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Introduction to Linear Programming

Many approximation algorithms are based on linear
programming.

e Linear Programming (LP) and LP-Duality
e Min-Max Relationships
e LP-based Algorithm Designs Techniques



Motivation: Upper and Lower Bounds

e Consider an NP-hard minimization problem

Decision Problem: Is $ an upper bound of OPT?

Efficiently verifiable “Yes"-certificates.

Decision Problem: Is S an lower bound of OPT?

Are “No’-certificates efficiently vertifiable?
~~ probably not! (NP # coNP)

Need lower bounds S > OPT /«a (approximate
“No" -certificates) for approximation algorithms!

For example:

— Vertex Cover: lower bound by matchings
— TSP: lower bound by MST or Cycle Cover



Linear Programming

Optimize (i.e., minimize or maximize) a linear (objective)
function subject to linear inequalities (constraints).

minimize xy + x + bxs

subject to xx — X 4+ 3x3 > 10
5X1 + 2X2 — X3 > §
x1,x2,x3 = 0

e Standard form (i.e., using only “>")



Linear Programming - Upper Bounds

Optimize (i.e., minimize or maximize) a linear (objective)
function subject to linear inequalities (constraints).

minimize xy + x + bxs

subject to xx — X 4+ 3x3 > 10
5X1 + 2X2 — X3 > §
x1,x2,x3 = 0

e x =(2,1,3) is a feasible solution ~» S = 30 is an upper
bound on OPT



Linear Programming - Lower Bounds

Optimize (i.e., minimize or maximize) a linear (objective)
function subject to linear inequalities (constraints).

minimize xy + x + bxs

subject to xx — X 4+ 3x3 > 10
5X1 + 2X2 — X3 > §
x1,x2,x3 = 0

® /X1 +Xo+5x3 >x1—x0+3x3 >10 ~ OPT > 10
® 7x1+X0+5x3 > (x1—x0+3x3)+ (bxy +2x0 —x3) > 10+ 6
e ~~ OPT > 16



Linear Programming - Lower Bounds

minimize xy + x + bxs

subject to yi(xqy — xo -+ 3x3) > 10 w1
Vo Bxy + 2% — X3) > 0 W
X1, X2, X3 2 0
maximize 10y; + 6y
subject to yi + by, < 7
-+ 2y < 1
3vi —  y2 <5
yi,y =2 0

e Any feasible solution to the dual program provides a lower
bound for the optimum of the primal program.

e x=(7/4,0,11/4) and y = (2, 1) both provide objective
values of 26 ~~ both solutions are optimal!



LP — standard form

n
minimize }:cjxj Primal Program
j=1

n
subject to Z aijjxi > b 1=1,....,m
j=1
x;i > 0 J=1...,n
m
maximize Zbi)/i Dual Program
i=1
m What is the dual
subject to Z aijyi<c J=1,...,n of the dual?

yi >0 i=1,...,m

e maximization instances dualize analogously



LP-Duality

Primal:  minimize 7, ¢jx
subject to 21'7:1 aijxp>bi i=1,...,m
xi > 0 Jj=1,...,n

Dual: maximize > by
subject to Z:”:l aijyi<c Jy=1,...,n
yi >0 i=1,...,m

Thm. The primal program has a finite optimum < the dual
program has a finite optimum. Moreover, if
x* = (x{,...,x7)and y* = (y7,...,y.) are optimal
solutions for the primal and dual (respectively), then

n m
C.I)<j — bl.yi .
j=1 i=1



Weak LP-Duality

min >0 X max. >, by
®) m
s.t 27:1 aijixj > bj st D im1diYi <G
x;j > 0 yi= U

Thm. |f x = (x,...,x,) and y = (y1, ..., ym) are feasible
solutions for the primal and dual programs (resp.), then

n m
2% 2 ) bivi.
j=1 i=1

Proof.

n n m m
j=1 j=1 \i=1 i=1




Complementary Slackness

min >0 X max. Y .. . by
5.t 27:1 ajjxj > b; S.t. Zlmzl ajjyi < ¢
xj > 0 yi= U
Thm. Let x =(x1,...,x,) and y = (y1, ..., ym) be feasible solutions for

the primal and dual Programs (resp.). The solutions x and y are
optimal if only if the following conditoins are met:

Primal CS:
For each j =1,..., n: either x; =0 or > 7, ajjyi = ¢;
Dual CS:
For each i=1,..., m: either y; =0o0r > " ; a;;x; = b;
Proof. B
m n m
z . (? y> o =33 e | vi= STy
j=1 \i=1 i=1 |\ j=1 i=1 O




LPs and convex polytopes

e The feasible solutions of an LP
with n variables from a convex
polytope in R” (intersection of
halfspaces).

e Corners of the polytope are called
extreme point solutions <
n linearly independent inequalities A
(constraints) are satisfied with
equality.

e \When an optimal solution
exists, some extreme point will
also be optimal.




