The simplest fractals are self-similar.

— Define dimension by extending an elementary observation
about classical self-similar sets like lines, squares, or cubes.

m is the number of copies
r is the scale factor

Shrink the square by a
factor of 3 in each
m=4 _— direction: it takes nine of
r=2 s the small squares to equal
the whole.

Shrink the square by a factor of 2
in each direction: it takes four of
the small squares to equal the
whole.

Reduce the linear dimension by
r: it takes r# smaller squares to
equal the original.



Dimension of Self-Similar Fractals

In dimension 3: Shrink a cube by a factor of 2 in each direction: it
takes eight of the small cubes to equal the whole.

Reduce the linear dimension by 7: it takes 3 smaller cubes to
equal the original.

Definition: Suppose that a self-similar set is composed of m
copies of itself scaled down by a factor of r. Then the similarity
dimension d is the exponent defined by m = r4, or equivalently,

Inm

d =

Inr



Dimension of Self-Similar Fractals

Example 1. Find the similarity dimension of the Cantor set C.

Solution: C is composed of two copies of itself, each scaled down
by a factor of 3. So m = 2 when r = 3. Therefore,d =In2 /In3 =
0.63.

Example 2. von Koch curve has a similarity dimension of

d =In4/1In3 = 1.26, because the curve is made up of four
equal pieces, each of which is similar to the original but scaled
down by a factor of 3 in both directions. So, m = 4, when r = 3.

2
O I

Figure 11.3.4




Dimension of Self-Similar Fractals

More General Cantor Sets

To obtain a new kind of Cantor set, divide an interval into some
other odd number of equal pieces, delete every other piece and
repeat.
A closed set is called a topologically Cantor set if it satisfies:
1. S is totally disconnected, i.e., S contains no connected subsets
other than single points. So, all points are separated from each
other.
2. S contains no isolated points, i.e., every point in S has a
neighbour arbitrarily close by: given any point p € S within a
distance € > 0, there is some other point g € S within a

distance ¢ of p.
The definition says nothing about self-similarity, which is a

geometric rather than a topological property. Cross sections of
strange attractors are often topological Cantor sets, which are
not necessarily self-similar.



Box Dimension

We generalise the notion of dimension to deal with fractals that
are not self-similar. There are various definitions, all sharing the
idea of “measurement at scale &”.

“Definition”. e[
”Measurement”: W
cover the set

' L A
Wlth boxes of N(e)oe = N(e) o2
size &. € €

Let S be a subset of D-dimensional Euclidian space, and let N (&)
be the minimum number of D-dimensional cubes of side ¢
needed to cover S. How does N(¢) depend on &€?

A smooth curve of length L, N(¢) « L/e.
A planar region of area bounded by a smooth curve L, N (&) x A/&?.



Box Dimension

= N(¢) x 1/¢4.  This power law holds also for most fractal
sets S, where d is not an integer.

Definition of box dimension d = lim >

lim s if the limit exists.

Example 1. Find the box dimension of the Cantor set.

Solution: The Cantor set is covered by each of the sets §,, used in

its construction. Each S, consists of 2™ intervals of length (1/3)".
If we pick € = (1/3)", we need all 2" intervals to cover C. Hence,
N =2"whene=(1/3)".e > 0asn — oo:

_ i DN() _nln2 _In2 This agrees with the
d = lim 1/ o T PO : :
e-0In(’/e)  niln3  In3 similarity dimension.

The trick: discrete sequence € = (1/3)" that tends to zero as
n — oo in spite of the definition saying that we should let ¢ - 0

continuously. The limiting value does not change due to this.



Box Dimension

Example 2. A fractal that is not self-similar constructed by
recursion: divide a square region into nine equal squares, after
which one of the small squares is selected at random and
discarded.

Pick the unit of length equal to the side of the original square: S; is
covered by N = 8 squares of side € = (1/3)?. Generally, N = 8"
when ¢ = (1/3)". Hence,

. InN(¢) nIn8 1In8
d=Ilim—7——== = —
e—»0In(t/9) nln3 In3




Pointwise and Correlation Dimensions

How to estimate the fractal dimension of a strange attractor?

Generate a set of very many points {x;,i = 1, ..., n} on the attractor.

Computing box dimension is impractical. Grassberger & Procaccia
introduced a more efficient approach:

Fix a point x on the attractor A.
Let N(¢) denote the number of
points on A inside a ball of

radius € about x. «\* Ball of radius ¢
Most of the points in the ball are Lb‘vb
unrelated to the immediate portion . }‘ :

of the trajectory through x, but come A

from later parts that happen to pass

close to x. = N (&) measures how
frequently a typical trajectory visits
an € neighbourhood of x.




