8. Factoring polynomials over finite fields

CS-E4500 Advanced Course on Algorithms
Spring 2019

Petteri Kaski

Department of Computer Science
Aalto University

Lecture schedule

Tue 15 Jan: 1. Polynomials and integers

Tue 22 Jan: 2. The fast Fourier transform and fast multiplication

Tue 29 Jan: 3. Quotient and remainder

Tue 5 Feb: 4. Batch evaluation and interpolation

Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data

Tue 19 Feb: Exam week — no lecture

Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs

Tue 5 Mar: Break — no lecture

Tue 12 Mar: 7. Finite fields

Tue 19 Mar: 8. Factoring polynomials over finite fields

Tue 26 Mar: 9. Factoring integers

CS-E4500 Advanced Course in Algorithms (5 ECTS, III-IV, Spring 2019)

2019 KALENTERI 2019				
Tammikuu	Helmikuu Maaliskuu	Huhtikuu	Toukokuu	Kesäkuu
1 Ti Uudenvuodenpäivä	1 Pe 1 Pe	1 Ma Vk 14 7	1 Ke Vappu	1 La
2 Ke	2 La 2 La	2 Ti	2 To	2 Su
3 To	3 Su D3 3 Su	3 Ke	3 Pe	3 Ma Vk 23
4 Pe	4 Ma Vk 06 6 4 M Vk	4 To	4 La	4 Ti
5 La	5 Ti L4 5 Ti askiainen	5 Pe •	5 Su	5 Ke
6 Su Loppiainen	6 Ke Break	6 La	6 Ma Vk 19	6 To
7 Ma Vk 02	7 To Q4 7 Td	7 Su	7 Ti	7 Pe
8 Ti	8 Pc 8 Pc	8 Ma Vk 15	8 Ke	8 La
9 Ke	9 La 9 La	9 Ti	9 то	9 Su Helluntaipāivā
10 To	10 Su D4 10 Su D6	10 Ke	10 Pe	10 Ma Vk 24 🕕
11 Pe	11 Ma Vk 07 T4 11 Ma Vk		11 La	11 Ti
12 La	12 Ti L5 12 Ti L7	12 Pe D	12 Su Ältienpäivä	12 Ke
13 Su	13 Ke ① 13 Ke	13 La	13 Ma Vk 20	13 To
14 Ma Vk 03 🕻		Su Palmusunnuntai	14 Ti	14 Pe
15 Ti	15 Pe 15 Pe	15 Ma Vk 16	15 Ke	15 La
16 Ke	16 La 16 La	16 Ti	16 To	16 Su
17 To OI	17 Su 17 Su D7	17 Ke	17 Pe	17 Ma Vk 25 🔾
18 Pe	18 Ma VKUB 18 Ma Vk		18 La	18 Ti
19 La	19 T Exam D 19 T L8	19 Pe Piškāperjantai	19 Su Kaatuneiden muistopäivä	19 Ke
20 Su	20 Ke 20 Ke Kevātpāivā sasaus	20 La	20 Ma Vk 21	20 To
21 Ma Vk 04 (O 21 Su Pääsiäispäivä	21 Ti	21 Pe Kesäpäivänseisaus
22 TI L2	22 Pe 22 Pe	22 Ma 2. pääsiäispäivä	22 Ke	22 La Juhannus
23 Ke	23 La 23 La	23 Ti	23 To	23 Su
24 To Q2	24 Su D5 24 Su D8	24 Ke	24 Pe	24 Ma Vk 26
25 Pe	25 Ma Vk 09 T 5 25 Ma Vk		25 La	25 Ti
26 La	26 Ti L6	26 Pe	26 Su)	26 Ke
27 Su D2 0	27 Ke 27 Ke	27 La ①	27 Ma Vk 22	27 To
28 Ma Vk 05 7	28 To Q6 28 To Q9	28 Su	28 Ti	28 Pe
29 Ti L3	29 Pe	29 Ma Vk 18	29 Ke	29 La
30 Ke	30 La	30 Ti	30 To Helatorstai	30 Su
31 To Q3	31 Su Kesäaika alkaa 9		31 Pe	

L = Lecture; hall T5, Tue 12–14
Q = Q & A session; hall T5, Thu 12–14
D = Problem set deadline; Sun 20:00
T = Tutorial (model solutions); hall T6, Mon 16–18

Recap of last week

- ► Prime fields (the integers modulo a prime)
- ► Irreducible polynomial, existence of irreducible polynomials
- ► Fermat's Little Theorem and its generalization (exercise)
- ► **Finite fields** of **prime power order** via irreducible polynomials (exercise)
- ► The **characteristic** of a ring; fields have either zero or prime characteristic
- ► Extension field, subfield, degree of an extension
- ► Algebraic and transcendental elements of a field extension; the minimal polynomial of an algebraic element
- ► Multiplicative order of a nonzero element in a finite field; the multiplicative group of a finite field is cyclic
- ► **Formal derivative** of a polynomial with coefficients in a field (exercise)

