Aalto University
School of Science

Approximation Algorithms

Lecture 4: Linear Programming Joachim Spoerhase

Introduction to Linear Programming

Many approximation algorithms are based on linear programming.

- Linear Programming (LP) and LP-Duality
- Min-Max Relationships
- LP-based Algorithm Designs Techniques

Motivation: Upper and Lower Bounds

- Consider an NP-hard minimization problem
- Decision Problem: Is S an upper bound of OPT?

Efficiently verifiable "Yes"-certificates.

- Decision Problem: Is S an lower bound of OPT?

Are "No"-certificates efficiently vertifiable?
\rightsquigarrow probably not! ($N P \neq$ coNP)

- Need lower bounds $S \geq$ OPT / α (approximate "No"-certificates) for approximation algorithms!
- For example:
- Vertex Cover: lower bound by matchings
- TSP: lower bound by MST or Cycle Cover

Linear Programming

Optimize (i.e., minimize or maximize) a linear (objective) function subject to linear inequalities (constraints).

$\operatorname{minimize}$	$7 x_{1}$	$+x_{2}+5 x_{3}$				
subject to	x_{1}	-	x_{2}	$+3 x_{3}$	\geq	10
	$5 x_{1}$	$+2 x_{2}-x_{3}$	\geq	6		
		x_{1}, x_{2}, x_{3}	\geq	0		

- Standard form (i.e., using only " \geq ")

Linear Programming - Upper Bounds

Optimize (i.e., minimize or maximize) a linear (objective) function subject to linear inequalities (constraints).

$\operatorname{minimize}$	$7 x_{1}$	+	x_{2}	$+5 x_{3}$		
subject to	x_{1}	-	x_{2}	$+3 x_{3}$	\geq	10
	$5 x_{1}$	$+2 x_{2}-x_{3}$	\geq	6		
		x_{1}, x_{2}, x_{3}	\geq	0		

- $\mathbf{x}=(2,1,3)$ is a feasible solution $\rightsquigarrow S=30$ is an upper bound on OPT

Linear Programming - Lower Bounds

Optimize (i.e., minimize or maximize) a linear (objective) function subject to linear inequalities (constraints).

$\operatorname{minimize}$	$7 x_{1}$	$+x_{2}+5 x_{3}$			
subject to	x_{1}	-	x_{2}	$+3 x_{3}$	\geq
	$5 x_{1}$	$+2 x_{2}-x_{3}$	\geq		
		x_{1}, x_{2}, x_{3}	\geq	0	

- $7 x_{1}+x_{2}+5 x_{3} \geq x_{1}-x_{2}+3 x_{3} \geq 10 \rightsquigarrow$ OPT ≥ 10
- $7 x_{1}+x_{2}+5 x_{3} \geq\left(x_{1}-x_{2}+3 x_{3}\right)+\left(5 x_{1}+2 x_{2}-x_{3}\right) \geq 10+6$
- $\rightsquigarrow \mathrm{OPT} \geq 16$

Linear Programming - Lower Bounds

$$
\begin{array}{r}
\operatorname{minimize} \quad 7 x_{1}+x_{2}+5 x_{3} \\
\text { subject to } y_{1}\left(x_{1}-x_{2}+3 x_{3}\right) \geq 10 y_{1} \\
y_{2}\left(5 x_{1}+2 x_{2}-x_{3}\right) \geq 6 \\
\\
\quad \begin{array}{c}
x_{1}, x_{2}, x_{3}
\end{array} \geq 0
\end{array}
$$

$\operatorname{maximize}$	$10 y_{1}$	$+6 y_{2}$	
subject to	y_{1}	$+5 y_{2}$	≤ 7
	$-y_{1}$	$+2 y_{2}$	≤ 1
	$3 y_{1}$	$-y_{2}$	≤ 5
	y_{1}, y_{2}	≥ 0	

- Any feasible solution to the dual program provides a lower bound for the optimum of the primal program.
- $\mathbf{x}=(7 / 4,0,11 / 4)$ and $\mathbf{y}=(2,1)$ both provide objective values of $26 \rightsquigarrow$ both solutions are optimal!

LP - standard form

minimize	$\sum_{j=1}^{n} c_{j} x_{j}$	\quad Primal Program
subject to	$\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}$	$i=1, \ldots, m$
	$x_{j} \geq 0$	$j=1, \ldots, n$

maximize $\quad \sum_{i=1}^{m} b_{i} y_{i} \quad$ Dual Program
subject to $\quad \sum_{\substack{i=1}} a_{i j} y_{i} \leq c_{j} \quad j=1, \ldots, n \quad \begin{aligned} & \text { What is the dual } \\ & \text { of the dual? }\end{aligned}$

- maximization instances dualize analogously

LP-Duality

Primal
minimize
subject to

$$
\begin{array}{ll}
\sum_{j=1}^{n} c_{j} x_{j} & \\
\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} & i=1, \ldots, m \\
x_{j} \geq 0 & j=1, \ldots, n
\end{array}
$$

Dual:

