8. Factoring polynomials over finite fields

CS-E4500 Advanced Course on Algorithms

Spring 2019

Petteri Kaski
Department of Computer Science
Aalto University

Lecture schedule

Tue 15 Jan:	1. Polynomials and integers
Tue 22 Jan:	2. The fast Fourier transform and fast multiplication
Tue 29 Jan:	3. Quotient and remainder
Tue 5 Feb:	4. Batch evaluation and interpolation
Tue 12 Feb:	5. Extended Euclidean algorithm and interpolation from erroneous data
Tue 19 Feb:	Exam week - no lecture
Tue 27 Feb:	6. Identity testing and probabilistically checkable proofs
Tue 5 Mar:	Break - no lecture
Tue 12 Mar:	7. Finite fields
Tue 19 Mar:	8. Factoring polynomials over finite fields
Tue 26 Mar:	9. Factoring integers

CS-E4500 Advanced Course in Algorithms (5 ECTS, III-IV, Spring 2019)

L = Lecture;
$\mathrm{Q}=\mathrm{Q}$ \& A session
D = Problem set deadline;
hall T5, Tue 12-14
hall T5, Thu 12-14
T = Tutorial (model solutions); hall T6, Mon 16-18

Recap of last week

- Prime fields (the integers modulo a prime)
- Irreducible polynomial, existence of irreducible polynomials
- Fermat's Little Theorem and its generalization (exercise)
- Finite fields of prime power order via irreducible polynomials (exercise)
- The characteristic of a ring; fields have either zero or prime characteristic
- Extension field, subfield, degree of an extension
- Algebraic and transcendental elements of a field extension; the minimal polynomial of an algebraic element
- Multiplicative order of a nonzero element in a finite field; the multiplicative group of a finite field is cyclic
- Formal derivative of a polynomial with coefficients in a field (exercise)

Motivation for this and next week

- A tantalizing case where the connection between polynomials and integers apparently breaks down occurs with factoring
- Namely, it is known how to efficiently factor a given univariate polynomial over a finite field into its irreducible components, whereas no such algorithms are known for factoring a given integer into its prime factors
- This week we develop one efficient factoring algorithm for univariate polynomials over a finite field
- The best known algorithms for factoring integers run in time that scales moderately exponentially in the number of digits in the input; next week we study one such algorithm

Factoring polynomials over finite fields

(von zur Gathen and Gerhard [11], Sections 14.1-3, 14.6)

Finite fields

(Lidl and Niedderreiter [19])

Key content for Lecture 8

- Factoring a monic polynomial into monic irreducible polynomials over a finite field
- Square-and-multiply algorithm for modular exponentiation (exercise)
- The squarefree part of a polynomial
- Computing the squarefree part using the formal derivative, greatest common divisors, and modular exponentiation (exercise)
- The distinct-degree factorization of a squarefree polynomial
- Computing the distinct-degree factorization using extended Fermat's little theorem, modular exponentiation, and greatest common divisors
- The equal-degree factorization of a polynomial with known identical degrees for the irreducible factors
- Cantor-Zassenhaus algorithm and random splitting polynomials (analysis: exercise)

Irreducible polynomial

- Let q be a prime power
- Let \mathbb{F}_{q} be the finite field with q elements
- We say that a polynomial $f \in \mathbb{F}_{q}[x]$ is irreducible if $f \notin \mathbb{F}_{q}$ and for any $g, h \in \mathbb{F}_{q}[x]$ with $f=g h$ we have $g \in \mathbb{F}_{q}$ or $h \in \mathbb{F}_{q}$
- Let us also recall that we say that $f \in \mathbb{F}_{q}[x]$ is monic if its leading coefficient is 1

Factorization into irreducible polynomials

- Let $f \in \mathbb{F}_{q}[x]$
- The factorization of f consists of distinct monic irreducible polynomials $f_{1}, f_{2}, \ldots, f_{r} \in \mathbb{F}_{q}[x]$ and integers $d_{1}, d_{2}, \ldots, d_{r} \in \mathbb{Z}_{\geq 1}$ such that

$$
f=\operatorname{lc}(f) f_{1}^{d_{1}} f_{2}^{d_{2}} \cdots f_{r}^{d_{r}}
$$

- The factorization of f is unique up to ordering of the irreducible factors
- The polynomial f is squarefree if $d_{1}=d_{2}=\cdots=d_{r}=1$