Pointwise and Correlation Dimensions

Vary ¢. As ¢ increases the number of points in the ball typically
grOwWSs as

N, (€) ox €,
where d is the pointwise dimension at x.

The pointwise dimension can depend significantly on x. —
Average N, (&) over many x to obtain an overall dimension of A:

C(e) «x €4,

where d is called the correlation dimension.

The correlation dimension takes account of the density of points
on the attractor, whereas the box dimension weights all

occupied boxes equally. In general, d¢orrelation < dbox (usually
very close).



Pointwise and Correlation Dimensions

To estimate d, plot log C(¢) vs. log €.

InC

In the scaling region it holds:

Ing

Saturation: at large ¢, the &-
balls engulf the whole
attractor and N, (&) can
grow no further.

Minimum: extremely small
e-balls include only x.

(minimum separation of points on 4) K ¢ < (diameter of A)



Pointwise and Correlation Dimensions

Grassberger & Procaccia estimated the correlation dimension of
the Lorenz attractor for the standard parameter values r = 28,
c=10,b =8/3. | . |

O . —
.

Runge-Kutta, time step 0.25, .
15,000 points: 5 M\ |

deorr = 2.05 + 0.01

|092 C(

25} ~

| § 1
0 5 10 5

log, (1/15) (1o arbitrary)




Pointwise and Correlation Dimensions

For the logistic map x,,,1 = rx,(1 — x,,) at the parameter value r =
Too = 3.5699456 ... corresponding to the onset of chaos, the
attractor is a Cantor-like set, although it is not strictly self-similar.

X —§—

Ll
RNl

K|

L

r

The attractor looks like a 2™-cycle for n > 1.

For the small » in the figure, the right panel shows x for 2"-cycles.
As n — oo, this set approaches a topological Cantor set that is not

strictly self-similar.



Pointwise and Correlation Dimensions

The correlation dimension of the limiting set of the logistic map
was estimated by Grassberger and Procaccia.

| I 1 T

Trajectory of 30,000 points,
starting from x, = 1/2:
Aeorr = 0.500 + 0.005, which
is smaller than the box
dimension dy,x = 0.538.

Logistic map

Q *ag*=3,56994

v :0,5001,00%

Lag, Cl1)

Note: In an attractor there
may be local variations in
the scaling. They are called
multifractals. d is quantified  ° 0 20 S 40
by a multifractal spectrum. Log, (Migh (I orbitrary)




Strange Attractors

Equipped with some understanding on maps and fractals we try
to acquire some intuition on chaotic dynamics and start with

Simple Examples

How can trajectories on the attractor remain confined to a
bounded region of phase space and yet separate from their
neighbours exponentially fast (initially...).

The basic mechanism involves repeated stretching and folding.

= )




Pastry map

Flow contracts in a blob in some directions (dissipation) and
stretches in others — a strange attractor.

Stretching leads to sensitive dependence on initial conditions.

Stretching cannot go on forever — folding.

Making pastry flatten and stretch




Pastry map

C d

“Pastry map”:

Flatten, stretch, and fold rectangle
abcd into the horseshoe ;.

Flatten, stretch, and fold S; into S, etc.

Proceeding this way, the
layers become thinner and
the number of them _ S —
doubles at each stage. s S s

The limiting set S,, consists of infinitely many smooth layers,
separated by gaps of various sizes: A vertical cross section through
the middle resembles a Cantor set.

S 1S an attractor with fractal structure.



The baker’s map

Example 1. The baker’s map B of thesquare 0 < x <1,0<y <1
to itself is given by

B (2zp,ayn) 0<z, <3
(Tn41, Ynt1) = (22 — 1,ay, + %) %<z, <1

: . 1
where a is a parameter in therange 0 < a < -.

@ © The map is a product of two

transformations: (a)— (b)
stretch & flatten the square
! into 2Xa rectangle, (b)— (c)
flatten and stretch cut and cut the rectangle in half and

stack stack the one 1Xxa rectangle
on top of the other aty = 1/2.

0 (b) 2



The baker’s map

Thanks to the stretching in the x-direction, the baker’s map
exhibits sensitive dependence on initial conditions. It has
uncountably many chaotic orbits.

