

Combinatorics of Efficient Computations

Approximation Algorithms

Lecture 4: Linear Programming

Joachim Spoerhase

Introduction to Linear Programming

Many approximation algorithms are based on linear programming.

- Linear Programming (LP) and LP-Duality
- Min-Max Relationships
- LP-based Algorithm Designs Techniques

Introduction to Linear Programming

Many approximation algorithms are based on linear programming.

- Linear Programming (LP) and LP-Duality
- Min-Max Relationships
- LP-based Algorithm Designs Techniques

Consider an NP-hard minimization problem

- Consider an NP-hard minimization problem
- Decision Problem: Is S an **upper bound** of OPT?

- Consider an NP-hard minimization problem
- Decision Problem: Is S an upper bound of OPT?
 Efficiently verifiable "Yes"-certificates.

- Consider an NP-hard minimization problem
- Decision Problem: Is S an upper bound of OPT?
 Efficiently verifiable "Yes"-certificates.
- Decision Problem: Is S an **lower bound** of OPT?

- Consider an NP-hard minimization problem
- Decision Problem: Is S an upper bound of OPT?
 Efficiently verifiable "Yes"-certificates.
- Decision Problem: Is S an lower bound of OPT?
 Are "No"-certificates efficiently vertifiable?

- Consider an NP-hard minimization problem
- Decision Problem: Is S an upper bound of OPT?
 Efficiently verifiable "Yes"-certificates.
- Decision Problem: Is S an lower bound of OPT?
 Are "No"-certificates efficiently vertifiable?

 → probably not! (NP ≠ coNP)

- Consider an NP-hard minimization problem
- Decision Problem: Is S an upper bound of OPT?
 Efficiently verifiable "Yes"-certificates.
- Decision Problem: Is S an lower bound of OPT?
 Are "No"-certificates efficiently vertifiable?

 → probably not! (NP ≠ coNP)
- Need lower bounds $S \ge \mathsf{OPT}/\alpha$ (approximate "No"-certificates) for approximation algorithms!

- Consider an NP-hard minimization problem
- Decision Problem: Is S an upper bound of OPT?
 Efficiently verifiable "Yes"-certificates.
- Decision Problem: Is S an lower bound of OPT?
 Are "No"-certificates efficiently vertifiable?

 → probably not! (NP ≠ coNP)
- Need lower bounds $S \ge \mathsf{OPT}/\alpha$ (approximate "No"-certificates) for approximation algorithms!
- For example:
 - Vertex Cover: lower bound by matchings
 - TSP: lower bound by MST or Cycle Cover

Linear Programming

Linear Programming

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

Linear Programming

Optimize (i.e., minimize or maximize) a linear (objective) function subject to linear inequalities (constraints).

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

• Standard form (i.e., using only " \geq ")

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

Optimize (i.e., minimize or maximize) a linear (objective) function subject to linear inequalities (constraints).

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

• $\mathbf{x} = (2, 1, 3)$ is a feasible solution $\rightsquigarrow S = 30$ is an upper bound on OPT

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

$$\bullet \ 7x_1 + x_2 + 5x_3 \ge x_1 - x_2 + 3x_3$$

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

•
$$7x_1 + x_2 + 5x_3 \ge x_1 - x_2 + 3x_3 \ge 10 \rightsquigarrow \mathsf{OPT} \ge 10$$

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

- $7x_1 + x_2 + 5x_3 \ge x_1 x_2 + 3x_3 \ge 10 \rightsquigarrow \mathsf{OPT} \ge 10$
- $7x_1 + x_2 + 5x_3 \ge (x_1 x_2 + 3x_3) + (5x_1 + 2x_2 x_3) \ge 10 + 6$
- → OPT ≥ 16

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $y_1(x_1 - x_2 + 3x_3) \ge 10 \ y_1$
 $y_2(5x_1 + 2x_2 - x_3) \ge 6 \ y_2$
 $x_1, x_2, x_3 \ge 0$

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $y_1(x_1 - x_2 + 3x_3) \ge 10 \ y_1$
 $y_2(5x_1 + 2x_2 - x_3) \ge 6 \ y_2$
 $x_1, x_2, x_3 \ge 0$

$$y_1 + 5y_2 \le 7$$
 $-y_1 + 2y_2 \le 1$
 $3y_1 - y_2 \le 5$
 $y_1, y_2 \ge 0$

• $10y_1 + 6y_2$ is a lower bound on OPT

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $y_1(x_1 - x_2 + 3x_3) \ge 10 \ y_1$
 $y_2(5x_1 + 2x_2 - x_3) \ge 6 \ y_2$
 $x_1, x_2, x_3 \ge 0$

maximize
$$10y_1 + 6y_2$$

subject to $y_1 + 5y_2 \le 7$
 $-y_1 + 2y_2 \le 1$
 $3y_1 - y_2 \le 5$
 $y_1, y_2 \ge 0$

 Any feasible solution to the dual program provides a lower bound for the optimum of the primal program.

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $y_1(x_1 - x_2 + 3x_3) \ge 10 \ y_1$
 $y_2(5x_1 + 2x_2 - x_3) \ge 6 \ y_2$
 $x_1, x_2, x_3 \ge 0$

maximize
$$10y_1 + 6y_2$$

subject to $y_1 + 5y_2 \le 7$
 $-y_1 + 2y_2 \le 1$
 $3y_1 - y_2 \le 5$
 $y_1, y_2 \ge 0$

- Any feasible solution to the dual program provides a lower bound for the optimum of the primal program.
- $\mathbf{x} = (7/4, 0, 11/4)$ and $\mathbf{y} = (2, 1)$ both provide objective values of 26

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $y_1(x_1 - x_2 + 3x_3) \ge 10 \ y_1$
 $y_2(5x_1 + 2x_2 - x_3) \ge 6 \ y_2$
 $x_1, x_2, x_3 \ge 0$

maximize
$$10y_1 + 6y_2$$

subject to $y_1 + 5y_2 \le 7$
 $-y_1 + 2y_2 \le 1$
 $3y_1 - y_2 \le 5$
 $y_1, y_2 \ge 0$

- Any feasible solution to the dual program provides a lower bound for the optimum of the primal program.
- $\mathbf{x} = (7/4, 0, 11/4)$ and $\mathbf{y} = (2, 1)$ both provide objective values of 26 \rightsquigarrow both solutions are optimal!