Example: Factorization into irreducible polynomials

- The factorization of

$$
f=2+2 x+x^{2}+2 x^{4}+2 x^{5}+2 x^{6}+2 x^{8}+2 x^{9}+x^{10}+x^{11}+x^{12}+x^{13} \in \mathbb{F}_{3}[x]
$$

is

$$
f=(1+x)^{3}\left(x^{2}+x+2\right)\left(x^{2}+1\right)\left(x^{3}+2 x+2\right)^{2}
$$

- Or what is the same,

$$
\begin{array}{ll}
f_{1}=1+x, & d_{1}=3, \\
f_{2}=x^{2}+x+2, & d_{2}=1, \\
f_{3}=x^{2}+1, & d_{3}=1, \\
f_{4}=x^{3}+2 x+2, & d_{4}=2
\end{array}
$$

Preliminaries: Fast modular exponentiation

- Let $f, g \in \mathbb{F}_{q}[x]$ with $g \neq 0, \operatorname{deg} f, \operatorname{deg} g \leq d$ and $m \in \mathbb{Z}_{\geq 0}$
- Then, there exists an algorithm that computes f^{m} rem g in $O(M(d) \log m)$ operations in \mathbb{F}_{q} (exercise)

Preliminaries: Greatest common divisor

- Let $f, g \in \mathbb{F}_{q}[x]$ such that at least one of f, g is nonzero
- Let us write $\operatorname{gcd}(f, g)$ for the monic greatest common divisor of f and g
- That is, in what follows we assume that $\operatorname{lc}(\operatorname{gcd}(f, g))=1$

Squarefree part

- Let $f=\operatorname{lc}(f) f_{1}^{d_{1}} f_{2}^{d_{2}} \cdots f_{r}^{d_{r}}$ be the factorization of $f \in \mathbb{F}_{q}[x]$
- The squarefree part of f is the (monic) polynomial $f_{1} f_{2} \cdots f_{r}$
- To factor f, it suffices to factor the squarefree part of f since f and its squarefree part have the same irreducible factors
- Indeed, given an irreducible factor f_{j} of f, it is easy to determine the maximum exponent $d_{j} \in \mathbb{Z}_{\geq 1}$ such that $f_{j}^{d_{j}}$ divides f

Example: Squarefree part

- The squarefree part of

$$
2+2 x+x^{2}+2 x^{4}+2 x^{5}+2 x^{6}+2 x^{8}+2 x^{9}+x^{10}+x^{11}+x^{12}+x^{13} \in \mathbb{F}_{3}[x]
$$

is

$$
1+x+2 x^{2}+x^{5}+2 x^{7}+x^{8} \in \mathbb{F}_{3}[x]
$$

The squarefree part and the formal derivative (1/2)

- Let p be the characteristic of \mathbb{F}_{q}; that is, q is a power of the prime p
- Let $f \in \mathbb{F}_{q}[x]$ be monic with factorization $f=f_{1}^{d_{1}} f_{2}^{d_{2}} \cdots f_{r}^{d_{r}}$
- Then, we have (exercise)

$$
\begin{equation*}
f^{\prime}=\sum_{j=1}^{r} d_{j} f_{j}^{\prime} \frac{f}{f_{j}} \tag{35}
\end{equation*}
$$

- Furthermore, for all $i, j=1,2, \ldots, r$ we have that $f_{i}^{d_{i}}$ divides $d_{j} f_{j}^{\prime} \frac{f}{f_{j}}$ when $i \neq j$
- When $i=j$, clearly $f_{j}^{d_{j}-1}$ divides $d_{j} f_{j}^{\prime} \frac{f}{f_{j}}$; furthermore, we have that $f_{j}^{d_{j}}$ divides $d_{j} f_{j}^{\prime} \frac{f}{f_{j}}$ if and only if f_{j} divides $d_{j} f_{j}^{\prime}$; since $\operatorname{deg} f_{j}^{\prime}<\operatorname{deg} f_{j}$, we have that f_{j} divides $d_{j} f_{j}^{\prime}$ if and only if p divides d_{j}

