INTRODUCTION TO SPACE 18.3.2019

- ▶ The Galaxy I:
 - Magnitude systems
 - Structure, rotation, spiral arms
 - Evolution
 - ▶ Galactic continuum
 - ▶ Galactic centre

25.3. The Galaxy II: stars, gas, dust

1.4. Extragalactic & cosmology

12.4. Exam

BASICS OF ASTRONOMY?

MAGNITUDE SYSTEMS

- Describe the optical brightness of celestial objects
 - Logarithmic
- ▶ **Apparent magnitude**: $m = -2.5 \text{ lg F/F}_0$ [F]=W/m²
 - $m_1 m_2 = -2.5 \text{ Ig } F_1/F_2$
- ▶ **Bolometric magnitude** at all wavelengths: m_{bol}=m_v- BC
 - Visual magnitude m_v corresponds to the sensitivity of the eye
- ▶ Absolute magnitude M: m M = 5 lg (r/10pc)
- Absolute bolometric magnitude:

$$M_{\rm bol} - M_{\rm bol, \odot} = -2.5 \, \text{lg L/L}_{\odot}$$

BC = Bolometric correction, zero for sun-like emission.

MAGNITUDES: EXAMPLES

- Apparent magnitudes of celestial objects
 - ▶ The Sun —26.8m
 - ► Full Moon −12.5m
 - ▶ Venus –4.4m
 - ► Sirius –1.5m
 - ▶ Polaris +2m

Tim Trott

The Galaxy, Milky Way

- A galaxy among other galaxies
 - a flat, disc shaped system that primarily contains stars.
- History:
 - ▶ **G. Galilei** observed, using his first telescope, innumerable individual stars (early **1600's**).
 - **W. Herschel** attempted to define the shape and the size of the Galaxy by means of star counts.
 - \Rightarrow It is a flat system, the Sun is in the centre (late **1700's**).

The Galaxy: History

- **J. Herschel** understood that G is a huge disc of irregular shape and size, and the Sun is located asymmetrically more to the south rather than the north (**1800's**).
- **J. Kapteyn** estimated the size of the G by counting stars, the Sun is in the centre, proof for galactic rotation (Kapteyn's universe, early **1900's**.)

H. Shapley found out the size of the G and the location of the Sun from studies of globular star clusters (1920's).

BUILDING BLOCKS OF THE GALAXY

- stars & star formation regions
- dying stars
- supernova remnants
- molecular clouds
- neutral hydrogen, HI, and ionized hydrogen, HII
- masers
- dust
- cosmic rays
- magnetic field
- black hole ?
- dark matter?

(Barred) spiral galaxy

Central area:

- Dense, contains both new and old stars
- ▶ 5 10 % of the total mass of the Galaxy
- The other side of the central area has an asymmetrical bulge: a bar the longitudinal axis of which is close to the viewing angle
 - more evidence for a bar: carbon stars (old red giants) aligned along the axis
- The bar at a 30° angle, 15000×5000 ly (best guess)

A ring composed of molecular clouds surrounds the central area at a distance of 10 000 – 16 000 ly (gas and dust); lots of star formation!

Disc and spiral arms:

- The spiral arms mapped at radio frequencies, with the help of star clusters and hydrogen clouds + pulsars
- \Rightarrow 4 (5?) spiral arms, originating in the molecular ring, open up at a 20° angle

- Newly formed and young stars in the galactic plane in circular orbits (in one year $\sim 1 M_{\odot}$ new stars).
- The metallicity of young stars increases.
- Open star clusters, interstellar matter
- Also an "outer" disc of hydrogen (15 000 ly away) and a large disc of warm gas (~10 000K)
- High-velocity clouds (HVC), intermediate-velocity clouds (IVC)
- "Star ribbons", caused by dwarf galaxies and globular star clusters interacting with the Galaxy

Halo:

- ▶ old stars (up to ~13.5 billion years)
- eccentric orbits, no preference for the galactic plane
- very little gas, metal-poor
- globular star clusters
- no star formation

Corona:

- very little interstellar matter, at least what can be observed ⇒ dark matter?
- size (possibly) up to hundreds of kiloparsecs(>100 000 ly)

STAR CLUSTERS

A group of stars of roughly the same age, evolved from the same interstellar cloud

Globular cluster

Open cluster

Size

- diameter 30 kpc(100 000 ly)
- ▶ Thickness I kpc
- Mass $600 \times 10^9 \, \text{M}_{\odot}$
- Orbital period of the Sun
 225 x 10⁶ years

Earth:

in a spiral arm, 8.5 kpc (28 000 ly) from the Galactic Centre

The Galaxy @ $2\mu m$

BARRED SPIRAL GALAXIES

- NGC 3953
- NGC 5970
- NGC 7329
- NGC 7723

IT ALL STARTED WITH A BANG

- In the beginning opaque photon-baryon plasma until...
- Photons scattered from matter for the last time
 - radiation propagates freely in the current universe

COSMIC MICROWAVE BACKGROUND

- ▶ Cosmic microwave background emission (CMB), 3K, is like a photograph of the young universe.
- The tiny temperature anisotropies of the CMB reveal how the structure of the universe started to form.

FORMATION OF STRUCTURE

Top-Down Structure Formation

in a top-down scenario, large pancakes of matter form first, than fragment into galaxy-sized lumps

Bottom-Up Structure Formation

in a bottom-up scenario, small, dwarf galaxy-sized lumps form first, then merger to make galaxies and clusters of galaxies

Large Scale Structure

HDM and the top-down scenario predict smooth, weak features in the large scale distribution of galaxies

CDM and the bottom-up scenario predict sharp features with weak connecting filaments

FORMATION OF LARGE SCALE STRUCTURE

http://cosmicweb.uchicago.edu/sims.html

HOW THE GALAXY FORMED

HOW THE GALAXY FORMED

- Approx. I 3.5 billion years ago the Galaxy was a large turbulent cloud made of hydrogen and helium.
 - The first very massive stars formed (fast evolution, heavier elements, supernova explosions).
 - Shock waves accelerated the formation of further generations of stars.