minimize
$$\sum_{j=1}^{n} c_j x_j$$
 Primal Program subject to $\sum_{j=1}^{n} a_{ij} x_j \geq b_i$ $i=1,\ldots,m$ $x_j \geq 0$ $j=1,\ldots,n$

minimize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 Primal Program subject to $\sum_{j=1}^{n} a_{ij}x_{j} \geq b_{i}$ $i=1,\ldots,m$ $x_{j} \geq 0$ $j=1,\ldots,n$ Dual Program subject to $\sum_{i=1}^{m} b_{i}y_{i}$ Dual Program $j=1,\ldots,n$ $j=1,\ldots,n$ $j=1,\ldots,m$

minimize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 Primal Program subject to $\sum_{j=1}^{n} a_{ij}x_{j} \geq b_{i}$ $i=1,\ldots,m$ $x_{j} \geq 0$ $j=1,\ldots,n$ Dual Program subject to $\sum_{i=1}^{m} b_{i}y_{i}$ Dual Program $i=1,\ldots,m$

maximization instances dualize analogously

minimize
$$\sum_{j=1}^{n} c_j x_j$$
 Primal Program

subject to $\sum_{j=1}^{n} a_{ij} x_j \geq b_i$ $i=1,\ldots,m$
 $x_j \geq 0$ $j=1,\ldots,n$

maximize $\sum_{i=1}^{m} b_i y_i$ Dual Program

what is the dual of the dual?

 $y_i \geq 0$ $j=1,\ldots,m$

maximization instances dualize analogously

LP-Duality

Primal: minimize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to $\sum_{j=1}^{n} a_{ij}x_{j} \geq b_{i}$ $i=1,\ldots,m$ $x_{j} \geq 0$ $j=1,\ldots,n$ Dual: maximize $\sum_{i=1}^{m} b_{i}y_{i}$ subject to $\sum_{i=1}^{m} a_{ij}y_{i} \leq c_{j}$ $j=1,\ldots,n$ $y_{i} > 0$ $i=1,\ldots,m$

Thm. The primal program has a finite optimum \Leftrightarrow the dual program has a finite optimum. Moreover, if $\mathbf{x}^* = (x_1^*, \dots, x_n^*)$ and $\mathbf{y}^* = (y_1^*, \dots, y_m^*)$ are optimal solutions for the primal and dual (respectively), then

$$\sum_{j=1}^{n} c_{j} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}.$$

min
$$\sum_{j=1}^{n} c_j x_j$$
 max. $\sum_{i=1}^{m} b_i y_i$
s.t $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ s.t. $\sum_{i=1}^{m} a_{ij} y_i \le c_j$
 $x_i \ge 0$ $y_i \ge 0$

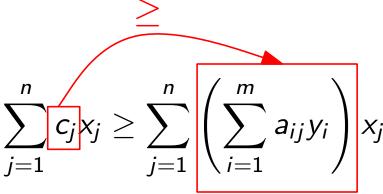
Thm. If $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_m)$ are feasible solutions for the primal and dual programs (resp.), then

$$\sum_{j=1}^n c_j x_j \geq \sum_{i=1}^m b_i y_i.$$

min
$$\sum_{j=1}^{n} c_j x_j$$
 max. $\sum_{i=1}^{m} b_i y_i$
s.t $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ s.t. $\sum_{i=1}^{m} a_{ij} y_i \le c_j$
 $x_i \ge 0$

Thm. If $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_m)$ are feasible solutions for the primal and dual programs (resp.), then

$$\sum_{j=1}^n c_j x_j \geq \sum_{i=1}^m b_i y_i .$$



min
$$\sum_{j=1}^{n} c_j x_j$$
 max. $\sum_{i=1}^{m} b_i y_i$
s.t $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ s.t. $\sum_{i=1}^{m} a_{ij} y_i \le c_j$
 $x_i \ge 0$ $y_i \ge 0$

Thm. If $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_m)$ are feasible solutions for the primal and dual programs (resp.), then

$$\sum_{j=1}^n c_j x_j \geq \sum_{i=1}^m b_i y_i.$$

$$\sum_{j=1}^{n} c_{j} x_{j} \geq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i} \right) x_{j} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) y_{i}$$

min
$$\sum_{j=1}^{n} c_j x_j$$
 max. $\sum_{i=1}^{m} b_i y_i$ s.t. $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ s.t. $\sum_{i=1}^{m} a_{ij} y_i \le c_j$ $y_i \ge 0$

Thm. If $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_m)$ are feasible solutions for the primal and dual programs (resp.), then

$$\sum_{j=1}^m c_j x_j \geq \sum_{i=1}^m b_i y_i.$$

$$\sum_{j=1}^{n} c_j x_j \ge \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i \right) x_j = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) y_i \ge \sum_{i=1}^{m} b_i y_i.$$

min
$$\sum_{j=1}^{n} c_j x_j$$
 max. $\sum_{i=1}^{m} b_i y_i$ s.t. $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ s.t. $\sum_{i=1}^{m} a_{ij} y_i \le c_j$ $y_i \ge 0$

Thm. If $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_m)$ are feasible solutions for the primal and dual programs (resp.), then

$$\sum_{j=1}^n c_j x_j \geq \sum_{i=1}^m b_i y_i.$$

$$\sum_{j=1}^{n} c_j x_j \ge \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i \right) x_j = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) y_i \ge \sum_{i=1}^{m} b_i y_i.$$

min
$$\sum_{j=1}^{n} c_j x_j$$
 max. $\sum_{i=1}^{m} b_i y_i$
s.t $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ s.t. $\sum_{i=1}^{m} a_{ij} y_i \le c_j$
 $x_i \ge 0$ $y_i \ge 0$

Thm. Let $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_m)$ be feasible solutions for the primal and dual Programs (resp.). The solutions \mathbf{x} and \mathbf{y} are optimal if only if the following conditions are met:

Primal CS:

For each
$$j=1,\ldots,n$$
: either $x_j=0$ or $\sum_{i=1}^m a_{ij}y_i=c_j$

Dual CS:

For each
$$i=1,\ldots,m$$
: either $y_i=0$ or $\sum_{j=1}^n a_{ij}x_j=b_i$

min
$$\sum_{j=1}^{n} c_j x_j$$
 max. $\sum_{i=1}^{m} b_i y_i$
s.t $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ s.t. $\sum_{i=1}^{m} a_{ij} y_i \le c_j$
 $x_i \ge 0$