The squarefree part and the formal derivative (2/2)

- Set $u \leftarrow \operatorname{gcd}\left(f, f^{\prime}\right)$ and $v \leftarrow f / u$
- For $j=1,2, \ldots, r$, let

$$
\delta_{j}= \begin{cases}1 & \text { if } p \text { does not divide } d_{j} ; \\ 0 & \text { if } p \text { divides } d_{j}\end{cases}
$$

- We have

$$
\begin{aligned}
& u=f_{1}^{d_{1}-\delta_{1}} f_{2}^{d_{2}-\delta_{2}} \cdots f_{r}^{d_{r}-\delta_{r}} \\
& v=f_{1}^{\delta_{1}} f_{2}^{\delta_{2}} \cdots f_{r}^{\delta_{r}}
\end{aligned}
$$

- In particular, v is the squarefree part of f if $\delta_{1}=\delta_{2}=\cdots=\delta_{r}=1$
- Otherwise, that is, when $\delta_{j}=0$ for at least one j, we need to do some more work ...

Extracting a $p^{\text {th }}$ power

- Recall that we have

$$
\begin{gathered}
f=f_{1}^{d_{1}} f_{2}^{d_{2}} \cdots f_{r}^{d_{r}} \\
v=f_{1}^{\delta_{1}} f_{2}^{\delta_{2}} \cdots f_{r}^{\delta_{r}}
\end{gathered}
$$

- Let $w \leftarrow f / \operatorname{gcd}\left(f, v^{\operatorname{deg} f}\right)$ (exercise: how do you compute w fast given f and v as input?)
- We have

$$
w=f_{1}^{\left(1-\delta_{1}\right) d_{1}} f_{2}^{\left(1-\delta_{1}\right) d_{2}} \cdots f_{r}^{\left(1-\delta_{r}\right) d_{r}}=\prod_{p \mid d_{j}} f_{j}^{d_{j}}
$$

- That is, we have that w is the $p^{\text {th }}$ power of the polynomial $\prod_{p \mid d_{j}} f_{j}^{d_{j} / p}$
- To access the squarefree part of w (which, when multiplied with v, forms the squarefree part of f), it suffices to recurse on a $p^{\text {th }}$ root of w
- Next we look at how to compute $p^{\text {th }}$ roots...

The structure of a $p^{\text {th }}$ power in characteristic p

- Let p be the characteristic of \mathbb{F}_{q}
- Let $g=\sum_{i=0}^{d} \psi_{i} x^{i} \in \mathbb{F}_{q}[x]$
- By the multinomial theorem, we have

$$
g^{p}=\sum_{\substack{0 \leq j_{0}, j_{1}, \ldots, j_{d} \leq p \\ j_{0}+j_{1}+\ldots+j_{d}=p}}\binom{p}{j_{0}, j_{1}, \ldots, j_{d}} \psi_{0}^{j_{0}} \psi_{1}^{j_{1}} \cdots \psi_{d}^{j_{d}} x^{\sum_{k=0}^{d} k j_{k}}
$$

- Since p is prime, we have that p divides $\binom{p}{j_{0}, j_{1}, \ldots, j_{d}}=\frac{p!}{j_{0}!j_{1} \ldots \ldots j_{d}!}$ unless there exists a $k=0,1, \ldots, d$ with $j_{k}=p$, in which case $\left(\underset{j_{0}, j_{1}, \ldots, j_{d}}{p}\right)=1$
- Thus, we have

$$
g^{p}=\sum_{i=0}^{d} \psi_{i}^{p} x^{p i}
$$

Computing a $p^{\text {th }}$ root of a $p^{\text {th }}$ power in characteristic p