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{i=1}^{m} b_{i} y_{i} & \\
\text { subject to } & \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j} & j=1, \ldots, n \\
& y_{i} \geq 0 & i=1, \ldots, m
\end{array}
$$

Thm. The primal program has a finite optimum \Leftrightarrow the dual program has a finite optimum. Moreover, if $\mathbf{x}^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ and $\mathbf{y}^{*}=\left(y_{1}^{*}, \ldots, y_{m}^{*}\right)$ are optimal solutions for the primal and dual (respectively), then

$$
\sum_{j=1}^{n} c_{j} x_{j}^{*}=\sum_{i=1}^{m} b_{i} y_{i}^{*} .
$$

Weak LP-Duality

\min	$\sum_{j=1}^{n} c_{j} x_{j}$
s.t	$\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}$
$x_{j} \geq 0$	

$$
\begin{array}{ll}
\max . & \sum_{i=1}^{m} b_{i} y_{i} \\
\text { s.t. } & \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j} \\
& y_{i} \geq 0
\end{array}
$$

Thm. If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)$ are feasible solutions for the primal and dual programs (resp.), then

Proof.

$$
\sum_{j=1}^{n} c_{j} x_{j} \geq \sum_{i=1}^{m} b_{i} y_{i}
$$

$$
\sum_{j=1}^{n} c_{j} x_{j} \geq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \geq \sum_{i=1}^{m} b_{i} y_{i}
$$

Complementary Slackness

$\begin{array}{ll}\min & \sum_{j=1}^{n} c_{j} x_{j} \\ \text { s.t } & \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \\ x_{j} \geq 0\end{array}$

$$
\begin{array}{ll}
\max & \sum_{i=1}^{m} b_{i} y_{i} \\
\text { s.t. } & \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j} \\
& y_{i} \geq 0
\end{array}
$$

Thm. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)$ be feasible solutions for the primal and dual Programs (resp.). The solutions \mathbf{x} and \mathbf{y} are optimal if only if the following conditoins are met:
Primal CS:
For each $j=1, \ldots, n$: either $x_{j}=0$ or $\sum_{i=1}^{m} a_{i j} y_{i}=c_{j}$
Dual CS:
For each $i=1, \ldots, m$: either $y_{i}=0$ or $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$
Proof.

$$
\sum_{j=1}^{n} c_{j} x_{j}=\sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i}=\sum_{i=1}^{m} b_{i} y_{i} .
$$

LPs and convex polytopes

- The feasible solutions of an LP with n variables from a convex polytope in \mathbb{R}^{n} (intersection of halfspaces).
- Corners of the polytope are called extreme point solutions \Leftrightarrow n linearly independent inequalities (constraints) are satisfied with equality.
- When an optimal solution exists, some extreme point will also be optimal.

Integer Linear Programs (ILPs)

- Many NP-optimization problems can be formulated as ILPs.
- NP-hard to solve ILPs.
- LP-relaxation provides a lower bound: $\mathrm{OPT}_{\text {LP }} \leq \mathrm{OPT}_{\text {ILP }}$
- e.g., Vertex Cover

Introduction: Linear Programming

Many approximation algorithms are based on linear programming.

- Linear Programming (LP) and LP-Duality
- Min-Max Relationships
- LP-based Algorithm Designs Techniques

Max-Flow-Problem

Given: A directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{Q}_{+}$and two special vertices: the source s and $\operatorname{sink} t$.

Find: A maximum $s-t$ flow (i.e., an assignment of non-negative weights to edges) f, such that

- $f(u, v) \leq c(u, v)$ for each edge $(u, v) \in E$
- $\sum_{(u, v) \in E} f(u, v)=\sum_{(v, z) \in E} f(v, z)$ for each vertex $v \in V-\{s, t\}$
The flow-value is the inflow to t minus the outflow from t.

Min-Cut-Problem

Given: A directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{Q}_{+}$and two special vertices: the source s and $\operatorname{sink} t$.
Find: An s-t-cut, i.e., a vertex set X with $s \in X$ and $t \in \bar{X}$, such that the total capacity $c(X, \bar{X})$ of the edges from X to \bar{X} is minimum.

Max-Flow-Min-Cut-Theorem
Thm.
The value of a maximum $s-t$-flow and the capacity of a minimum s - t-cut are the same.

Proof. Special case of LP-duality ...