Thm. Let $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_m)$ be feasible solutions for the primal and dual Programs (resp.). The solutions \mathbf{x} and \mathbf{y} are optimal if only if the following conditions are met:

Primal CS:

For each $j=1,\ldots,n$: either $x_j=0$ or $\sum_{i=1}^m a_{ij}y_i=c_j$

Dual CS:

For each $i=1,\ldots,m$: either $y_i=0$ or $\sum_{j=1}^n a_{ij}x_j=b_i$

Proof.

$$\sum_{j=1}^{n} c_{j} x_{j} = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i} \right) x_{j} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) y_{i} = \sum_{i=1}^{m} b_{i} y_{i}.$$

min
$$\sum_{j=1}^{n} c_j x_j$$
 max. $\sum_{i=1}^{m} b_i y_i$ s.t $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ s.t. $\sum_{i=1}^{m} a_{ij} y_i \le c_j$ $y_i \ge 0$

Thm. Let $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_m)$ be feasible solutions for the primal and dual Programs (resp.). The solutions \mathbf{x} and \mathbf{y} are optimal if only if the following conditions are met:

Primal CS:

For each
$$j=1,\ldots,n$$
: either $x_j=0$ or $\sum_{i=1}^m a_{ij}y_i=c_j$

Dual CS:

For each $i=1,\ldots,m$: either $y_i=0$ or $\sum_{j=1}^n a_{ij}x_j=b_i$

Proof.

$$\sum_{j=1}^{n} c_j x_j = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i \right) x_j = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) y_i = \sum_{i=1}^{m} b_i y_i.$$

min
$$\sum_{j=1}^{n} c_j x_j$$
 max. $\sum_{i=1}^{m} b_i y_i$ s.t $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ s.t. $\sum_{i=1}^{m} a_{ij} y_i \le c_j$ $y_i \ge 0$

Thm. Let $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_m)$ be feasible solutions for the primal and dual Programs (resp.). The solutions \mathbf{x} and \mathbf{y} are optimal if only if the following conditions are met:

Primal CS:

For each
$$j=1,\ldots,n$$
: either $x_j=0$ or $\sum_{i=1}^m a_{ij}y_i=c_j$

Dual CS:

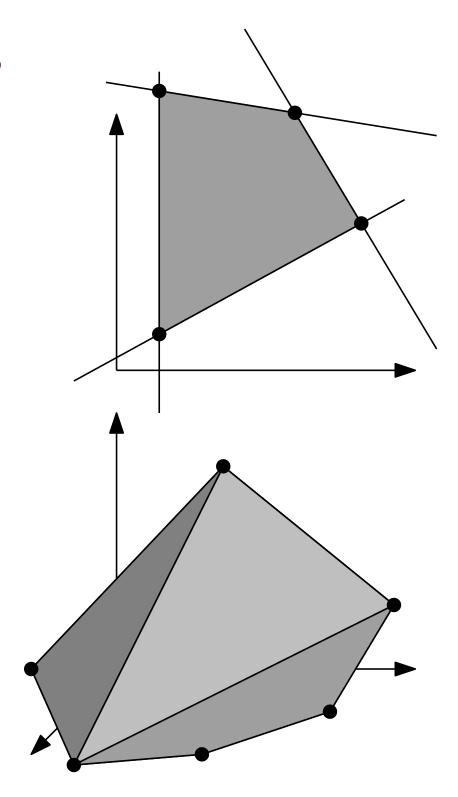
For each $i=1,\ldots,m$: either $y_i=0$ or $\sum_{j=1}^n a_{ij}x_j=b_i$

Proof.

$$\sum_{j=1}^{n} c_{j} x_{j} = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i} \right) x_{j} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) y_{i} = \sum_{i=1}^{m} b_{i} y_{i}.$$

LPs and convex polytopes

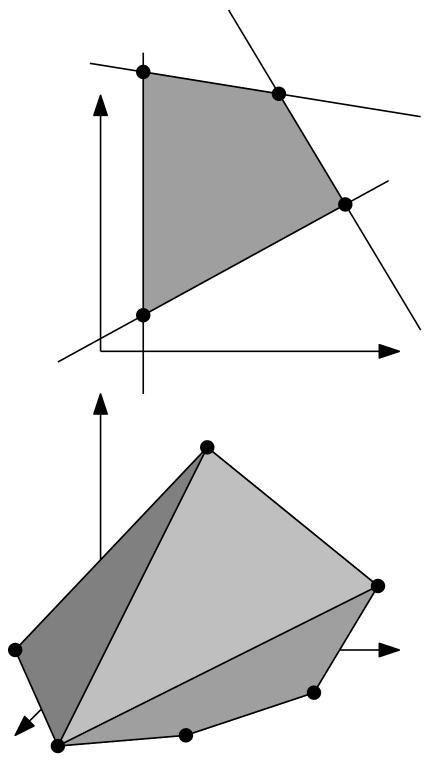
• The feasible solutions of an LP with n variables from a **convex polytope** in \mathbb{R}^n (intersection of halfspaces).



LPs and convex polytopes

• The feasible solutions of an LP with n variables from a **convex polytope** in \mathbb{R}^n (intersection of halfspaces).

Corners of the polytope are called extreme point solutions ⇔
 n linearly independent inequalities (constraints) are satisfied with equality.

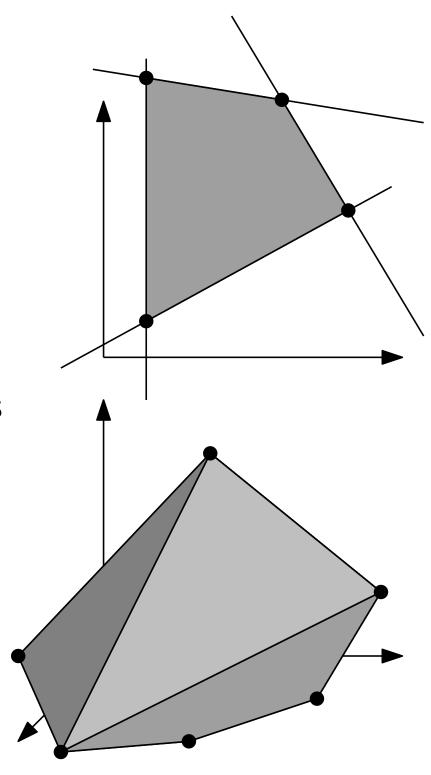


LPs and convex polytopes

• The feasible solutions of an LP with n variables from a **convex polytope** in \mathbb{R}^n (intersection of halfspaces).

