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Lecture schedule

Tue 15 Jan:
Tue 22 Jan:
Tue 29 Jan:
Tue 5 Feb:

Tue 12 Feb:

Tue 19 Feb:
Tue 27 Feb:
Tue 5 Mar:

Tue 12 Mar:
Tue 19 Mar:
Tue 26 Mar:
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. Polynomials and integers

. The fast Fourier transform and fast multiplication

. Quotient and remainder

. Batch evaluation and interpolation

. Extended Euclidean algorithm and interpolation from erroneous data

Exam week — no lecture

. Identity testing and probabilistically checkable proofs

Break — no lecture

. Finite fields
. Factoring polynomials over finite fields
. Factoring integers
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Recap of last week

» Prime fields (the integers modulo a prime)

» Irreducible polynomial, existence of irreducible polynomials

» Fermat’s Little Theorem and its generalization (exercise)

» Finite fields of prime power order via irreducible polynomials (exercise)
» The characteristic of a ring; fields have either zero or prime characteristic
» Extension field, subfield, degree of an extension

» Algebraic and transcendental elements of a field extension;
the minimal polynomial of an algebraic element

» Multiplicative order of a nonzero element in a finite field;
the multiplicative group of a finite field is cyclic

» Formal derivative of a polynomial with coefficients in a field (exercise)



Motivation for this and next week

» A tantalizing case where the connection between polynomials and integers apparently
breaks down occurs with factoring

» Namely, it is known how to efficiently factor a given univariate polynomial over a
finite field into its irreducible components, whereas no such algorithms are known for
factoring a given integer into its prime factors

» This week we develop one efficient factoring algorithm for univariate polynomials over
a finite field

» The best known algorithms for factoring integers run in time that scales moderately
exponentially in the number of digits in the input; next week we study one such
algorithm



Factoring polynomials over finite fields

Modern Computer Algebra  iredition

Joachim von zur Gathen and Jiirgen Gerhard

(von zur Gathen and Gerhard [11],
Sections 14.1-3, 14.6)




Finite fields

(Lidl and Niedderreiter [19])




Key content for Lecture 8

» Factoring a monic polynomial into monic irreducible polynomials over a finite
field

v

Square-and-multiply algorithm for modular exponentiation (exercise)

v

The squarefree part of a polynomial
» Computing the squarefree part using the formal derivative, greatest common divisors,
and modular exponentiation (exercise)

\4

The distinct-degree factorization of a squarefree polynomial
» Computing the distinct-degree factorization using extended Fermat’s little theorem,
modular exponentiation, and greatest common divisors

v

The equal-degree factorization of a polynomial with known identical degrees for
the irreducible factors
» Cantor-Zassenhaus algorithm and random splitting polynomials
(analysis: exercise)



Irreducible polynomial

v

Let g be a prime power

v

Let FF; be the finite field with g elements

v

We say that a polynomial f € Fy[x] is irreducible if f ¢ F, and for any g, h € Fg[x]
with f = ghwe have g € F,or h € F,

Let us also recall that we say that f € Fy[x] is monic if its leading coefficient is 1

v



Factorization into irreducible polynomials

> Let f € Fy[x]

» The factorization of f consists of distinct monic irreducible polynomials
fisfos o fr € Fg[x] and integers dy, d,, . . ., d € Z> such that

f =) f

» The factorization of f is unique up to ordering of the irreducible factors

» The polynomial f is squarefree if dy =d, =--- =d, = 1



Example: Factorization into irreducible polynomials

» The factorization of

f=2+2x+x*+2* + 2 + 2x° + 2% + 2x° + x" + x"" + x"? + x" € F3[x]

F=00+x)70"+x+2)(x*+ 1)(x° + 2x + 2)?