Example 2. Show that for a < %, the baker’s map has a fractal

attractor A that attracts all orbits. More precisely, show that
there is a set 4 such that for any initial condition (xg, o), the
distance from B"(xy, y) to A converges to zero as n — .
Solution. Construct the attractor: Let Sy denote the square 0 <
x <1,0 <y <1, which includes all possible (xq, yg).

B™(S) consists of 2" 3+
horizontal strips of L =
height a". ‘L
0 Nt R RN
The limiting set A = B®(S) B(S) B(S)

is a fractal and topologically a Cantor set of line segments.



The baker’s map

Example 3. Find the box dimension of the attractor for the baker’s
1

map with a <
2

Solution. The attractor is approximated by B™(S) consisting of 2"
strips of height a™ and length 1. Cover A with square boxes of

side € = a™.

It takes about a™" boxes to cover each of the strips of length 1.
There are 2" strips altogether — N =~ a™"x2" = (a/2)™™.
- In N . In[(a/2)7"] N In(1/2) (d—2asa—1/2)

=N
e—01nl/e nlg%) In(a="n) In a




The baker’s map

The importance of dissipation
The baker’s map shrinks areas in phase space for a < 1/2.

For any region R in the square, area(B(R)) = 2aXarea(R) < area(R)
(stretching by 2 + flattening by a).

This area contraction is analogous to the volume contraction
found for Lorenz equations.

(1) The attractor A for the baker’s map must have a zero area.

(2) The baker’s map cannot have repelling fixed points.

As we’ve seen, area and volume contraction in phase space is due
to dissipation. Without dissipation there are no attractors.



Henon Map

Michel Hénon introduced this map to study Lorenz system.

The Hénon map

Ln+1 = Yn
Yn+1 = bCIJn,

2

1 —ax;

where a and b are adjustable parameters. The amount of
dissipation can be adjusted via b.

The equivalent chain of transformations:

{a)

(b




Henon Map

. A A S
/7N Ty =

(a) (b) (© (@

(a)-(b) Stretch & fold T": x' = x,y' = 1 +y — ax?.
(Parameter a controls the folding.)

(b)-(c) Fold further by contracting along the x-axis
T":x" = bx',y" =y, where -1 < b < 1.

(c)-(d) Rotate to orient the area along the x-axis

Tlll:xlll — yll’ylll — xll.

— The composite transformation T = T'"T"T" yields the Hénon
mapping (notation: (x,, ¥,) = (x,y) and (Xp41, Yn+1) = (x", "))



Elementary properties of the Henon map

The Hénon map captures several essential properties of the Lorenz
system.

1. The Hénon map is invertible. Consequently, trajectories are
unique — No crossings.

2. The Hénon map is dissipative. It contracts areas at the same rate
everywhere in phase space. (Analogous to constant negative
divergence in the Lorenz system.)

3. For certain parameter values, the Hénon map has a trapping
region, that is, there is a region R that gets mapped inside itself.
(As in the Lorenz system, the strange attractor is enclosed in the
trapping region.)



Elementary properties of the Henon map

0.6

02

-1.5 -1 -0.5 0 0.5 1 1.5

4. Some trajectories of the Hénon map escape to infinity. (In
contrast, all trajectories in the Lorenz system are bounded; they
all eventually enter and stay inside a certain large ellipsoid.



Elementary properties of the Henon map

Example 1. Show that the Hénon map T is invertible if b # 0 and
find the inverse T 1.

Solution. We solve  ZTp11 = Yp + 1 — aa:,,% for x,, and y,,.

Yn+1 = bZL‘n,

>x, =b Yy i1,V = X1 — 1+ ab ?(v,41)% Thus AT 1vb # 0. m



Elementary properties of the Henon map

Example 2. Show that Henon map contracts areas if —1 < b < 1.

Solution: Compute the Jacobian af 9f
J — ox oy

—\ 99 9g

Ox oy

If |detJ| < 1V(x,y), the map is area-contracting.

For the Hénon map, f(x,y) =1 —ax?* + y and g(x,y) = bx. Hence,

—2ax 1
=( % 0)

|det J| = —b V(x,y). So, the map is area-contracting for —1 < b < 1.




Zooming in on a Strange Attractor

Heénon chose parameter values a = 1.4 and b = 0.3 to have the
system well into the chaotic region.He generated the attractor by
computing ten thousand successive iterates starting from the
origin. The points (x,, ¥,) hop around erratically, soon the
attractor begins to take form. — This was the first visualisation of
the fractal structure of a strange attractor.