Motivation for this and next week

- ► A tantalizing case where the connection between polynomials and integers apparently breaks down occurs with **factoring**
- ► Namely, it is known how to efficiently factor a given univariate polynomial over a finite field into its irreducible components, whereas no such algorithms are known for factoring a given integer into its prime factors
- ► This week we develop one efficient factoring algorithm for univariate polynomials over a finite field
- ► The best known algorithms for factoring integers run in time that scales moderately exponentially in the number of digits in the input; next week we study one such algorithm

Factoring polynomials over finite fields

(von zur Gathen and Gerhard [11], Sections 14.1–3, 14.6)

Finite fields

(Lidl and Niedderreiter [19])

Key content for Lecture 8

- ► Factoring a monic polynomial into monic irreducible polynomials over a finite field
- ► Square-and-multiply algorithm for modular exponentiation (exercise)
- ► The **squarefree part** of a polynomial
 - Computing the squarefree part using the formal derivative, greatest common divisors, and modular exponentiation (exercise)
- ► The **distinct-degree factorization** of a squarefree polynomial
 - ► Computing the distinct-degree factorization using **extended Fermat's little theorem**, modular exponentiation, and greatest common divisors
- ► The **equal-degree factorization** of a polynomial with known identical degrees for the irreducible factors
 - ► Cantor-Zassenhaus algorithm and random splitting polynomials (analysis: exercise)

Irreducible polynomial

- ► Let *q* be a prime power
- ▶ Let \mathbb{F}_q be the finite field with q elements
- ▶ We say that a polynomial $f \in \mathbb{F}_q[x]$ is **irreducible** if $f \notin \mathbb{F}_q$ and for any $g, h \in \mathbb{F}_q[x]$ with f = gh we have $g \in \mathbb{F}_q$ or $h \in \mathbb{F}_q$

▶ Let us also recall that we say that $f \in \mathbb{F}_q[x]$ is **monic** if its leading coefficient is 1

Factorization into irreducible polynomials

- ▶ Let $f \in \mathbb{F}_q[x]$
- ► The **factorization** of f consists of distinct monic irreducible polynomials $f_1, f_2, \ldots, f_r \in \mathbb{F}_q[x]$ and integers $d_1, d_2, \ldots, d_r \in \mathbb{Z}_{\geq 1}$ such that

$$f = \operatorname{lc}(f) f_1^{d_1} f_2^{d_2} \cdots f_r^{d_r}$$

- ► The factorization of *f* is unique up to ordering of the irreducible factors
- ► The polynomial f is **squarefree** if $d_1 = d_2 = \cdots = d_r = 1$

Example: Factorization into irreducible polynomials

► The factorization of

is

$$f = 2 + 2x + x^2 + 2x^4 + 2x^5 + 2x^6 + 2x^8 + 2x^9 + x^{10} + x^{11} + x^{12} + x^{13} \in \mathbb{F}_3[x]$$

$$f = (1+x)^3(x^2+x+2)(x^2+1)(x^3+2x+2)^2$$

► Or what is the same,

$$f_1 = 1 + x$$
, $d_1 = 3$,
 $f_2 = x^2 + x + 2$, $d_2 = 1$,
 $f_3 = x^2 + 1$, $d_3 = 1$,
 $f_4 = x^3 + 2x + 2$, $d_4 = 2$

Preliminaries: Fast modular exponentiation

- ► Let $f, g \in \mathbb{F}_q[x]$ with $g \neq 0$, deg f, deg $g \leq d$ and $m \in \mathbb{Z}_{\geq 0}$
- ► Then, there exists an algorithm that computes f^m rem g in $O(M(d) \log m)$ operations in \mathbb{F}_q (exercise)

Preliminaries: Greatest common divisor

- ▶ Let $f, g \in \mathbb{F}_q[x]$ such that at least one of f, g is nonzero
- Let us write gcd(f, g) for the monic greatest common divisor of f and g
- ► That is, in what follows we assume that lc(gcd(f, g)) = 1

Squarefree part

- ► Let $f = lc(f)f_1^{d_1}f_2^{d_2}\cdots f_r^{d_r}$ be the factorization of $f \in \mathbb{F}_q[x]$
- ► The **squarefree part** of f is the (monic) polynomial $f_1f_2\cdots f_r$
- ► To factor *f*, it suffices to factor the squarefree part of *f* since *f* and its squarefree part have the same irreducible factors
- ► Indeed, given an irreducible factor f_j of f, it is easy to determine the maximum exponent $d_j \in \mathbb{Z}_{\geq 1}$ such that $f_i^{d_j}$ divides f