Integer Linear Programs (ILPs)

n
Mminimize E CJXJ
j=1

n
subject to Z aijjxi > b 1=1,..., m
j=1

e Many NP-optimization problems can be formulated as ILPs.

e NP-hard to solve ILPs.
e | P-relaxation provides a lower bound: OPT p < OPT,.p

o e.g., Vertex Cover
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Max-Flow-Problem

Given: A directed graph G = (V/, E) with edge capacities
c: E — Q. and two special vertices: the source s and sink t.

Find: A maximum s—t flow (i.e., an assignment of
non-negative weights to edges) f, such that
o f(u,v)<c(u,v) for each edge (u,v) € E

® > uneef(uv) =2, neef(v, z) for each vertex

veV—{st}
The flow-value is the inflow to t minus the outflow from t.
2/2
1/1
S t
2/2 2/3




Min-Cut-Problem

Given: A directed graph G = (V/, E) with edge capacities
c: E — Q. and two special vertices: the source s and sink t.

Find: An s—t-cut, i1.e., a vertex set_X with s€ X and t € X, )
such that the total capacity c(X, X) of the edges from X to X

IS Minimum.




Max-Flow-Min-Cut-Theorem

Thm. The value of a maximum s—t-flow and the capacity
of a minimum s—t-cut are the same.

Proof.  Special case of LP-duality ...



Max-Flow (circulation form) as an LP

maximize  f;s why does this work?
subject to  f,, < cuy / (u,v) € E
Z fuy — Z fa <0 veV
u: (u,v)eE z: (v,z)€eE
fuy 2> 0 (u,v) € E
2/2




Dual LP

maximize

subject to

minimize

subject to

f. Primal Program
fuv < Cuv (u,v) e E duy
S fwe Y £e<0 vev .
u: (u,v)eE z: (v,z)€EE
fuy > 0 (U, V) c E
Z ¢ d. Dual Program
(u,v)EE

dow —pu+p, >0 (u,v)eE

ps_PtZ]-
duvZO (U,V)EE
pu = 0 ueV



Dual LP — as an ILP

minimize E Cuvdyy
(u,v)eE

subject to d,, —pus+p, >0 (u,v)€E
equivalent to Min-Cut!!

Ps—Pt21

mduvé{&l} (u,v) € E
MPUE{OJ} uevVv




Dual LP — Fractional Cuts

minimize

subject to

Z _— = LP-relaxation of the ILP
(u,v)EE
do —pu+p, 20 (uv)€E Each extreme-point!
pe — pp > 1 solution is integral!
> 0 (nv)e e ((&ercse)
pu =0 ueV

Each s—t-path 2 x075

B
Ss=Vv,...,Vx =t has 2 \1><o.25
: 1
length > 1 with respect to d S 2 \ Lixoos @ ¢
A

k—1 k—1
> diiy1 > (pi— pis1) ) 2 N\
i=0 i=0

— Ps — Pt



Dual LP — Complementary Slackness

maximize fis
subject to fuv < cuv (u,v) € E

> fuw— > £:<0 veV

u: (uv)EE z: (v,z)€E
fu, > 0 (u,v) € E

minimize Z Cuvduy
(u,v)EE
subject to dyw — pu+p, >0 (u,v) € E

ps — pr = 1
dy >0 (u,v) € E

pu > 0 ueV 2/2

For a max. flow and min. cut:
e For each forward edge (u, v) of S
the cut, f,, = ¢,y o

e For each backward edge (u,v) of ™. 2/2

the cut, f,, =0 1/1

-~
-~ -
- -

- -
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LP-Rounding

o
| |

0 OPT relax OPTp ALG

e Consider a minimization problem [1 in ILP-form
e Compute a solution to the LP-relaxation

e "Round” to obtain an integer solution for /]

e Difficulty: ensure feasible solution of ]

e Approximation factor < ALG/ OPT ¢jax



Primal-Dual Approach

OF)Tprimal — OI:)Tdual OPTH
feasible Dual-solution
| —> |
0 >d
|

84

e Consider a minimization problem [] in ILP-form

e Compute dual solution sq4 and an integral solution s of /]
iteratively

e Approximation factor < obj(s;7)/obj(sq)

e Advantage: don't need LP-"machinery”; possibly faster,
more flexible.



Dual Fitting

OF)Tprimal — OI:)Tdual OPTH

feasible Dual-solution
| I
0 >4
|

> l

i
Sd
|

Q
e Consider a minimization problem [] in ILP-form
e Combinatorial algorithm (e.g., greedy) computes a feasible

solution s and “infeasible” dual solution s4 from s which
IS more expensive than sp.

e Scaling the dual variables ~~ feasible dual solution s}



Integrality Gap

OI:)Tprimal — OI:)Tdual OPTH
feasible Dual-solution
| > |
0 |

e Consider a minimization problem [] in ILP-form

e All the before methods (without additional help) are
limited by the Integrality Gap of the LP-relaxation

OPT(/)
SUP OB o (1) next class Set Cover
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