Corners of the polytope are called extreme point solutions ⇔
 n linearly independent inequalities (constraints) are satisfied with equality.

 When an optimal solution exists, some extreme point will also be optimal.



```
minimize \sum_{j=1}^{n} c_{j}x_{j} subject to \sum_{j=1}^{n} a_{ij}x_{j} \geq b_{i} \quad i=1,\ldots,m \sum_{j=1}^{n} a_{ij}x_{j} \geq 0 \quad x_{j} \in \mathbb{N} \quad j=1,\ldots,n
```

minimize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \geq b_{i} \quad i=1,\ldots,m$$

$$x_{j} \geq 0 \quad x_{j} \in \mathbb{N} \quad j=1,\ldots,n$$

Many NP-optimization problems can be formulated as ILPs.

```
minimize \sum_{j=1}^{n} c_{j}x_{j} subject to \sum_{j=1}^{n} a_{ij}x_{j} \geq b_{i} \quad i=1,\ldots,m x_{j} \geq 0 \quad x_{j} \in \mathbb{N} \quad j=1,\ldots,n
```

- Many NP-optimization problems can be formulated as ILPs.
- NP-hard to solve ILPs.

minimize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \geq b_{i} \quad i=1,\ldots,m$$

$$\sum_{j=1}^{n} a_{ij}x_{j} \geq 0 \quad x_{j} \in \mathbb{N} \quad j=1,\ldots,n$$

- Many NP-optimization problems can be formulated as ILPs.
- NP-hard to solve ILPs.
- LP-relaxation provides a lower bound: $OPT_{LP} \leq OPT_{ILP}$

minimize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \geq b_{i} \quad i=1,\ldots,m$$

$$\sum_{j=1}^{n} a_{ij}x_{j} \geq 0 \quad x_{j} \in \mathbb{N} \quad j=1,\ldots,n$$

- Many NP-optimization problems can be formulated as ILPs.
- NP-hard to solve ILPs.
- LP-relaxation provides a lower bound: $OPT_{LP} \leq OPT_{ILP}$
- e.g., Vertex Cover

Introduction: Linear Programming

Many approximation algorithms are based on linear programming.

- Linear Programming (LP) and LP-Duality
- Min-Max Relationships
- LP-based Algorithm Designs Techniques

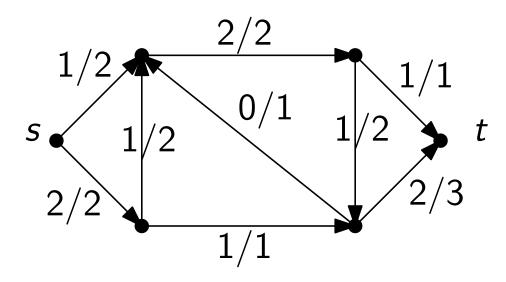
Max-Flow-Problem

Given: A directed graph G = (V, E) with edge capacities $c: E \to \mathbb{Q}_+$ and two special vertices: the source s and sink t.

Find: A maximum s-t flow (i.e., an assignment of non-negative weights to edges) f, such that

- $f(u, v) \le c(u, v)$ for each edge $(u, v) \in E$
- $\sum_{(u,v)\in E} f(u,v) = \sum_{(v,z)\in E} f(v,z)$ for each vertex $v\in V-\{s,t\}$

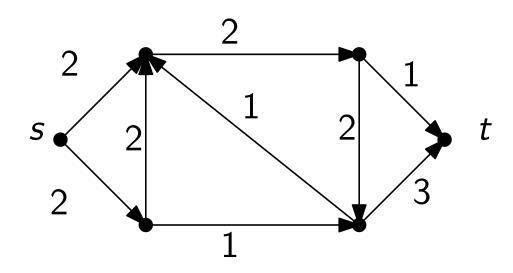
The **flow-value** is the inflow to t minus the outflow from t.



Min-Cut-Problem

Given: A directed graph G = (V, E) with edge capacities $c: E \to \mathbb{Q}_+$ and two special vertices: the source s and sink t.

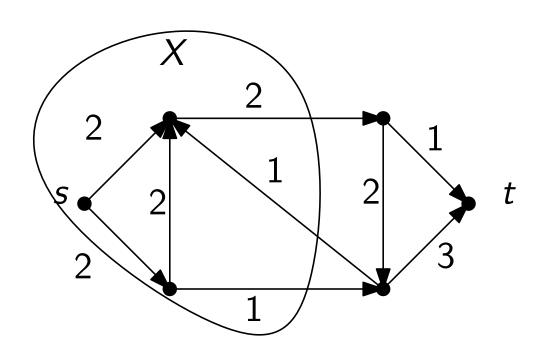
Find: An s-t-cut, i.e., a vertex set X with $s \in X$ and $t \in X$, such that the total capacity $c(X, \bar{X})$ of the edges from X to \bar{X} is minimum.



Min-Cut-Problem

Given: A directed graph G = (V, E) with edge capacities $c: E \to \mathbb{Q}_+$ and two special vertices: the source s and sink t.

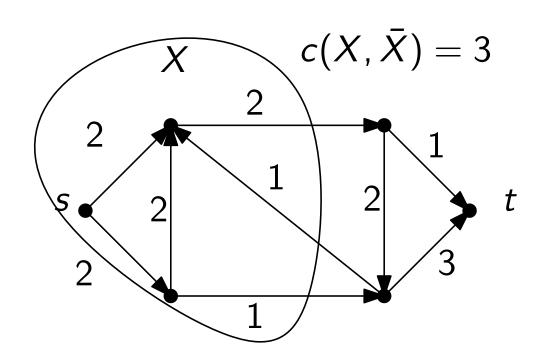
Find: An s-t-cut, i.e., a vertex set X with $s \in X$ and $t \in X$, such that the total capacity $c(X, \bar{X})$ of the edges from X to \bar{X} is minimum.



