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Introduction to Linear Programming

Many approximation algorithms are based on linear
programming.

• Linear Programming (LP) and LP-Duality
• Min-Max Relationships
• LP-based Algorithm Designs Techniques



Motivation: Upper and Lower Bounds

• Consider an NP-hard minimization problem

• Decision Problem: Is S an upper bound of OPT?

• Need lower bounds S ≥ OPT /α (approximate
“No”-certificates) for approximation algorithms!

• For example:
– Vertex Cover: lower bound by matchings
– TSP: lower bound by MST or Cycle Cover

• Decision Problem: Is S an lower bound of OPT?

Efficiently verifiable “Yes”-certificates.

Are “No”-certificates efficiently vertifiable?
 probably not! (NP 6= coNP)



Linear Programming

Optimize (i.e., minimize or maximize) a linear (objective)
function subject to linear inequalities (constraints).

minimize 7x1 + x2 + 5x3
subject to x1 − x2 + 3x3 ≥ 10

5x1 + 2x2 − x3 ≥ 6
x1, x2, x3 ≥ 0

• Standard form (i.e., using only “≥”)



Linear Programming - Upper Bounds

Optimize (i.e., minimize or maximize) a linear (objective)
function subject to linear inequalities (constraints).

minimize 7x1 + x2 + 5x3
subject to x1 − x2 + 3x3 ≥ 10

5x1 + 2x2 − x3 ≥ 6
x1, x2, x3 ≥ 0

• x = (2, 1, 3) is a feasible solution  S = 30 is an upper
bound on OPT



Linear Programming - Lower Bounds

Optimize (i.e., minimize or maximize) a linear (objective)
function subject to linear inequalities (constraints).

minimize 7x1 + x2 + 5x3
subject to x1 − x2 + 3x3 ≥ 10

5x1 + 2x2 − x3 ≥ 6
x1, x2, x3 ≥ 0

• 7x1 + x2 + 5x3 ≥ x1 − x2 + 3x3 ≥ 10  OPT ≥ 10

• 7x1 + x2 + 5x3 ≥ (x1− x2 + 3x3) + (5x1 + 2x2− x3) ≥ 10 + 6

•  OPT ≥ 16



Linear Programming - Lower Bounds

minimize 7x1 + x2 + 5x3
subject to x1 − x2 + 3x3 ≥ 10

5x1 + 2x2 − x3 ≥ 6
x1, x2, x3 ≥ 0

y1( ) y1
y2( ) y2

maximize 10y1 + 6y2
subject to y1 + 5y2 ≤ 7

−y1 + 2y2 ≤ 1
3y1 − y2 ≤ 5

y1, y2 ≥ 0

• Any feasible solution to the dual program provides a lower
bound for the optimum of the primal program.

• x = (7/4, 0, 11/4) and y = (2, 1) both provide objective
values of 26

• x = (7/4, 0, 11/4) and y = (2, 1) both provide objective
values of 26  both solutions are optimal!



LP – standard form

minimize
n∑

j=1

cj xj

subject to
n∑

j=1

ai j xj ≥ bi i = 1, . . . , m

xj ≥ 0 j = 1, . . . , n

Primal Program

maximize
m∑

i=1

bi yi

subject to
m∑

i=1

ai j yi ≤ cj j = 1, . . . , n

yi ≥ 0 i = 1, . . . , m

Dual Program

• maximization instances dualize analogously

What is the dual
of the dual?



LP-Duality

minimize
∑n

j=1 cj xj

subject to
∑n

j=1 ai j xj ≥ bi i = 1, . . . , m

xj ≥ 0 j = 1, . . . , n

maximize
∑m

i=1 bi yi

subject to
∑m

i=1 ai j yi ≤ cj j = 1, . . . , n
yi ≥ 0 i = 1, . . . , m

The primal program has a finite optimum ⇔ the dual
program has a finite optimum. Moreover, if
x∗ = (x∗1 , . . . , x∗n ) and y∗ = (y∗1 , . . . , y∗m) are optimal
solutions for the primal and dual (respectively), then

n∑
j=1

cj x
∗
j =

m∑
i=1

bi y
∗
i .