Max-Flow (circulation form) as an LP

maximize $f_{t s}$
subject to $\quad f_{u v} \leq c_{u v}$

$$
\begin{array}{ll}
\sum_{u v} \leq c_{u v} & (u, v) \in E \\
\sum_{u:(u, v) \in E} f_{u v}-\sum_{z:(v, z) \in E} f_{v z} \leq 0 & v \in V \\
f_{u v} \geq 0 & (u, v) \in E
\end{array}
$$

Dual LP

maximize $f_{t s}$
Primal Program
subject to $\quad f_{u v} \leq c_{u v}$
$(u, v) \in E$
$d_{u v}$

$$
\begin{array}{ll}
\sum_{u:(u, v) \in E} f_{u v}-\sum_{z:(v, z) \in E} f_{v z} \leq 0 & v \in V \\
f_{u v} \geq 0 & \\
& (u, v) \in E
\end{array}
$$

$\operatorname{minimize} \sum_{(u, v) \in E} c_{u v} d_{u v}$
Dual Program
subject to

$$
\begin{array}{ll}
d_{u v}-p_{u}+p_{v} \geq 0 & (u, v) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{u v} \geq 0 & (u, v) \in E \\
p_{u} \geq 0 & u \in V
\end{array}
$$

Dual LP - as an ILP

$\operatorname{minimize} \sum_{(u, v) \in E} c_{u v} d_{u v}$
subject to $\quad d_{u v}-p_{u}+p_{v} \geq 0 \quad(u, v) \in E$

$$
p_{s}-p_{t} \geq 1
$$

equivalent to Min-Cut!!

$$
\begin{aligned}
& d_{u v} \geq 0 d_{u v} \in\{0,1\} \quad(u, v) \in E \\
& p_{a \geq 0} p_{u} \in\{0,1\} \quad u \in V
\end{aligned}
$$

Dual LP - Fractional Cuts

$$
\text { minimize } \sum_{(u, v) \in E} c_{u v} d_{u v}
$$

subject to $\quad d_{u v}-p_{u}+p_{v} \geq 0 \quad(u, v) \in E \quad: \quad$ Each extreme-point

$$
\begin{array}{ll}
p_{s}-p_{t} \geq 1 & \\
d_{u v} \geq 0 & (u, v) \in E \\
p_{u} \geq 0 & u \in V
\end{array}
$$ solution is integral! (exercise)

Each s-t-path
$s=v_{0}, \ldots, v_{k}=t$ has
length ≥ 1 with respect to d

$$
\begin{aligned}
\sum_{i=0}^{k-1} d_{i, i+1} & \geq \sum_{i=0}^{k-1}\left(p_{i}-p_{i+1}\right) \\
& =p_{s}-p_{t}
\end{aligned}
$$

Dual LP - Complementary Slackness

$$
\begin{array}{lll}
\begin{array}{ll}
\operatorname{maximize} & f_{t s} \\
\text { subject to }
\end{array} & f_{u v} \leq c_{u v} & (u, v) \in E \\
& \sum_{u:(u, v) \in E} f_{u v} \sum_{z:(v, z) \in E} f_{v z} \leq 0 & v \in V \\
& f_{u v} \geq 0 & (u, v) \in E
\end{array}
$$

minimize $\sum_{(u, v) \in E} c_{u v} d_{u v}$
subject to

$$
\begin{array}{ll}
d_{u v}-p_{u}+p_{v} \geq 0 & (u, v) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{u v} \geq 0 & (u, v) \in E \\
p_{u} \geq 0 & u \in V
\end{array}
$$

For a max. flow and min. cut:

- For each forward edge (u, v) of the cut, $f_{u v}=c_{u v}$
- For each backward edge (u, v) of the cut, $f_{u v}=0$

Introduction: Linear Programming

Many approximation algorithms are based on linear programming.

- Linear Programming (LP) and LP-Duality
- Min-Max Relationships
- LP-based Algorithm Designs Techniques

LP-Rounding

- Consider a minimization problem Π in ILP-form
- Compute a solution to the LP-relaxation
- "Round" to obtain an integer solution for $П$
- Difficulty: ensure feasible solution of $П$
- Approximation factor $\leq A L G / O P T_{\text {relax }}$

Primal-Dual Approach

$$
\mathrm{OPT}_{\text {primal }}=\mathrm{OPT}_{\text {dual }} \quad \mathrm{OPT}_{\Pi}
$$

- Consider a minimization problem Π in ILP-form
- Compute dual solution s_{d} and an integral solution s_{Π} of Π iteratively
- Approximation factor $\leq \operatorname{obj}\left(s_{\Pi}\right) / \operatorname{obj}\left(s_{\mathrm{d}}\right)$
- Advantage: don't need LP-"machinery"; possibly faster, more flexible.

Dual Fitting

$$
\mathrm{OPT}_{\text {primal }}=\mathrm{OPT}_{\text {dual }} \quad \mathrm{OPT}_{\Pi}
$$

- Consider a minimization problem Π in ILP-form
- Combinatorial algorithm (e.g., greedy) computes a feasible solution s_{Π} and "infeasible" dual solution s_{d} from s_{Π} which is more expensive than s_{Π}.
- Scaling the dual variables \rightsquigarrow feasible dual solution s_{d}^{\prime}

Integrality Gap

$$
\mathrm{OPT}_{\text {primal }}=\mathrm{OPT}_{\text {dual }} \quad \mathrm{OPT}_{п}
$$

- Consider a minimization problem Π in ILP-form
- All the before methods (without additional help) are limited by the Integrality Gap of the LP-relaxation

$$
\sup _{I} \frac{\mathrm{OPT}(I)}{\mathrm{OPT}_{\text {primal }}(I)}
$$

next class Set Cover

 revisited