Min-Cut-Problem

Given: A directed graph G = (V, E) with edge capacities $c: E \to \mathbb{Q}_+$ and two special vertices: the source s and sink t.

Find: An s-t-cut, i.e., a vertex set X with $s \in X$ and $t \in \overline{X}$, such that the total capacity $c(X, \overline{X})$ of the edges from X to \overline{X} is minimum.



Max-Flow-Min-Cut-Theorem

Thm. The value of a maximum s-t-flow and the capacity of a minimum s-t-cut are the same.

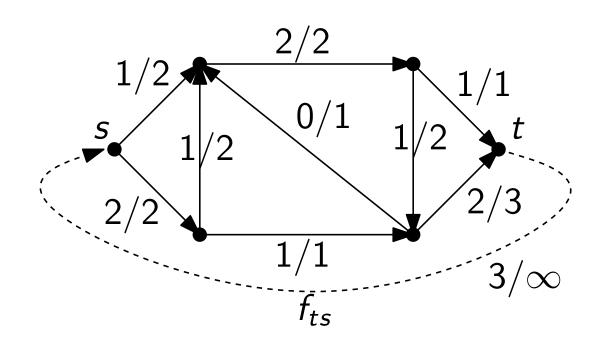
Max-Flow-Min-Cut-Theorem

Thm. The value of a maximum s-t-flow and the capacity of a minimum s-t-cut are the same.

Proof. Special case of LP-duality . . .

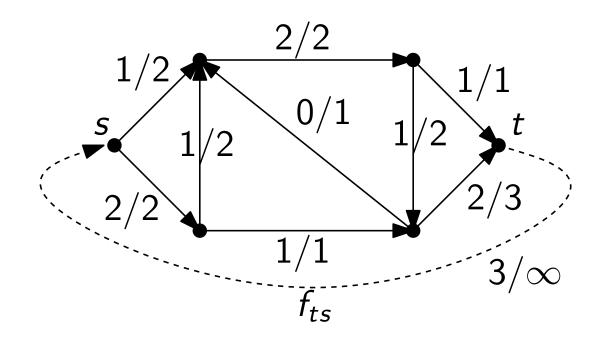
Max-Flow (circulation form) as an LP

maximize
$$f_{ts}$$
 subject to $f_{uv} \leq c_{uv}$ $(u, v) \in E$
$$\sum_{u: \ (u, v) \in E} f_{uv} - \sum_{z: \ (v, z) \in E} f_{vz} \leq 0 \quad v \in V$$
 $f_{uv} \geq 0$ $(u, v) \in E$



Max-Flow (circulation form) as an LP

maximize f_{ts} why does this work? subject to $f_{uv} \leq c_{uv}$ $(u,v) \in E$ $\sum_{u: (u,v) \in E} f_{uv} - \sum_{z: (v,z) \in E} f_{vz} \leq 0 \quad v \in V$ $(u,v) \in E$



Dual LP

maximize f_{ts}

Primal Program

subject to $f_{uv} \leq c_{uv}$

$$f_{uv} \leq c_{uv}$$

$$f_{uv} \leq c_{uv}$$

$$\sum_{u: (u,v)\in E} f_{uv} - \sum_{z: (v,z)\in E} f_{vz} \le 0 \quad v \in V$$

$$f_{uv} \geq 0$$

$$(u,v)\in E$$

$$v \in V$$

$$(u, v) \in E$$

Dual LP

maximize f_{ts}

$$f_{ts}$$

Primal Program

subject to $f_{\mu\nu} \leq c_{\mu\nu}$

$$f_{uv} \leq c_{uv}$$

$$(u,v) \in E$$
 d_{uv}

$$d_{\mu\nu}$$

$$\sum f_{uv} - \sum f_{vz} \leq 0 \quad v \in V$$

$$v \in V$$

$$p_{v}$$

$$f_{\mu\nu} \geq 0$$

$$(u, v) \in E$$

minimize
$$\sum_{(u,v)\in E} c_{uv} d_{uv}$$

Dual Program

subject to
$$d_{uv} - p_u + p_v \ge 0$$
 $(u, v) \in E$

 $u: (u,v) \in E$ $z: (v,z) \in E$

$$p_s - p_t \ge 1$$

$$d_{uv} \geq 0$$

$$(u, v) \in E$$

$$p_u \geq 0$$

$$u \in V$$

minimize
$$\sum_{(u,v)\in E} c_{uv}d_{uv}$$
 subject to
$$d_{uv}-p_u+p_v\geq 0 \quad (u,v)\in E$$

$$p_s-p_t\geq 1$$

$$d_{uv}\geq 0 \quad (u,v)\in E$$

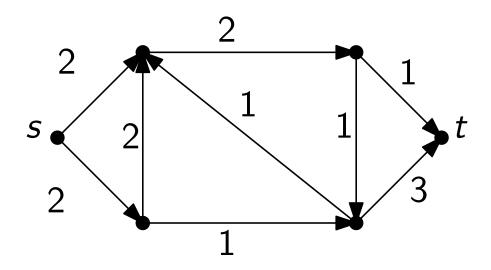
$$p_u\geq 0 \quad u\in V$$

minimize
$$\sum_{(u,v)\in E} c_{uv}d_{uv}$$
 subject to
$$d_{uv}-p_u+p_v\geq 0 \quad (u,v)\in E$$

$$p_s-p_t\geq 1$$

$$d_{uv}\geq 0 \ d_{uv}\in \{0,1\} \ (u,v)\in E$$

$$p_u\geq 0 \ p_u\in \{0,1\} \ u\in V$$

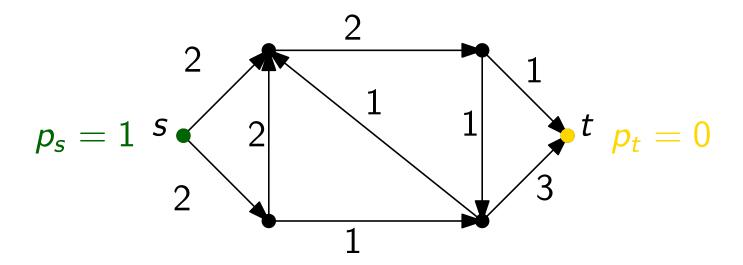


minimize
$$\sum_{(u,v)\in E} c_{uv}d_{uv}$$
 subject to
$$d_{uv}-p_u+p_v\geq 0 \quad (u,v)\in E$$

