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Lecture schedule

Tue 15 Jan: 1. Polynomials and integers
Tue 22 Jan: 2. The fast Fourier transform and fast multiplication
Tue 29 Jan: 3. �otient and remainder
Tue 5 Feb: 4. Batch evaluation and interpolation
Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data

Tue 19 Feb: Exam week — no lecture

Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs

Tue 5 Mar: Break — no lecture

Tue 12 Mar: 7. Finite fields
Tue 19 Mar: 8. Factoring polynomials over finite fields
Tue 26 Mar: 9. Factoring integers



2019 K A L E N T E R I 2019

Tammikuu Helmikuu Maaliskuu Huhtikuu Toukokuu Kesäkuu

1 Ti Uudenvuodenpäivä 1 Pe 1 Pe 1 Ma                              Vk 14 1 Ke Vappu 1 La

2 Ke 2 La 2 La 2 Ti 2 To 2 Su

3 To 3 Su 3 Su 3 Ke 3 Pe 3 Ma                              Vk 23

4 Pe 4 Ma                              Vk 06 4 Ma                              Vk 10 4 To 4 La 4 Ti

5 La 5 Ti 5 Ti Laskiainen 5 Pe 5 Su 5 Ke

6 Su Loppiainen 6 Ke 6 Ke 6 La 6 Ma                              Vk 19 6 To

7 Ma                              Vk 02 7 To 7 To 7 Su 7 Ti 7 Pe

8 Ti 8 Pe 8 Pe 8 Ma                              Vk 15 8 Ke 8 La

9 Ke 9 La 9 La 9 Ti 9 To 9 Su Helluntaipäivä

10 To 10 Su 10 Su 10 Ke 10 Pe 10 Ma                              Vk 24

11 Pe 11 Ma                              Vk 07 11 Ma                              Vk 11 11 To 11 La 11 Ti

12 La 12 Ti 12 Ti 12 Pe 12 Su Äitienpäivä 12 Ke

13 Su 13 Ke 13 Ke 13 La 13 Ma                              Vk 20 13 To

14 Ma                              Vk 03 14 To 14 To 14 Su Palmusunnuntai 14 Ti 14 Pe

15 Ti 15 Pe 15 Pe 15 Ma                              Vk 16 15 Ke 15 La

16 Ke 16 La 16 La 16 Ti 16 To 16 Su

17 To 17 Su 17 Su 17 Ke 17 Pe 17 Ma                              Vk 25

18 Pe 18 Ma                              Vk 08 18 Ma                              Vk 12 18 To 18 La 18 Ti

19 La 19 Ti 19 Ti 19 Pe Pitkäperjantai 19 Su Kaatuneiden muistopäivä 19 Ke

20 Su 20 Ke 20 Ke Kevätpäiväntasaus 20 La 20 Ma                              Vk 21 20 To

21 Ma                              Vk 04 21 To 21 To 21 Su Pääsiäispäivä 21 Ti 21 Pe Kesäpäivänseisaus

22 Ti 22 Pe 22 Pe 22 Ma 2. pääsiäispäivä 22 Ke 22 La Juhannus

23 Ke 23 La 23 La 23 Ti 23 To 23 Su

24 To 24 Su 24 Su 24 Ke 24 Pe 24 Ma                              Vk 26

25 Pe 25 Ma                              Vk 09 25 Ma                              Vk 13 25 To 25 La 25 Ti

26 La 26 Ti 26 Ti 26 Pe 26 Su 26 Ke

27 Su 27 Ke 27 Ke 27 La 27 Ma                              Vk 22 27 To

28 Ma                              Vk 05 28 To 28 To 28 Su 28 Ti 28 Pe

29 Ti 29 Pe 29 Ma                              Vk 18 29 Ke 29 La

30 Ke 30 La 30 Ti 30 To Helatorstai 30 Su

31 To 31 Su Kesäaika alkaa 31 Pe
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Q = Q & A session;                   hall T5,   Thu 12–14
D = Problem set deadline;                      Sun  20:00
 T = Tutorial (model solutions);   hall T6,  Mon 16–18

Exam 
week

L1

Q1

T1
D1

L2

Q2

D2
T2

L3

Q3

D3
T3

L4

Q4

D4
T4

L5

Q5

D5
T5

Break

L6

Q6

D6
T6

L7

Q7

D7
T7

L8

Q8

D8
T8

L9

Q9

D9

T9

 CS-E4500 Advanced Course in Algorithms (5 ECTS, III–IV, Spring 2019)