» Or what is the same,

f1:1+X, d1:3,
fz:x2+x+2, d=1,
fi=x>+1, =1,

fa=x3+2x+2, dy=2



Preliminaries: Fast modular exponentiation

> Let f, g € Fo[x] with g # 0, deg f,deg g < d and m € Z3,

» Then, there exists an algorithm that computes f” rem g in O(M(d) log m) operations
in IF, (exercise)



Preliminaries: Greatest common divisor

> Let f, g € Fy[x] such that at least one of f, g is nonzero
» Let us write gcd(f, g) for the monic greatest common divisor of f and g

» That is, in what follows we assume that Ic(gcd(f, g)) = 1



Squarefree part

Let f = lc(f)ffj] zdz .- £% be the factorization of f € Fqlx]

v

» The squarefree part of f is the (monic) polynomial fif; - - f;

v

To factor f, it suffices to factor the squarefree part of f since f and its squarefree part
have the same irreducible factors

v

Indeed, given an irreducible factor f; of f, it is easy to determine the maximum
exponent d; € Z; such that]j.dj divides f



Example: Squarefree part

» The squarefree part of

2+ 2x +xP+ 2+ 2 + 2x0 + 2% + 27 + X"+ XM+ X1+ X1 € B[]

T+x+2x% +x° +2x" + x® € F3[x]



The squarefree part and the formal derivative (1/2)

> Let p be the characteristic of Fg; that is, g is a power of the prime p
> Let f € Fy[x] be monic with factorization f :f1d‘ zdz o

» Then, we have (exercise)

’ - /f
f= ;] 4/ (35)

» Furthermore, forall i,j = 1,2,...,r we have thatfid’ divides dj]j’j; when i # j
J
. d-1 . . i
» Wheni=j, clearly]j. divides dj]j 7

furthermore, we have that j;.dj divides djfj’% if and only if f; divides djf/;
since deg f/ < deg fj, we have that f; divides djf; if and only if p divides d



The squarefree part and the formal derivative (2/2)

v

Set u « gcd(f,f’)and v « f/u

v

Forj=1,2,...,r,let

j =

1 if p does not divide d;
0 if pdivides d;

» We have
U= 1d1—51f2d2—52 L. rd,—5,
81 76 5
v=fof
» In particular, v is the squarefree part of f if 61 =, =--- =5, =1

v

Otherwise, that is, when §; = 0 for at least one j, we need to do some more work ...



Extracting a pt" power

» Recall that we have
dy pd dr
f=flfr

51 8 5,
vV = 1122...f

r

» Let w « f/ ged(f, viesf)
(exercise: how do you compute w fast given f and v as input?)

We have

v

1-61)di £(1-61)d. (1-5r)
w = f-00h =00 gl ]_[f
pld;
That is, we have that w is the pt" power of the polynomial Hp|djjj.dj/p

v

\{

To access the squarefree part of w (which, when multiplied with v, forms the
squarefree part of f), it suffices to recurse on a pt" root of w

\{

Next we look at how to compute p'! roots ...



The structure of a pt" power in characteristic p

v

Let p be the characteristic of F,
Let g =29 ¥ix' € Fylx]
By the multinomial theorem, we have
gP — (J )¢JO¢/1 L wédXZzzo kjk
07_]1’ Y |

0<jo, 11 - Jd<p
Jotjit...+ja=p

v

v

|
—F— unless there exists a
Joljate-ja!
P ) =1
J0sJ15 - -5 Jd

» Since p is prime, we have that p divides (1 hp jd)

k=0,1,...,dw1th1k=p,mwh|chcase(

v

Thus, we have

d
= P pi
&= V"
i=0



Computing a p" root of a p" power in characteristic p

v

Let p be the characteristic of F
Let g = Y9 ¢ix' € Fy[x]

From the previous slide, we have gP = Z,C-Izo ¢ipx”"

v

\{

» Suppose we are given h = ij:o nixP as input and we want to compute a p' root of h

> By Fermat’s little theorem, for n = ¢/ with ¢ € F; we have ndlP = (YP)IP = 49 =

v

Thus, we have h = g for

g= Z Uq/pxi

d
=0

(exercise: how do you compute n9/P fast, given € [F4 together with g and p as input?)