$$p_s-p_t\geq 1$$

$$d_{uv}\geq 0 \ d_{uv}\in \{0,1\} \ (u,v)\in E$$

$$p_u\geq 0 \ p_u\in \{0,1\} \ u\in V$$

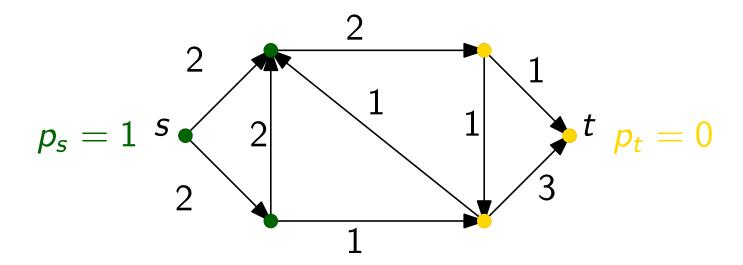


minimize
$$\sum_{(u,v)\in E} c_{uv}d_{uv}$$
 subject to
$$d_{uv}-p_u+p_v\geq 0 \quad (u,v)\in E$$

$$p_s-p_t\geq 1$$

$$d_{uv}\geq 0 \ d_{uv}\in \{0,1\} \ (u,v)\in E$$

$$p_u\geq 0 \ p_u\in \{0,1\} \ u\in V$$



minimize
$$\sum_{(u,v)\in E} c_{uv} d_{uv}$$
 subject to
$$d_{uv} - p_u + p_v \ge 0 \quad (u,v) \in E$$

$$p_s - p_t \ge 1$$

$$d_{uv} \ge 0 \, d_{uv} \in \{0,1\} \ (u,v) \in E$$

$$p_u \ge 0 \quad p_u \in \{0,1\} \quad u \in V$$

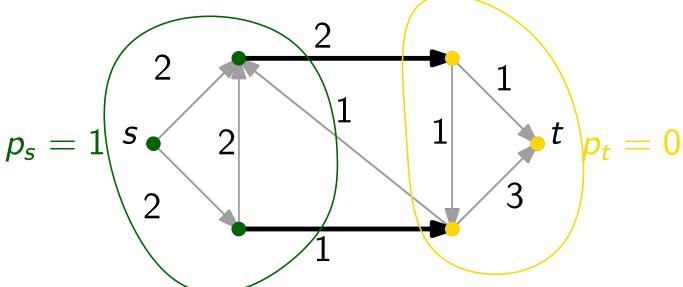
$$p_s = 1$$

minimize
$$\sum_{(u,v)\in E} c_{uv}d_{uv}$$
 subject to
$$d_{uv}-p_u+p_v\geq 0 \quad (u,v)\in E$$

$$p_s-p_t\geq 1 \qquad \qquad \text{equivalent to Min-Cut!!}$$

$$d_{uv}\geq 0 \ d_{uv}\in \{0,1\} \ (u,v)\in E$$

$$p_u\geq 0 \ p_u\in \{0,1\} \ u\in V$$



minimize
$$\sum_{(u,v)\in E} c_{uv} d_{uv}$$

≡ LP-relaxation of the ILP

subject to
$$d_{uv} - p_u + p_v \ge 0$$
 $(u, v) \in E$

$$(u,v)\in E$$

$$p_s - p_t \ge 1$$

$$d_{uv} \geq 0$$

$$(u,v)\in E$$

$$p_u \geq 0$$

$$u \in V$$

minimize
$$\sum_{(u,v)\in E} c_{uv} d_{uv}$$

■ LP-relaxation of the ILP

subject to
$$d_{uv} - p_u + p_v \ge 0$$
 $(u, v) \in E$

$$(u,v)\in E$$

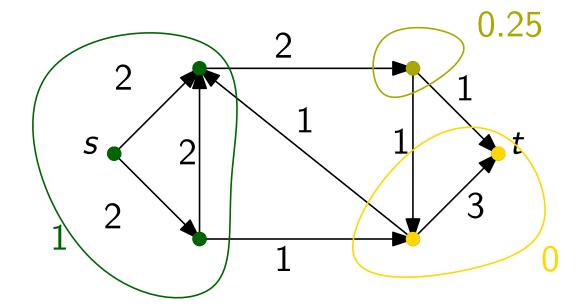
$$p_s - p_t \ge 1$$

$$d_{uv} \geq 0$$

$$(u, v) \in E$$

$$p_u \geq 0$$

$$u \in V$$



minimize
$$\sum_{(u,v)\in E} c_{uv}d_{uv}$$
 \equiv L subject to $d_{uv}-p_u+p_v\geq 0$ $(u,v)\in E$

≡ LP-relaxation of the ILP

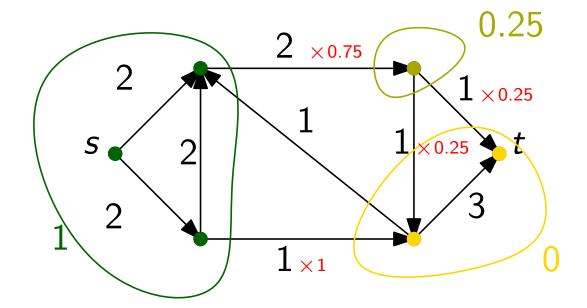
$$p_s - p_t \ge 1$$

$$d_{uv} \geq 0$$

$$p_u \geq 0$$

$$(u, v) \in E$$

$$u \in V$$



minimize
$$\sum_{(u,v)\in E} c_{uv}d_{uv}$$
 \equiv Subject to $d_{uv}-p_u+p_v\geq 0$ $(u,v)\in E$

$$\equiv$$
 LP-relaxation of the ILP

$$p_s - p_t \ge 1$$

$$d_{uv} \geq 0$$

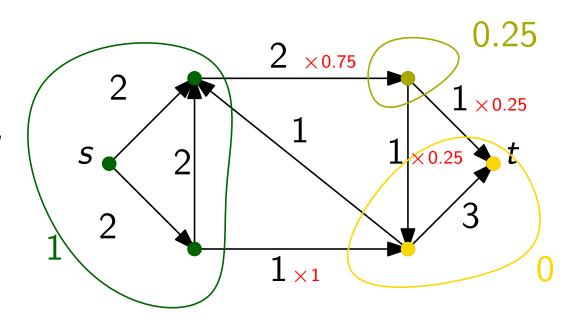
$$p_u \geq 0$$

$$(u,v)\in E$$

$$u \in V$$

Each s-t-path $s = v_0, \ldots, v_k = t$ has length ≥ 1 with respect to d

$$\sum_{i=0}^{k-1} d_{i,i+1} \ge \sum_{i=0}^{k-1} (p_i - p_{i+1})$$
 $= p_s - p_t$