Recap of last week

I Prime fields (the integers modulo a prime)

I Irreducible polynomial, existence of irreducible polynomials

I Fermat’s Li�le Theorem and its generalization (exercise)

I Finite fields of prime power order via irreducible polynomials (exercise)

I The characteristic of a ring; fields have either zero or prime characteristic

I Extension field, subfield, degree of an extension

I Algebraic and transcendental elements of a field extension;
the minimal polynomial of an algebraic element

I Multiplicative order of a nonzero element in a finite field;
the multiplicative group of a finite field is cyclic

I Formal derivative of a polynomial with coe�icients in a field (exercise)



Motivation for this and next week

I A tantalizing case where the connection between polynomials and integers apparently
breaks down occurs with factoring

I Namely, it is known how to e�iciently factor a given univariate polynomial over a
finite field into its irreducible components, whereas no such algorithms are known for
factoring a given integer into its prime factors

I This week we develop one e�icient factoring algorithm for univariate polynomials over
a finite field

I The best known algorithms for factoring integers run in time that scales moderately
exponentially in the number of digits in the input; next week we study one such
algorithm



Factoring polynomials over finite fields

(von zur Gathen and Gerhard [11],
Sections 14.1–3, 14.6)



Finite fields

(Lidl and Niedderreiter [19])



Key content for Lecture 8

I Factoring a monic polynomial into monic irreducible polynomials over a finite
field

I Square-and-multiply algorithm for modular exponentiation (exercise)

I The squarefree part of a polynomial
I Computing the squarefree part using the formal derivative, greatest common divisors,

and modular exponentiation (exercise)

I The distinct-degree factorization of a squarefree polynomial
I Computing the distinct-degree factorization using extended Fermat’s li�le theorem,

modular exponentiation, and greatest common divisors

I The equal-degree factorization of a polynomial with known identical degrees for
the irreducible factors
I Cantor–Zassenhaus algorithm and random spli�ing polynomials

(analysis: exercise)



Irreducible polynomial

I Let q be a prime power

I Let Fq be the finite field with q elements

I We say that a polynomial f ∈ Fq[x] is irreducible if f < Fq and for any g, h ∈ Fq[x]
with f = gh we have g ∈ Fq or h ∈ Fq

I Let us also recall that we say that f ∈ Fq[x] is monic if its leading coe�icient is 1



Factorization into irreducible polynomials

I Let f ∈ Fq[x]

I The factorization of f consists of distinct monic irreducible polynomials
f1, f2, . . . , fr ∈ Fq[x] and integers d1, d2, . . . , dr ∈ Z≥1 such that

f = lc(f )f d1
1 f d2

2 · · · f
dr

r

I The factorization of f is unique up to ordering of the irreducible factors

I The polynomial f is squarefree if d1 = d2 = · · · = dr = 1



Example: Factorization into irreducible polynomials

I The factorization of

f = 2 + 2x + x2 + 2x4 + 2x5 + 2x6 + 2x8 + 2x9 + x10 + x11 + x12 + x13 ∈ F3[x]

is

f = (1 + x )3 (x2 + x + 2) (x2 + 1) (x3 + 2x + 2)2

I Or what is the same,

f1 = 1 + x , d1 = 3 ,

f2 = x2 + x + 2 , d2 = 1 ,

f3 = x2 + 1 , d3 = 1 ,

f4 = x3 + 2x + 2 , d4 = 2



Preliminaries: Fast modular exponentiation

I Let f , g ∈ Fq[x] with g , 0, deg f , deg g ≤ d and m ∈ Z≥0

I Then, there exists an algorithm that computes f m rem g in O(M(d ) log m) operations
in Fq (exercise)



Preliminaries: Greatest common divisor

I Let f , g ∈ Fq[x] such that at least one of f , g is nonzero

I Let us write gcd(f , g) for the monic greatest common divisor of f and g

I That is, in what follows we assume that lc(gcd(f , g)) = 1



Squarefree part

I Let f = lc(f )f d1
1 f d2

2 · · · f
dr

r be the factorization of f ∈ Fq[x]