- ▶ The Galaxy contracted under its internal gravity, the originally slow rotation accelerated.
- After a couple of billion years the cloud collapsed along its rotational axis and a disc was formed.

DIFFERENTIAL ROTATION

- The angular velocity of the rotation depends on the distance to the galactic centre (the velocity decreases as the distance increases).
- Studies of stars and interstellar matter to measure the rotation curve
 - "flat" \Rightarrow dark matter?
- The Sun is orbiting the galactic centre at a speed of 220 km/s
- Mass of the G inside the solar orbit $100 \times 10^9 M_{\odot}$
- ▶ Total mass of the G is $600 \times 10^9 M_{\odot}$

FORMATION OF SPIRAL STRUCTURE

I. Density wave theory

- "Grand Design" spiral galaxies
- Spiral arms are not solid.

- A spiral-shaped gravitational disturbance i.e. density wave is formed. It rotates around the centre with constant radial velocity.
 - At the distance of the Sun: half of the radial velocity of matter.

FORMATION OF SPIRAL STRUCTURE

- Gas (or a star) hits the density wave, is slowed by the local gravitational field, and compresses, then expands after having moved through the wave.
 - condensation of gas/stars in the density wave
 - \Rightarrow spiral arm
- Young objects in the spiral arms, e.g., star formation at the inner edge of the spiral arms.
- Problematic details: how is the wave formed and maintained, why do not all galaxies have spiral arms?

FORMATION OF SPIRAL STRUCTURE

2. Stochastic Self-Propagative Star Formation

Flocculent spiral galaxies

- Stochastic: constant but random star formation here and there in the galaxy.
- Star formation triggers more star formation in neighbouring areas.
- Spiral arms are formed because the galaxy is rotating
 - ...but not all galaxies are rotating much

The sky as seen by Planck

- Interstellar space is not empty, optical and shorter wavelength radiation is absorbed (and re-emitted, scattered...).
- Radiation decreases as the distance increases.
- ▶ Dust (and gas) block observations at short wavelengths ⇒ radio astronomy!

Extinction

- attenuation of radiation as it passes through a medium (dust, gas), radiation losses
 - radiation decreases as the distance increases
- absorption or scattering
- varies strongly with direction
- in the galactic plane I 2 mag / kpc
- extinction curve based on observations

Reddening

- Blue light is scattered and absorbed (by dust) more than red (amount of extinction is larger for shorter λ).
- The light of distant stars is redder than would be expected on the basis of their spetral class.

Polarization

- Nonspherical dust particles aligned by the interstellar magnetic field:
 - properties of the dust particles.
 - mapping of structure of the galactic magnetic field.

Chandra X-rays

Two Micron All Sky Survey Image Mosaic: Infrared Processing and Analysis Center/Calitech & University of Massachusetts

Where is it?

- ▶ At a distance of 8.5 kpc from the Sun.
- Dust hides the centre that could otherwise be seen as a bright "cloud" in the southern sky (optical extinction 28 mag!).
- X-ray observations (for example, hot gas, x-ray binaries, supernovae)
- IR observations (for example, hot stars)
- Radio observations from the constellation of Sagittarius,
 Sgr A (an offset of 25° from the site fixed optically)

radio emission propagates freely (nonthermal!)

What's there?

- ▶ Stellar density increases towards the centre.
- ▶ A dense gas disc in the core (1.5 kpc).
- Most of the mass in the molecular area surrounding the core (300 pc).

Innermost 10 pc

- Streamers of ionized gas and dust, threads, other features.
- ▶ Enigmatic radio source Sagittarius A (Sgr A*).

- Star formation regions, supernova remnants etc.
- in IR: bright source IRS 16, contains hot gas with extremely high velocities, and hot giant stars
- in X-rays: bright stars
- in gamma-rays: strong electron-positron annihilation (511 keV), "The Great Annihilator" (x-ray binary?)
- Something in the middle makes the surrounding material move fast.

Sgr A: 1.4 GHz (VLA)

IR & X-rays

Sgr A East

probably a supernova remnant.

Sgr A West

- a "spiral-shaped" hydrogen region.
- surrounded by unusually hot gas and a molecule ring (2–8 pc) that contains denser gas.

Sgr A East & West

Sgr A*

- ▶ Point-like, compact source (< I AU)</p>
- ▶ Does not move, very massive $(4 \times 10^6 M_{\odot})$
- ▶ Flat spectrum, variable radio emission
 - \Rightarrow a black hole ?
- The black holes in the centres of galaxies are usually larger, why is the one in the Galaxy so "small" and why is it so "faint"?
 - ⇒ "starving" black hole?
- How has the black hole formed?

How close can we see?

IR

Stellar orbits in the central parsec

→ the mass of the black hole

The Motion of a Star around the Central Black Hole in the Milky Way

Orbital period of S0-2 is 15.78 years. Distance of S0-16 from the black hole only 90 AU.

eventhorizontelescope.org

Imaging supermassive black holes in the centres of galaxies: Sgr A* and M87

Hotaka Shiokawa/CFA/HARVARD

TODAY

- The Galaxy I:
 - Magnitude systems
 - Structure, rotation, spiral arms
 - **Evolution**
 - ▶ Galactic continuum
 - ▶ Galactic centre

NEXT WEEK

- ▶ The Galaxy II:
 - Stars:
 - Classification and evolution
 - Various types of stars
 - Interstellar matter: dust, gas
 - Dark matter