Self-similarity: six parallel curves, a lone curve, two closely spaced
curves above, and three more curves above them. The pattern
repeats at an arbitrarily small scale.

0,21 T v > T 0.191
0.4b 1 ' R
b,
| (a) \\.;"“"h\-.
0.3 0.0} SN ©
. 0.1%0 ST, c
-, . Y
L e,
0.2t Fs. \\\l‘u; i
0.19 R SN e
. o s
N RO Ry,
~ e h ""\"-:"‘
or T RN X Y,
a.18 0.188} R A,
~., - ~\\ N
-0 S NI
~ TN
/ 0.17 0.18 ~. RN
ol ‘-\ T
S,
~ ™
0.3 0.186} ~
0.18} . {
AR
-0.4 7
0.165 0.625 0,630 .65 0630




Rossler System

5 = Numerical integration on the system with
)=+ ay a =b =0.2,c = 5.7: the system has a
. strange attractor.
z=b+ z(x —c).
Note: In the previous mappings chaotic
v | dynamic could be seen for discrete
dynamics in 2D. Flow (ditferential

equations) can be chaotic only in 3D:

AN the wildly moving trajectories do not
; S N NRIRRN
. ‘i‘:“\lf‘\\\ Cross.

i 0
i SR
\

SR
— \W“i‘“i

X




Rossler System

(In fact

trajectories Flow near a typical trajectory
“told” onto

another (a)

trajectory
surface close

to the
previous
one.)
There’s compression toward the
attractor in one direction
divergence along the attractor in
the other direction.

divergence
along attractor

(b)

The sheet on which there’s sensitive
dependence on initial conditions —



Rossler System

(a) The flow takes a single sheet and produces two sheets after one
circuit. (b) The process repeats and the two sheets produce four
sheets. (c) These four sheets produce eight sheets.

Ultimately the flow generates an infinite complex of tightly
packed surfaces: the strange attractor.



Rossler System

1. Slice the attractor with a plane
to expose its cross section. —
Poincare section.

2. Take a one-dimensional slice of
the Poincaré section — Lorenz
section: An infinite set of points
separated by gaps of various
sizes.

The resulting pattern of dots and
gaps is a topological Cantor set.

. - 3 3 .
. - N
. . . - L a - . "
- . - g N P as -
- ‘.
. - t . - . - e, v N S
. . - - - . .
. . ) - . N
4w 3
L, ‘e % 4 - - v . -,
. - - - ™ . . vl v e ™ -
et IR St B S TR M X SR =~ o R - - P
- %" m e s "% s s o = o m e - - NS . vrese N
v . e . ' .~ e o®a? 4,01 88 Fe®" o'ee's oo - -
- . . %% sl e N AN
. - 1 . s s s r L3 2 1 S - e ..
. ' . PR | Y RO
. . - . . s X
. . ¢ L v SO
. . b SO
' L Y 3 « 40 . . .
’ - 1 !
4 . ‘.n - & . . . . N . *
. - . . . . - . -
- . T

Each dot corresponds to one
layer of the complex — Rdssler
attractor is a Cantor set of
surfaces.
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Chaos and Strange Attractors in the Real World

Existence of strange attractors has been verified for some real-
world systems. The Belousov-Zhabotinsky chemical reaction
system that exhibits limit-cycle behaviour in autonomous form
can be driven to chaos. This requires feeding in fresh reactants.
This driven system is non-autonomous. Such a manoeuvre is
often required to introduce chaos: we drive the system out of
equilibrium.

The way to map out the attractor is to plot dynamical variable at ¢
and delayed at ¢t + T.

Blti+T)

The End.




What we have covered...

Transformation of ordinary 2-dimensional differential equations...

(:ti:%> - trick: Tl =, Tg= jjl
d?x
gz = 2
... to one-dimensional flows: © = f (a:) . —»Perform linear
stability analysis via f'(x).

- vector field: how the velocity of the particle depends on its
position ’

- fixed points; stable /\ /" \ / N\ | &
and unstable NV 7
- time dependence x(t) B g
- potential V: f(z) = —Cfi—‘; 7




Bifurcations in 1D

Three kinds of bifurcations: Normal form
1. Saddle-node: T =7+ 5522
2. Transcritical: r=rr—=
3. Pitchfork: . 3
a) Supercritical L =TL =4I,
b) Subcritical T=rT+
4. Impertect bifurcations
for example i =h+re—

&

N

h



Growth models and flows on the line

Analysis of growth model having logistic growth part and
predation. Insect outbreak.