I The squarefree part of f is the (monic) polynomial f1f2 · · · fr

I To factor f , it su�ices to factor the squarefree part of f since f and its squarefree part
have the same irreducible factors

I Indeed, given an irreducible factor fj of f , it is easy to determine the maximum

exponent dj ∈ Z≥1 such that f
dj

j divides f



Example: Squarefree part

I The squarefree part of

2 + 2x + x2 + 2x4 + 2x5 + 2x6 + 2x8 + 2x9 + x10 + x11 + x12 + x13 ∈ F3[x]

is

1 + x + 2x2 + x5 + 2x7 + x8 ∈ F3[x]



The squarefree part and the formal derivative (1/2)

I Let p be the characteristic of Fq; that is, q is a power of the prime p

I Let f ∈ Fq[x] be monic with factorization f = f d1
1 f d2

2 · · · f
dr

r

I Then, we have (exercise)

f ′ =
r∑

j=1

djf ′j
f
fj

(35)

I Furthermore, for all i, j = 1, 2, . . . , r we have that f di
i divides djf ′j

f
fj

when i , j

I When i = j, clearly f
dj−1

j divides djf ′j
f
fj

;

furthermore, we have that f
dj

j divides djf ′j
f
fj

if and only if fj divides djf ′j ;
since deg f ′j < deg fj , we have that fj divides djf ′j if and only if p divides dj



The squarefree part and the formal derivative (2/2)

I Set u ← gcd(f , f ′) and v ← f /u

I For j = 1, 2, . . . , r , let

δj =



1 if p does not divide dj;

0 if p divides dj
I We have

u = f d1−δ1
1 f d2−δ2

2 · · · f dr−δr
r

v = f δ1
1 f δ2

2 · · · f
δr
r

I In particular, v is the squarefree part of f if δ1 = δ2 = · · · = δr = 1

I Otherwise, that is, when δj = 0 for at least one j, we need to do some more work ...



Extracting a pth power

I Recall that we have

f = f d1
1 f d2

2 · · · f
dr

r

v = f δ1
1 f δ2

2 · · · f
δr
r

I Let w ← f / gcd(f , vdeg f )
(exercise: how do you compute w fast given f and v as input?)

I We have

w = f (1−δ1)d1
1 f (1−δ1)d2

2 · · · f (1−δr )dr
r =

∏
p |dj

f
dj

j

I That is, we have that w is the pth power of the polynomial
∏

p |dj f
dj/p

j

I To access the squarefree part of w (which, when multiplied with v , forms the
squarefree part of f ), it su�ices to recurse on a pth root of w

I Next we look at how to compute pth roots ...



The structure of a pth power in characteristic p

I Let p be the characteristic of Fq

I Let g =
∑d

i=0ψix i ∈ Fq[x]

I By the multinomial theorem, we have

gp =
∑

0≤j0, j1, ..., jd ≤p
j0+j1+...+jd=p

(
p

j0, j1, . . . , jd

)
ψ

j0
0 ψ

j1
1 · · ·ψ

jd
d x

∑d
k=0 kjk

I Since p is prime, we have that p divides
(

p
j0, j1, ..., jd

)
=

p!
j0!j1!· · ·jd !

unless there exists a

k = 0, 1, . . . , d with jk = p, in which case
(

p
j0, j1, ..., jd

)
= 1

I Thus, we have

gp =

d∑
i=0

ψ
p
i xpi



Computing a pth root of a pth power in characteristic p

I Let p be the characteristic of Fq

I Let g =
∑d

i=0ψix i ∈ Fq[x]

I From the previous slide, we have gp =
∑d

i=0ψ
p
i xpi

I Suppose we are given h =
∑d

i=0 ηixpi as input and we want to compute a pth root of h

I By Fermat’s li�le theorem, for η = ψ p withψ ∈ Fq we have ηq/p = (ψ p)q/p = ψ q = ψ

I Thus, we have h = gp for

g =
d∑

i=0

η
q/p
i x i

(exercise: how do you compute ηq/p fast, given η ∈ Fq together with q and p as input?)