- Let p be the characteristic of \mathbb{F}_{q}
- Let $g=\sum_{i=0}^{d} \psi_{i} x^{i} \in \mathbb{F}_{q}[x]$
- From the previous slide, we have $g^{p}=\sum_{i=0}^{d} \psi_{i}^{p} x^{p i}$
- Suppose we are given $h=\sum_{i=0}^{d} \eta_{i} x^{p i}$ as input and we want to compute a $p^{\text {th }}$ root of h
- By Fermat's little theorem, for $\eta=\psi^{p}$ with $\psi \in \mathbb{F}_{q}$ we have $\eta^{q / p}=\left(\psi^{p}\right)^{q / p}=\psi^{q}=\psi$
- Thus, we have $h=g^{p}$ for

$$
g=\sum_{i=0}^{d} \eta_{i}^{q / p} x^{i}
$$

(exercise: how do you compute $\eta^{q / p}$ fast, given $\eta \in \mathbb{F}_{q}$ together with q and p as input?)

Example: Computing the squarefree part

- Let us compute the squarefree part of

$$
f=2+2 x+x^{2}+2 x^{4}+2 x^{5}+2 x^{6}+2 x^{8}+2 x^{9}+x^{10}+x^{11}+x^{12}+x^{13} \in \mathbb{F}_{3}[x]
$$

- We have

$$
f^{\prime}=2+2 x+2 x^{3}+x^{4}+x^{7}+x^{9}+2 x^{10}+x^{12}
$$

- And thus

$$
\begin{aligned}
u & =\operatorname{gcd}\left(f, f^{\prime}\right)=2+2 x+2 x^{4}+x^{6} \\
v & =f / u=1+2 x^{2}+x^{3}+2 x^{4}+2 x^{5}+x^{6}+x^{7} \\
w & =1+x^{3}
\end{aligned}
$$

- Since $w \neq 1$ we proceed to take the $p^{\text {th }}$ root for $p=3$, and obtain $w^{1 / 3}=1+x$
- The squarefree part of $w^{1 / 3}$ is trivially $1+x$, so we obtain that

$$
(1+x) v=1+x+2 x^{2}+x^{5}+2 x^{7}+x^{8}
$$

is the squarefree part of f

Distinct-degree decomposition of a squarefree polynomial

- Let $g \in \mathbb{F}_{q}[x]$ be monic and squarefree of degree at least 1
- The distinct-degree decomposition of g is the sequence $g_{1}, g_{2}, \ldots, g_{s} \in \mathbb{F}_{q}[x]$ such that $g_{s} \neq 1$ and for all $i=1,2, \ldots, s$ we have that g_{i} is the product of all monic irreducible polynomials of degree i that divide g
- The distinct-degree decomposition of g is unique
- We also have $g=g_{1} g_{2} \cdots g_{s}$
- To factor g it suffices to factor each of $g_{1}, g_{2}, \ldots, g_{s}$

Example: Distinct-degree decomposition

- The polynomial

$$
g=1+x+2 x^{2}+x^{5}+2 x^{7}+x^{8} \in \mathbb{F}_{q}[x]
$$

is monic and squarefree of degree at least 1

- The distinct-degree decomposition of g is

$$
\begin{aligned}
& g_{1}=1+x \\
& g_{2}=2+x+x^{3}+x^{4} \\
& g_{3}=x^{3}+2 x+2
\end{aligned}
$$

Extended Fermat's little theorem

Theorem 18 (Extended Fermat's little theorem)
Let q be a prime power and let $d \in \mathbb{Z}_{\geq 1}$. Then, $x^{q^{d}}-x \in \mathbb{F}_{q}[x]$ is the product of all monic irreducible polynomials in $\mathbb{F}_{q}[x]$ whose degree divides d

Proof.
(Exercise in last week's problem set)

Computing the distinct-degree decomposition

- Let $g \in \mathbb{F}_{q}[x]$ be monic and squarefree of degree at least 1 given as input

1. Set $f \leftarrow g$, $h \leftarrow x$, and $i \leftarrow 1$
2. while $f \neq 1$ do
a. Set $h \leftarrow h^{q} \operatorname{rem} f$ using fast modular exponentiation
b. Set $g_{i} \leftarrow \operatorname{gcd}(h-x, f)$
[here we have the invariants that $h-x \equiv x^{q^{i}}-x(\bmod f)$ and f has no irreducible factors of degree less than i]
c. Set $f \leftarrow f / g_{i}$
d. Set $i \leftarrow i+1$
3. Set $s \leftarrow i-1$
4. Output $g_{1}, g_{2}, \ldots, g_{s}$ as the distinct-degree decomposition of g and stop