Primal:

Dual:

Thm.



Weak LP-Duality

If x = (x1, . . . , xn) and y = (y1, . . . , ym) are feasible
solutions for the primal and dual programs (resp.), then

n∑
j=1

cj xj ≥
m∑

i=1

bi yi .

Thm.

min
∑n

j=1 cj xj

s.t
∑n

j=1 ai j xj ≥ bi

xj ≥ 0

max.
∑m

i=1 bi yi

s.t.
∑m

i=1 ai j yi ≤ cj

yi ≥ 0

n∑
j=1

cj xj ≥
n∑

j=1

(
m∑

i=1

ai j yi

)
xj =

m∑
i=1

 n∑
j=1

ai j xj

 yi

n∑
j=1

cj xj ≥
n∑

j=1

(
m∑

i=1

ai j yi

)
xj =

m∑
i=1

 n∑
j=1

ai j xj

 yi ≥
m∑

i=1

bi yi .

≥Proof.



Complementary Slackness

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be feasible solutions for
the primal and dual Programs (resp.). The solutions x and y are
optimal if only if the following conditoins are met:

Primal CS:
For each j = 1, . . . , n: either xj = 0 or

∑m
i=1 ai j yi = cj

Dual CS:
For each i = 1, . . . ,m: either yi = 0 or

∑n
j=1 ai j xj = bi

min
∑n

j=1 cj xj

s.t
∑n

j=1 ai j xj ≥ bi

xj ≥ 0

max.
∑m

i=1 bi yi

s.t.
∑m

i=1 ai j yi ≤ cj

yi ≥ 0

n∑
j=1

cj xj =
n∑

j=1

(
m∑

i=1

ai j yi

)
xj =

m∑
i=1

 n∑
j=1

ai j xj

 yi =
m∑

i=1

bi yi .

=
Proof.

Thm.



LPs and convex polytopes

• The feasible solutions of an LP
with n variables from a convex
polytope in Rn (intersection of
halfspaces).

• Corners of the polytope are called
extreme point solutions ⇔
n linearly independent inequalities
(constraints) are satisfied with
equality.

• When an optimal solution
exists, some extreme point will
also be optimal.



Integer Linear Programs (ILPs)

minimize
n∑

j=1

cj xj

subject to
n∑

j=1

ai j xj ≥ bi i = 1, . . . , m

xj ≥ 0 j = 1, . . . , nxj ∈ N

• Many NP-optimization problems can be formulated as ILPs.

• LP-relaxation provides a lower bound: OPTLP ≤ OPTILP

• NP-hard to solve ILPs.

• e.g., Vertex Cover



Introduction: Linear Programming

• Linear Programming (LP) and LP-Duality
• Min-Max Relationships
• LP-based Algorithm Designs Techniques

Many approximation algorithms are based on linear
programming.



Max-Flow-Problem
Given: A directed graph G = (V , E ) with edge capacities
c : E → Q+ and two special vertices: the source s and sink t.

Find: A maximum s–t flow (i.e., an assignment of
non-negative weights to edges) f , such that
• f (u, v) ≤ c(u, v) for each edge (u, v) ∈ E
•
∑

(u,v)∈E f (u, v) =
∑

(v ,z)∈E f (v , z) for each vertex

v ∈ V − {s, t}
The flow-value is the inflow to t minus the outflow from t.
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Min-Cut-Problem

Given: A directed graph G = (V , E ) with edge capacities
c : E → Q+ and two special vertices: the source s and sink t.

Find: An s–t-cut, i.e., a vertex set X with s ∈ X and t ∈ X̄ ,
such that the total capacity c(X , X̄ ) of the edges from X to X̄
is minimum.
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X c(X , X̄ ) = 3



Max-Flow-Min-Cut-Theorem

The value of a maximum s–t-flow and the capacity
of a minimum s–t-cut are the same.

Thm.

Proof. Special case of LP-duality . . .



Max-Flow (circulation form) as an LP
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maximize fts

subject to fuv ≤ cuv (u, v) ∈ E∑
u : (u,v)∈E

fuv −
∑

z : (v ,z)∈E

fvz ≤ 0 v ∈ V

fuv ≥ 0 (u, v) ∈ E

fts

3/∞

why does this work?