minimize
$$\sum_{(u,v)\in E} c_{uv} d_{uv}$$

 \equiv LP-relaxation of the ILP

subject to
$$d_{uv} - p_u + p_v \ge 0$$
 $(u, v) \in E$

$$(u,v)\in E$$

$$p_s - p_t \ge 1$$

$$d_{uv} \geq 0$$

$$(u,v) \in E$$

$$p_{II} > 0$$

$$u \in V$$

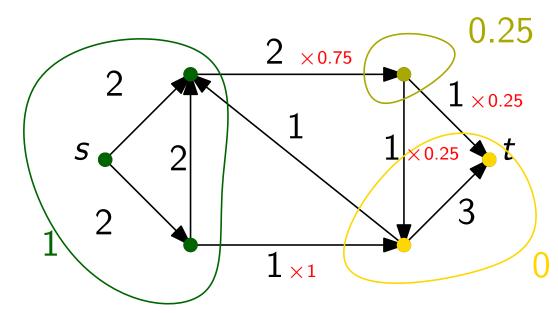
Each extreme-point solution is **integral**! $(u,v) \in E$ (exercise)

Each *s*–*t*-path

$$s = v_0, \ldots, v_k = t$$
 has

length ≥ 1 with respect to d

$$\sum_{i=0}^{k-1} d_{i,i+1} \ge \sum_{i=0}^{k-1} (p_i - p_{i+1})$$
$$= p_s - p_t$$



Dual LP - Complementary Slackness

maximize f_{ts} subject to $f_{uv} \leq c_{uv}$ $(u, v) \in E$ $\sum_{u: (u,v) \in E} f_{uv} - \sum_{z: (v,z) \in E} f_{vz} \leq 0 \qquad v \in V$ $f_{uv} \geq 0 \qquad (u, v) \in E$

minimize
$$\sum_{(u,v)\in E} c_{uv}d_{uv}$$
 subject to
$$d_{uv}-p_u+p_v\geq 0 \qquad (u,v)\in E$$

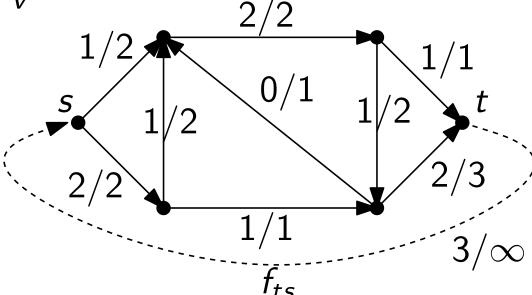
$$p_s-p_t\geq 1$$

$$d_{uv}\geq 0 \qquad (u,v)\in E$$

$$p_u\geq 0 \qquad u\in V$$

For a max. flow and min. cut:

- For each forward edge (u, v) of the cut, $f_{uv} = c_{uv}$
- For each backward edge (u, v) of the cut, $f_{uv} = 0$



Introduction: Linear Programming

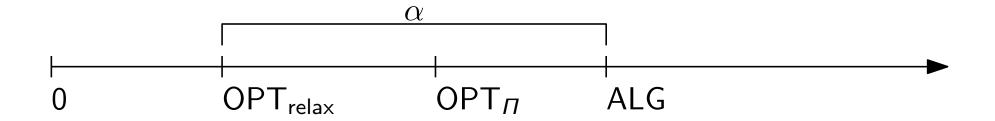
Many approximation algorithms are based on linear programming.

- Linear Programming (LP) and LP-Duality
- Min-Max Relationships
- LP-based Algorithm Designs Techniques



- ullet Consider a minimization problem Π in ILP-form
- Compute a solution to the LP-relaxation

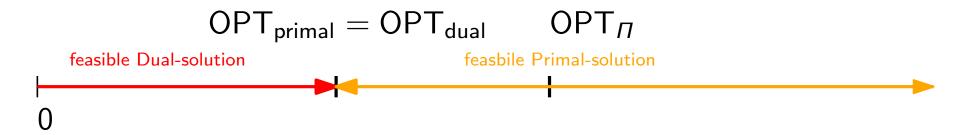
- ullet Consider a minimization problem Π in ILP-form
- Compute a solution to the LP-relaxation
- ullet "Round" to obtain an integer solution for Π

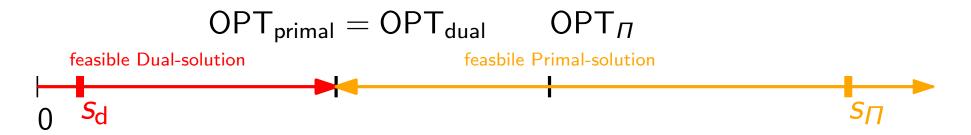


- ullet Consider a minimization problem Π in ILP-form
- Compute a solution to the LP-relaxation
- ullet "Round" to obtain an integer solution for Π
- Difficulty: ensure **feasible** solution of Π

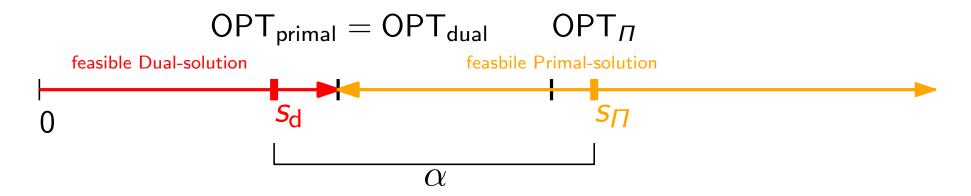


- ullet Consider a minimization problem Π in ILP-form
- Compute a solution to the LP-relaxation
- ullet "Round" to obtain an integer solution for Π
- Difficulty: ensure **feasible** solution of Π
- Approximation factor \leq ALG/OPT_{relax}