Equal-degree factorization

- Let $f \in \mathbb{F}_{q}[x]$ be monic and squarefree of degree $n \in \mathbb{Z}_{\geq 1}$ such that all irreducible factors of f have degree $d \in \mathbb{Z}_{\geq 1}$
- The equal-degree factorization task is to factor f given both f and d as input
- Clearly we must have that d divides n, and the task is trivial if $d=n$
- Let us next look at one possible algorithm for equal-degree factorization ...

The Cantor-Zassenhaus algorithm (1/2)

- Let q be an odd prime power
- Let $f \in \mathbb{F}_{q}[x]$ be monic of degree $n=d r$ such that all $r \geq 2$ irreducible factors of f have degree d

1. Let $a \in \mathbb{F}_{q}[x]$ be a uniform random nonzero polynomial of degree at most $n-1$
2. Let $g \leftarrow \operatorname{gcd}(a, f)$. If $g \neq 1$, then output g and stop
3. Compute $s \leftarrow a^{\left(q^{d}-1\right) / 2} \operatorname{rem} f$ using fast modular exponentiation
4. Let $g \leftarrow \operatorname{gcd}(s-1, f)$. If $g \neq 1$ and $g \neq f$, then output g and stop
5. Assert failure and stop

The Cantor-Zassenhaus algorithm (2/2)

- The Cantor-Zassenhaus algorithm outputs a proper divisor g of f (a splitting polynomial for f) with probability at least $1 / 2$
- We can repeat the algorithm until a proper divisor g is found, and then recurse on g and f / g as appropriate to complete the equal-degree factorization of f into the r irreducible factors, each of degree d

Analysis of the Cantor-Zassenhaus algorithm I

- Let $f=f_{1} f_{2} \ldots f_{r}$ be the factorization of the input f
- Let a be a uniform random nonzero polynomial of degree at most $n-1$
- If the algorithm stops in Step 2 we have that g splits f
- So suppose that we continue to Step 3; in this case a and f are coprime and thus a and f_{j} are coprime for each $j=1,2, \ldots, r$
- By the Chinese Remainder Theorem, we have the isomorphism

$$
\chi: \mathbb{F}_{q}[x] /\langle f\rangle \rightarrow \mathbb{F}_{q}[x] /\left\langle f_{1}\right\rangle \times \mathbb{F}_{q}[x] /\left\langle f_{2}\right\rangle \times \cdots \times \mathbb{F}_{q}[x] /\left\langle f_{r}\right\rangle
$$

given for all $h \in \mathbb{F}_{q} /\langle f\rangle$ by $\chi(h)=\left(\chi_{1}(h), \chi_{2}(h), \ldots, \chi_{r}(h)\right)$ with $\chi_{i}(h)=h$ rem f_{i} for all $i=1,2, \ldots, r$

- Since each $f_{i} \in \mathbb{F}_{q}[x]$ is irreducible of degree d, we have that each $\mathbb{F}_{q}[x] /\left\langle f_{i}\right\rangle$ is isomorphic to $\mathbb{F}_{q^{d}}$