Dual LP

maximize fts

subject to fuv ≤ cuv (u, v) ∈ E∑
u : (u,v)∈E

fuv −
∑

z : (v ,z)∈E

fvz ≤ 0 v ∈ V

fuv ≥ 0 (u, v) ∈ E

minimize
∑

(u,v)∈E

cuv duv

subject to duv − pu + pv ≥ 0 (u, v) ∈ E

ps − pt ≥ 1

duv ≥ 0 (u, v) ∈ E

pu ≥ 0 u ∈ V

duv

pv

Dual Program

Primal Program



Dual LP – as an ILP

minimize
∑

(u,v)∈E

cuv duv

subject to duv − pu + pv ≥ 0 (u, v) ∈ E

ps − pt ≥ 1

duv ≥ 0 (u, v) ∈ E

pu ≥ 0 u ∈ V

duv ∈ {0, 1}

pu ∈ {0, 1}
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equivalent to Min-Cut!!



Dual LP – Fractional Cuts

minimize
∑

(u,v)∈E

cuv duv

subject to duv − pu + pv ≥ 0 (u, v) ∈ E

ps − pt ≥ 1

duv ≥ 0 (u, v) ∈ E

pu ≥ 0 u ∈ V

≡ LP-relaxation of the ILP
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Each s–t-path
s = v0, . . . , vk = t has
length ≥ 1 with respect to d

k−1∑
i=0

di ,i+1 ≥
k−1∑
i=0

(pi − pi+1)

= ps − pt

Each extreme-point
solution is integral!
(exercise)



Dual LP – Complementary Slackness
maximize fts

subject to fuv ≤ cuv (u, v) ∈ E∑
u : (u,v)∈E

fuv −
∑

z : (v ,z)∈E

fvz ≤ 0 v ∈ V

fuv ≥ 0 (u, v) ∈ E

minimize
∑

(u,v)∈E

cuv duv

subject to duv − pu + pv ≥ 0 (u, v) ∈ E

ps − pt ≥ 1

duv ≥ 0 (u, v) ∈ E

pu ≥ 0 u ∈ V
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For a max. flow and min. cut:
• For each forward edge (u, v) of

the cut, fuv = cuv

• For each backward edge (u, v) of
the cut, fuv = 0



Introduction: Linear Programming

• Linear Programming (LP) and LP-Duality
• Min-Max Relationships
• LP-based Algorithm Designs Techniques

Many approximation algorithms are based on linear
programming.



LP-Rounding

0

• Consider a minimization problem Π in ILP-form

OPTΠ

• Compute a solution to the LP-relaxation

OPTrelax

• “Round” to obtain an integer solution for Π

ALG

α

• Difficulty: ensure feasible solution of Π

• Approximation factor ≤ ALG/OPTrelax



Primal-Dual Approach

0

OPTΠOPTprimal = OPTdual
feasbile Primal-solutionfeasible Dual-solution

• Compute dual solution sd and an integral solution sΠ of Π
iteratively

sd sΠ

α

• Approximation factor ≤ obj(sΠ )/obj(sd)

• Advantage: don’t need LP-“machinery”; possibly faster,
more flexible.

• Consider a minimization problem Π in ILP-form



Dual Fitting

0

OPTΠOPTprimal = OPTdual

sdsΠ

• Combinatorial algorithm (e.g., greedy) computes a feasible
solution sΠ and “infeasible” dual solution sd from sΠ which
is more expensive than sΠ .

• Scaling the dual variables  feasible dual solution s ′d

s ′d

α

• Consider a minimization problem Π in ILP-form

feasbile Primal-solutionfeasible Dual-solution



Integrality Gap

0

OPTΠOPTprimal = OPTdual

α

• All the before methods (without additional help) are
limited by the Integrality Gap of the LP-relaxation

sup
I

OPT(I )

OPTprimal(I )

• Consider a minimization problem Π in ILP-form

feasbile Primal-solutionfeasible Dual-solution

next class Set Cover
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