Example: Computing the squarefree part

I Let us compute the squarefree part of
f = 2 + 2x + x2 + 2x4 + 2x5 + 2x6 + 2x8 + 2x9 + x10 + x11 + x12 + x13 ∈ F3[x]

I We have

f ′ = 2 + 2x + 2x3 + x4 + x7 + x9 + 2x10 + x12

I And thus

u = gcd(f , f ′) = 2 + 2x + 2x4 + x6

v = f /u = 1 + 2x2 + x3 + 2x4 + 2x5 + x6 + x7

w = 1 + x3

I Since w , 1 we proceed to take the pth root for p = 3, and obtain w1/3 = 1 + x

I The squarefree part of w1/3 is trivially 1 + x , so we obtain that

(1 + x )v = 1 + x + 2x2 + x5 + 2x7 + x8

is the squarefree part of f



Distinct-degree decomposition of a squarefree polynomial

I Let g ∈ Fq[x] be monic and squarefree of degree at least 1

I The distinct-degree decomposition of g is the sequence g1, g2, . . . , gs ∈ Fq[x] such
that gs , 1 and for all i = 1, 2, . . . , s we have that gi is the product of all monic
irreducible polynomials of degree i that divide g

I The distinct-degree decomposition of g is unique

I We also have g = g1g2 · · · gs

I To factor g it su�ices to factor each of g1, g2, . . . , gs



Example: Distinct-degree decomposition

I The polynomial

g = 1 + x + 2x2 + x5 + 2x7 + x8 ∈ Fq[x]

is monic and squarefree of degree at least 1

I The distinct-degree decomposition of g is

g1 = 1 + x

g2 = 2 + x + x3 + x4

g3 = x3 + 2x + 2



Extended Fermat’s li�le theorem

Theorem 18 (Extended Fermat’s li�le theorem)
Let q be a prime power and let d ∈ Z≥1. Then, xqd

− x ∈ Fq[x] is the product of all monic
irreducible polynomials in Fq[x] whose degree divides d

Proof.

(Exercise in last week’s problem set) �



Computing the distinct-degree decomposition

I Let g ∈ Fq[x] be monic and squarefree of degree at least 1 given as input

1. Set f ← g, h← x , and i ← 1

2. while f , 1 do
a. Set h← hq rem f using fast modular exponentiation

b. Set gi ← gcd(h − x, f )
[here we have the invariants that h − x ≡ xqi

− x (mod f ) and f has no irreducible
factors of degree less than i]

c. Set f ← f /gi

d. Set i ← i + 1

3. Set s ← i − 1

4. Output g1, g2, . . . , gs as the distinct-degree decomposition of g and stop



Equal-degree factorization

I Let f ∈ Fq[x] be monic and squarefree of degree n ∈ Z≥1 such that all irreducible
factors of f have degree d ∈ Z≥1

I The equal-degree factorization task is to factor f given both f and d as input

I Clearly we must have that d divides n, and the task is trivial if d = n

I Let us next look at one possible algorithm for equal-degree factorization ...



The Cantor–Zassenhaus algorithm (1/2)

I Let q be an odd prime power

I Let f ∈ Fq[x] be monic of degree n = dr such that all r ≥ 2 irreducible factors of f
have degree d

1. Let a ∈ Fq[x] be a uniform random nonzero polynomial of degree at most n − 1

2. Let g ← gcd(a, f ). If g , 1, then output g and stop

3. Compute s ← a(q
d−1)/2 rem f using fast modular exponentiation

4. Let g ← gcd(s − 1, f ). If g , 1 and g , f , then output g and stop

5. Assert failure and stop



The Cantor–Zassenhaus algorithm (2/2)

I The Cantor–Zassenhaus algorithm outputs a proper divisor g of f
(a spli�ing polynomial for f ) with probability at least 1/2

I We can repeat the algorithm until a proper divisor g is found, and then recurse on g
and f /g as appropriate to complete the equal-degree factorization of f into the r
irreducible factors, each of degree d



Analysis of the Cantor–Zassenhaus algorithm I

I Let f = f1f2 . . . fr be the factorization of the input f

I Let a be a uniform random nonzero polynomial of degree at most n − 1

I If the algorithm stops in Step 2 we have that g splits f

I So suppose that we continue to Step 3; in this case a and f are coprime and thus a and
fj are coprime for each j = 1, 2, . . . , r

I By the Chinese Remainder Theorem, we have the isomorphism

χ : Fq[x]/〈f 〉 → Fq[x]/〈f1〉 × Fq[x]/〈f2〉 × · · · × Fq[x]/〈fr〉

given for all h ∈ Fq/〈f 〉 by χ (h) = (χ1 (h), χ2 (h), . . . , χr (h)) with χi (h) = h rem fi for all
i = 1, 2, . . . , r