NzRN(l—%) — p(N)

Emergence of a cusp catastrophe: 1(

Flows on the circle to describe
one-dimensional periodic

system:s.
Attemped phase- ’ ya\
locking of fireflies: N /N N

@ u=0 (b O<cuxl cy u>1



2D Linear systems

r = ar+by
y = cxr+dy
Matrix form
x = Ax



Classification of linear
systems

Eigenvalues and eigenvectors

Av = \v

Characteristic equation

det(A—AI) =0
Az(? Z) — det(a;A dﬁ)\>:()
A —TA+A=0

trace(A) = a + d
det(A) = ad — bc

-
A



Classification of fixed points

1
)\1’225(7'::\/T2—4A), A:Al)\g, T:)\1—|—)\2

A and t are solved from

A=A)A=X) =X =M+ XDAF X=X —TA+A=0

. T ............... - 12-—4A =0
Note that the analysis as such * unstable nodes * ‘e :

~ unstabl

......
........

By

e spirals

saddle points

/ & stablc nodes :

non-isolated
fixed points
stars, degenerate nodes



Phase portraits

The general form of a vector field on the phase plane:

1 = fi(xy1,x9)
ro = fo(x1,x2)
In vector notation:
x = f(x)

x = (z1,22), f(x) = (f1(x), f2(x))

X = point in phase plane

x = velocity at that point



Phase portraits

Solution x(t) describes a trajectory on the phase plane

X

x(t)

The whole plane is filled with (non-intersecting)
trajectories starting from different phase points.

For nonlinear systems there is no hope to find trajectories
analytically + the analytical solutions would not provide
much insight.

Our approach: determine the qualitative behavior ot the
solutions via phase portraits. Nullclines!



Existence, uniqueness and
topological consequences
x = f(x), x(tg) = Xg

Corollary: different trajectories never intersect!

If two trajectories did intersect there would be two solutions
starting from the same point (the crossing point).



Existence, uniqueness and
topological consequences

Consequence in two dimensions: any trajectory starting
from inside a closed orbit will be trapped inside it forever!

C



2D nonlinear systems

How to identify:

1. Conservative systems

2. Reversible systems

And what they implicate:

For example, possibility/impossibility of closed orbits

Memorise the tricks pointed out in the lecture notes!



Limit cycles in 2D

Stable and unstable limit cycles.

@c @unstablc @half-stab]e

limit cycle limit cycle limit cycle

Ways to rule out closed orbits.
Ways to prove existence of closed orbits.

Nonlinear oscillations.

Limit cycles are the basis for a new kind of bifurcation in 2D.



Bifurcations in 2D

Ones that have corresponding bifurcations in 1D:
- saddle-node

- transcritical

- supercritical and subcritical pitchfork

These all are zero-eigenvalue bifurcations: They occur at
A = 0, which means that one of the eigenvalues must be
zero (A = A4 15).



Hopf bifurcation in D > 2

Hopf bifurcation. Complex conjugate eigenvalue pair passes
through Re(1) = 0.

In 3D there’s
wl something
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Chaotic dynamics in 3D

Continuous time: Lorenz’ equations and the butterfly — a strange
attractor.

r = o(y—x)
U re — 1Y — IZ
z = xy — bz

Learn the Lorenz system qualitatively — different regimes etc. — so
that you have a general understanding of its behaviour.
Make sure you know what chaos is and what it is not.



Discrete time:

One-directional maps.

Logistic map Tn4+1 = TIp (1 — :Ijn) x,20,7=0.

Routes to chaos:

intermittency, periodic
doubling. o

Universality

For example,
dn
dn—l— 1

— o~ —2.5029

as 1 — 00,

independent of the form of fin
Tnt1 = J (xn)




Sets and fractals

Fractal properties of the Cantor set.

Detfinitions of dimensions: similarity, box, pointwise, and
correlation dimensions.

Strange attractors and the maps constructed to understand their
properties.

The relation of the Cantor set to the strange attractor of the
Lorenz and the Rossler systems.

The exam will mostly consist of calculations. There will
probably be either one larger essay question or a couple of
smaller ones.



The End

Although chaotic dynamics has been around in science for quite
some time, its application to complex systems is still in its infancy.
Application of machine learning techniques is changing the game.

Hopefully, after this course you won'’t be intimidated by

nonlinear phenomena. Thanks for the company!