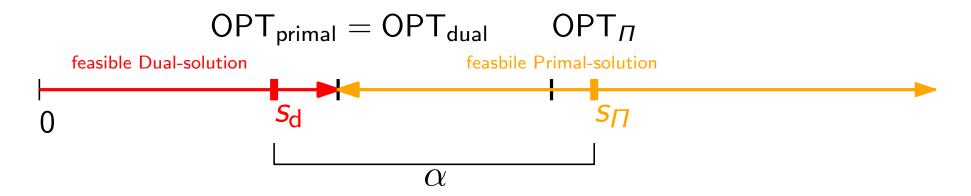




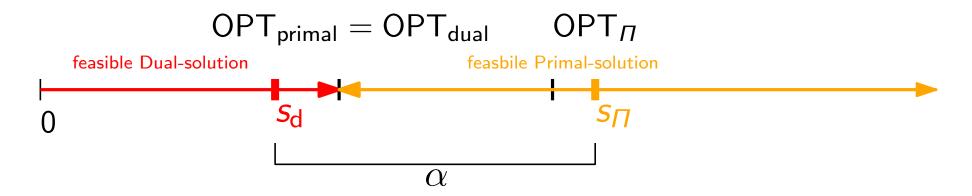
- ullet Consider a minimization problem Π in ILP-form
- Compute **dual** solution s_d and an integral solution s_Π of Π iteratively



- ullet Consider a minimization problem Π in ILP-form
- Compute **dual** solution s_d and an integral solution s_Π of Π iteratively

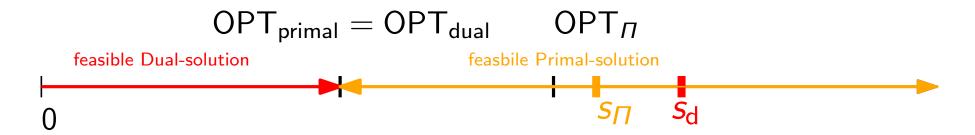


- ullet Consider a minimization problem Π in ILP-form
- Compute **dual** solution s_d and an integral solution s_Π of Π iteratively
- Approximation factor $\leq \operatorname{obj}(s_{\Pi})/\operatorname{obj}(s_{\operatorname{d}})$

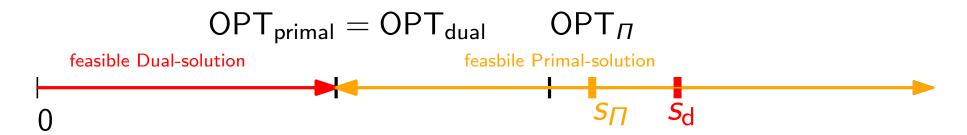


- ullet Consider a minimization problem Π in ILP-form
- Compute **dual** solution s_d and an integral solution s_Π of Π iteratively
- Approximation factor $\leq \operatorname{obj}(s_{\Pi})/\operatorname{obj}(s_{d})$
- Advantage: don't need LP-"machinery"; possibly faster, more flexible.

Dual Fitting

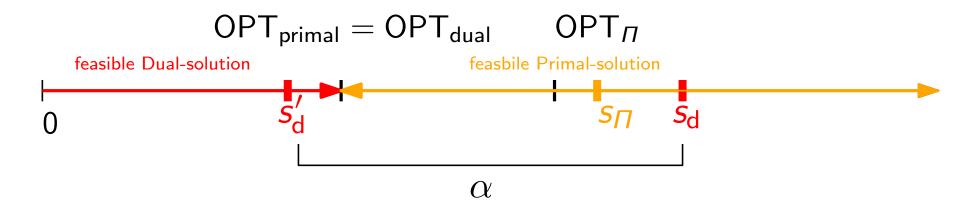


Dual Fitting



- ullet Consider a minimization problem Π in ILP-form
- Combinatorial algorithm (e.g., greedy) computes a feasible solution s_{Π} and "infeasible" dual solution s_{d} from s_{Π} which is more expensive than s_{Π} .

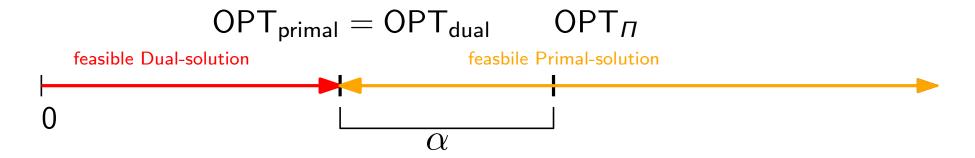
Dual Fitting



- ullet Consider a minimization problem Π in ILP-form
- Combinatorial algorithm (e.g., greedy) computes a feasible solution s_{Π} and "infeasible" dual solution s_{d} from s_{Π} which is more expensive than s_{Π} .

ullet Scaling the dual variables \leadsto feasible dual solution s_{d}'

Integrality Gap



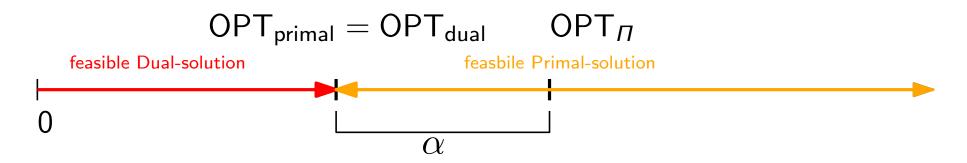
Integrality Gap

$$\begin{array}{c} \mathsf{OPT}_{\mathsf{primal}} = \mathsf{OPT}_{\mathsf{dual}} & \mathsf{OPT}_{\Pi} \\ \mathsf{feasible Dual-solution} & \mathsf{feasbile Primal-solution} \\ \mathsf{0} & & & & \\ & \alpha & & & \\ \end{array}$$

- ullet Consider a minimization problem Π in ILP-form
- All the before methods (without additional help) are limited by the Integrality Gap of the LP-relaxation

$$\sup_{I} \frac{\mathsf{OPT}(I)}{\mathsf{OPT}_{\mathsf{primal}}(I)}$$

Integrality Gap



- ullet Consider a minimization problem Π in ILP-form
- All the before methods (without additional help) are limited by the Integrality Gap of the LP-relaxation

$$\sup_{I} \frac{\mathsf{OPT}(I)}{\mathsf{OPT}_{\mathsf{primal}}(I)}$$

next class Set Cover revisited