Example: Computing the squarefree part

» Let us compute the squarefree part of
F=2+2x+x2+2x* + 2x° + 2x° + 2x8 + 2x° + x"0 + X" + x1? + x13 € FF3[x]

We have

v

fr=24+2x+2x +x* + x" +x° +2x" + x"?

And thus

v

u=gcd(f,f') =2+ 2x+2x" + x°
v=flu=1+2x*+x>+2x* + 2x° + x* + X’

w=1+x>
> Since w # 1 we proceed to take the p'" root for p = 3, and obtain w'/3 = 1+ x

v

The squarefree part of w'/3 is trivially 1+ x, so we obtain that
(T+x)v=T4+x+2x"+ x> +2x" +x°

is the squarefree part of f



Distinct-degree decomposition of a squarefree polynomial

> Let g € Fy[x] be monic and squarefree of degree at least 1

> The distinct-degree decomposition of g is the sequence g, 8, . . ., & € Fg[x] such
that g; # 1and forall i = 1,2,..., s we have that g; is the product of all monic
irreducible polynomials of degree i that divide g

» The distinct-degree decomposition of g is unique
» We also have g = g18, - - - &
» To factor g it suffices to factor each of g1, 8, ..., &s



Example: Distinct-degree decomposition

» The polynomial
g=1+x+2x+x>+2x" + x® € Fy[x]
is monic and squarefree of degree at least 1
» The distinct-degree decomposition of g is
gi=1+x
£ =24+ x+x +x*

g3:x3+2x+2



Extended Fermat’s little theorem

Theorem 18 (Extended Fermat’s little theorem)

Let q be a prime power and let d € Z>. Then, x?" —x € Fq[x] is the product of all monic
irreducible polynomials in Fy[x| whose degree divides d

Proof.

(Exercise in last week’s problem set)



Computing the distinct-degree decomposition

> Let g € Fy[x] be monic and squarefree of degree at least 1 given as input
1. Setf « g, h— x,and i « 1
2. while f # 1do

a. Set h «< h9rem f using fast modular exponentiation

b. Set g; « gcd(h—x, f) _
[here we have the invariants that h — x = x9 — x (mod f) and f has no irreducible
factors of degree less than i]

c. Setf « f/g;
d. Setie—i+1

3. Sets«—i—1

4. Output g1, &, - - ., 8s as the distinct-degree decomposition of g and stop



Equal-degree factorization

v

Let f € Fy[x] be monic and squarefree of degree n € Z; such that all irreducible
factors of f have degree d € Z4

v

The equal-degree factorization task is to factor f given both f and d as input

v

Clearly we must have that d divides n, and the task is trivial if d = n

» Let us next look at one possible algorithm for equal-degree factorization ...



The Cantor-Zassenhaus algorithm (1/2)

» Let g be an odd prime power

> Let f € Fy[x] be monic of degree n = dr such that all r > 2 irreducible factors of f
have degree d

1. Let a € Fy[x] be a uniform random nonzero polynomial of degree at most n— 1
2. Let g < gcd(a,f). If g # 1, then output g and stop

3. Compute s « aa’-n/2 rem f using fast modular exponentiation

4. Let g « ged(s—1,f). If g # 1 and g # f, then output g and stop

5. Assert failure and stop



The Cantor-Zassenhaus algorithm (2/2)

» The Cantor-Zassenhaus algorithm outputs a proper divisor g of f
(a splitting polynomial for f) with probability at least 1/2

» We can repeat the algorithm until a proper divisor g is found, and then recurse on g
and f/g as appropriate to complete the equal-degree factorization of f into the r
irreducible factors, each of degree d



Analysis of the Cantor-Zassenhaus algorithm |

» Let f = fifa ... f: be the factorization of the input f
» Let a be a uniform random nonzero polynomial of degree at most n — 1
» If the algorithm stops in Step 2 we have that g splits f

» So suppose that we continue to Step 3; in this case a and f are coprime and thus a and
fj are coprime for each j = 1,2,...,r