Analysis of the Cantor-Zassenhaus algorithm II

- We have $\chi_{i}(h)=0$ if and only if f_{i} divides h
- In particular, h is a splitting polynomial for f if and only if there exist $i_{0}, i_{\neq 0} \in\{1,2, \ldots, r\}$ such that $\chi_{i_{0}}(h)=0$ and $\chi_{i_{\neq 0}}(h) \neq 0$
- Since χ is an isomorphism and a is coprime to each of $f_{1}, f_{2}, \ldots, f_{r}$, we have that $\chi_{1}(a), \chi_{2}(a), \ldots, \chi_{r}(a)$ are mutually independent uniform random elements in the multiplicative groups of $\mathbb{F}_{q}[x] /\left\langle f_{1}\right\rangle, \mathbb{F}_{q}[x] /\left\langle f_{2}\right\rangle, \ldots, \mathbb{F}_{q}[x] /\left\langle f_{r}\right\rangle$, each of which is isomorphic to the multiplicative group $\mathbb{F}_{q^{d}}$
- Since q is odd and the multiplicative group $\mathbb{F}_{q^{d}}^{\times}$is cyclic (recall last week), for a uniform random $b \in \mathbb{F}_{q^{d}}^{\times}$we have $\operatorname{Pr}\left(b^{\left(q^{d}-1\right) / 2}=1\right)=\operatorname{Pr}\left(b^{\left(q^{d}-1\right) / 2}=-1\right)=1 / 2$ (exercise)
- Thus, we have that $\chi\left(a^{\left(q^{d}-1\right) / 2}\right)$ is a uniform random vector with entries in $\{-1,1\}$
- In particular, with probability at least $1-2^{1-r}$ the vector $\chi\left(a^{\left(q^{d}-1\right) / 2}\right)$ has at least one 1-entry and at least one (-1)-entry

Analysis of the Cantor-Zassenhaus algorithm III

- Thus, since χ is an isomorphism, with probability at least $1-2^{1-r}$ the vector $\chi\left(a^{\left(q^{d}-1\right) / 2}-1\right)$ has at least one zero entry and at least one nonzero entry
- The algorithm thus outputs a splitting polynomial and stops in Step 4 with probability at least $1-2^{1-r} \geq 1 / 2$ since $r \geq 2$

Summary: Factoring a polynomial over a finite field (1/2)

- Let a monic $f \in \mathbb{F}_{q}[x]$ be given as input

1. Compute the squarefree part $g \in \mathbb{F}_{q}[x]$ of f
2. Compute the distinct-degree decomposition $g_{1}, g_{2}, \ldots, g_{s} \in \mathbb{F}_{q}[x]$ of g
3. For each $i=1,2, \ldots, s$, run an equal-degree factorization algorithm to factor g_{i} (e.g., for odd q, run Cantor-Zassenhaus algorithm)
4. Assemble all the monic irreducible factors $f_{1}, f_{2}, \ldots, f_{r} \in \mathbb{F}_{q}[x]$ obtained in Step 3
5. For each $j=1,2, \ldots, r$, compute the maximum exponent $d_{j} \in \mathbb{Z}_{\geq 1}$ such that $f_{j}^{d_{j}}$ divides f
6. Return the factorization $f=f_{1}^{d_{1}} f_{2}^{d_{2}} \cdots f_{r}^{d_{r}}$

Summary: Factoring a polynomial over a finite field (2/2)

- We have presented one possible algorithm for efficiently factoring a given polynomial $f \in \mathbb{F}_{q}[x]$ into its irreducible factors
- Here by efficient we mean that the number of operations in \mathbb{F}_{q} executed by the algorithm is bounded by a polynomial in $\operatorname{deg} f$ and $\log q$
- More efficient algorithms are known (cf. von zur Gathen and Gerhard [11] and Kedlaya and Umans [16])

Three applications

- Find all roots of a polynomial
- The irreducible factors of degree 1 correspond to the distinct roots
- Testing for irreducibility
- Test that the squarefree part agrees with the polynomial and then compute a distinct-degree decomposition to decide irreducibility
- Constructing an irreducible monic polynomial of degree n
- Draw a uniform random monic polynomial of degree n, and test for irreducibility using the test above; repeat until an irreducible polynomial is found
- Recalling the counting lemma for irreducible polynomials from the previous lecture, in expectation $O(n)$ repeats are required

Recap of Lecture 8

- Factoring a monic polynomial into monic irreducible polynomials over a finite field
- Square-and-multiply algorithm for modular exponentiation (exercise)
- The squarefree part of a polynomial
- Computing the squarefree part using the formal derivative, greatest common divisors, and modular exponentiation (exercise)
- The distinct-degree factorization of a squarefree polynomial
- Computing the distinct-degree factorization using extended Fermat's little theorem, modular exponentiation, and greatest common divisors
- The equal-degree factorization of a polynomial with known identical degrees for the irreducible factors
- Cantor-Zassenhaus algorithm and random splitting polynomials (analysis: exercise)