I Since each fi ∈ Fq[x] is irreducible of degree d , we have that each Fq[x]/〈fi〉 is
isomorphic to Fqd



Analysis of the Cantor–Zassenhaus algorithm II
I We have χi (h) = 0 if and only if fi divides h

I In particular, h is a spli�ing polynomial for f if and only if there exist
i0, i,0 ∈ {1, 2, . . . , r } such that χi0 (h) = 0 and χi,0 (h) , 0

I Since χ is an isomorphism and a is coprime to each of f1, f2, . . . , fr , we have that
χ1 (a), χ2 (a), . . . , χr (a) are mutually independent uniform random elements in the
multiplicative groups of Fq[x]/〈f1〉,Fq[x]/〈f2〉, . . . ,Fq[x]/〈fr〉, each of which is
isomorphic to the multiplicative group F×

qd

I Since q is odd and the multiplicative group F×
qd is cyclic (recall last week), for a uniform

random b ∈ F×
qd we have Pr(b(qd−1)/2 = 1) = Pr(b(qd−1)/2 = −1) = 1/2 (exercise)

I Thus, we have that χ (a(q
d−1)/2) is a uniform random vector with entries in {−1, 1}

I In particular, with probability at least 1 − 21−r the vector χ (a(q
d−1)/2) has at least one

1-entry and at least one (−1)-entry



Analysis of the Cantor–Zassenhaus algorithm III

I Thus, since χ is an isomorphism, with probability at least 1 − 21−r the vector
χ (a(q

d−1)/2 − 1) has at least one zero entry and at least one nonzero entry

I The algorithm thus outputs a spli�ing polynomial and stops in Step 4 with probability
at least 1 − 21−r ≥ 1/2 since r ≥ 2



Summary: Factoring a polynomial over a finite field (1/2)

I Let a monic f ∈ Fq[x] be given as input

1. Compute the squarefree part g ∈ Fq[x] of f

2. Compute the distinct-degree decomposition g1, g2, . . . , gs ∈ Fq[x] of g

3. For each i = 1, 2, . . . , s, run an equal-degree factorization algorithm to factor gi

(e.g., for odd q, run Cantor–Zassenhaus algorithm)

4. Assemble all the monic irreducible factors f1, f2, . . . , fr ∈ Fq[x] obtained in Step 3

5. For each j = 1, 2, . . . , r , compute the maximum exponent dj ∈ Z≥1 such that f
dj

j
divides f

6. Return the factorization f = f d1
1 f d2

2 · · · f
dr

r



Summary: Factoring a polynomial over a finite field (2/2)

I We have presented one possible algorithm for e�iciently factoring a given polynomial
f ∈ Fq[x] into its irreducible factors

I Here by e�icient we mean that the number of operations in Fq executed by the
algorithm is bounded by a polynomial in deg f and log q

I More e�icient algorithms are known
(cf. von zur Gathen and Gerhard [11] and Kedlaya and Umans [16])



Three applications

I Find all roots of a polynomial
I The irreducible factors of degree 1 correspond to the distinct roots

I Testing for irreducibility
I Test that the squarefree part agrees with the polynomial and then compute a

distinct-degree decomposition to decide irreducibility

I Constructing an irreducible monic polynomial of degree n
I Draw a uniform random monic polynomial of degree n, and test for irreducibility using

the test above; repeat until an irreducible polynomial is found

I Recalling the counting lemma for irreducible polynomials from the previous lecture, in
expectation O(n) repeats are required



Recap of Lecture 8

I Factoring a monic polynomial into monic irreducible polynomials over a finite
field

I Square-and-multiply algorithm for modular exponentiation (exercise)

I The squarefree part of a polynomial
I Computing the squarefree part using the formal derivative, greatest common divisors,

and modular exponentiation (exercise)

I The distinct-degree factorization of a squarefree polynomial
I Computing the distinct-degree factorization using extended Fermat’s li�le theorem,

modular exponentiation, and greatest common divisors

I The equal-degree factorization of a polynomial with known identical degrees for
the irreducible factors
I Cantor–Zassenhaus algorithm and random spli�ing polynomials

(analysis: exercise)