» By the Chinese Remainder Theorem, we have the isomorphism

X Bq[x1/KF) = Fglx]/<fi) x Bg[x]/{fa) x - - - X Fg[x]/{fr)
given for all h € Fo/(f) by x(h) = (x1(h), x2(h), ..., x-(h)) with y;(h) = hrem f; for all

i=1,2,...,r

> Since each f; € Fy[x] is irreducible of degree d, we have that each Fy[x]/(fi) is
isomorphic to Fgq



Analysis of the Cantor-Zassenhaus algorithm Il

>

>

We have y;(h) = 0 if and only if f; divides h

In particular, his a splitting polynomial for f if and only if there exist
i, izo € {1,2,...,r} such that y; (h) = 0 and i, (h) # 0

Since y is an isomorphism and a is coprime to each of f1, f5, .. ., f;, we have that
xi1(a), xa(a), . . ., xr(a) are mutually independent uniform random elements in the
multiplicative groups of Fy[x]/{f1), Fq[x]/{f2) . . .. Fq[x]/{f:), each of which is
isomorphic to the multiplicative group PZ"

Since q is odd and the multiplicative group de is cyclic (recall last week), for a uniform

random b € F:d we have Pr(b(qd_”/2 =1)= Pr(b(qd—l)/Z = —1) = 1/2 (exercise)

Thus, we have that )((a(qd_”/z) is a uniform random vector with entries in {—1, 1}

In particular, with probability at least 1 —2'~" the vector )((a(qd_wz) has at least one
1-entry and at least one (—1)-entry



Analysis of the Cantor-Zassenhaus algorithm 11l

» Thus, since y is an isomorphism, with probability at least 1 — 2'"" the vector

)((a(qd*])/2 — 1) has at least one zero entry and at least one nonzero entry

» The algorithm thus outputs a splitting polynomial and stops in Step 4 with probability
at least 1—2'"" > 1/2 since r > 2



Summary: Factoring a polynomial over a finite field (1/2)

> Let a monic f € Fy[x] be given as input
1. Compute the squarefree part g € Fo[x] of f
2. Compute the distinct-degree decomposition g1, &, . . ., 8 € Fg[x] of g

3. Foreachi=1,2,...,s, run an equal-degree factorization algorithm to factor g;
(e.g., for odd g, run Cantor-Zassenhaus algorithm)

4. Assemble all the monic irreducible factors fi, f5, . . ., f; € Fg[x] obtained in Step 3

. . d;
5. Foreachj=1,2,...,r, compute the maximum exponent d; € Z>; such that]j. !
divides f

6. Return the factorization f :ﬂd‘ zdz = 'f,df



Summary: Factoring a polynomial over a finite field (2/2)

» We have presented one possible algorithm for efficiently factoring a given polynomial
f € Fy[x] into its irreducible factors

» Here by efficient we mean that the number of operations in F, executed by the
algorithm is bounded by a polynomial in deg f and log q

» More efficient algorithms are known
(cf. von zur Gathen and Gerhard [11] and Kedlaya and Umans [16])



Three applications

» Find all roots of a polynomial
> The irreducible factors of degree 1 correspond to the distinct roots

» Testing for irreducibility
> Test that the squarefree part agrees with the polynomial and then compute a
distinct-degree decomposition to decide irreducibility

» Constructing an irreducible monic polynomial of degree n
» Draw a uniform random monic polynomial of degree n, and test for irreducibility using
the test above; repeat until an irreducible polynomial is found

> Recalling the counting lemma for irreducible polynomials from the previous lecture, in
expectation O(n) repeats are required



Recap of Lecture 8

» Factoring a monic polynomial into monic irreducible polynomials over a finite
field

v

Square-and-multiply algorithm for modular exponentiation (exercise)

v

The squarefree part of a polynomial
» Computing the squarefree part using the formal derivative, greatest common divisors,
and modular exponentiation (exercise)

\4

The distinct-degree factorization of a squarefree polynomial
» Computing the distinct-degree factorization using extended Fermat’s little theorem,
modular exponentiation, and greatest common divisors

v

The equal-degree factorization of a polynomial with known identical degrees for
the irreducible factors
» Cantor-Zassenhaus algorithm and random splitting polynomials
(analysis: exercise)