Example: Squarefree part

► The squarefree part of

is

$$2 + 2x + x^{2} + 2x^{4} + 2x^{5} + 2x^{6} + 2x^{8} + 2x^{9} + x^{10} + x^{11} + x^{12} + x^{13} \in \mathbb{F}_{3}[x]$$

$$1 + x + 2x^2 + x^5 + 2x^7 + x^8 \in \mathbb{F}_3[x]$$

The squarefree part and the formal derivative (1/2)

- ► Let p be the characteristic of \mathbb{F}_q ; that is, q is a power of the prime p
- ► Let $f \in \mathbb{F}_q[x]$ be monic with factorization $f = f_1^{d_1} f_2^{d_2} \cdots f_r^{d_r}$
- ► Then, we have (exercise)

$$f' = \sum_{i=1}^{r} d_i f_i' \frac{f}{f_i} \tag{35}$$

- ► Furthermore, for all i, j = 1, 2, ..., r we have that $f_i^{d_i}$ divides $d_j f_j' \frac{f}{f_i}$ when $i \neq j$
- ▶ When i = j, clearly $f_j^{d_j-1}$ divides $d_j f_j' \frac{f}{f_j}$; furthermore, we have that $f_j^{d_j}$ divides $d_j f_j' \frac{f}{f_j}$ if and only if f_j divides $d_j f_j'$; since $\deg f_j' < \deg f_j$, we have that f_j divides $d_j f_j'$ if and only if p divides d_j

The squarefree part and the formal derivative (2/2)

- ▶ Set $u \leftarrow \gcd(f, f')$ and $v \leftarrow f/u$
- ► For j = 1, 2, ..., r, let

$$\delta_j = \begin{cases} 1 & \text{if } p \text{ does not divide } d_j; \\ 0 & \text{if } p \text{ divides } d_j \end{cases}$$

We have

$$u = f_1^{d_1 - \delta_1} f_2^{d_2 - \delta_2} \cdots f_r^{d_r - \delta_r}$$
$$v = f_1^{\delta_1} f_2^{\delta_2} \cdots f_r^{\delta_r}$$

- ▶ In particular, v is the squarefree part of f if $\delta_1 = \delta_2 = \cdots = \delta_r = 1$
- ▶ Otherwise, that is, when $\delta_j = 0$ for at least one j, we need to do some more work ...

Extracting a p^{th} power

Recall that we have

$$f = f_1^{d_1} f_2^{d_2} \cdots f_r^{d_r}$$
$$v = f_1^{\delta_1} f_2^{\delta_2} \cdots f_r^{\delta_r}$$

- ► Let $w \leftarrow f/\gcd(f, v^{\deg f})$ (exercise: how do you compute w fast given f and v as input?)
- ▶ We have

$$w = f_1^{(1-\delta_1)d_1} f_2^{(1-\delta_1)d_2} \cdots f_r^{(1-\delta_r)d_r} = \prod_{p \mid d_i} f_j^{d_j}$$

- ► That is, we have that w is the p^{th} power of the polynomial $\prod_{p|d_i} f_i^{d_j/p}$
- ► To access the squarefree part of w (which, when multiplied with v, forms the squarefree part of f), it suffices to recurse on a pth root of w
- ► Next we look at how to compute pth roots ...

The structure of a p^{th} power in characteristic p

- ▶ Let p be the characteristic of \mathbb{F}_q
- ► Let $g = \sum_{i=0}^{d} \psi_i x^i \in \mathbb{F}_q[x]$
- ▶ By the multinomial theorem, we have

$$g^{p} = \sum_{\substack{0 \leq j_{0}, j_{1}, \dots, j_{d} \leq p \\ j_{0} + j_{1} + \dots + j_{d} = p}} {p \choose j_{0}, j_{1}, \dots, j_{d}} \psi_{0}^{j_{0}} \psi_{1}^{j_{1}} \cdots \psi_{d}^{j_{d}} x^{\sum_{k=0}^{d} k j_{k}}$$

- ► Since p is prime, we have that p divides $\binom{p}{j_0,j_1,\ldots,j_d} = \frac{p!}{j_0!j_1!\cdots j_d!}$ unless there exists a $k=0,1,\ldots,d$ with $j_k=p$, in which case $\binom{p}{j_0,j_1,\ldots,j_d} = 1$
- ► Thus, we have

$$g^p = \sum_{i=0}^d \psi_i^p x^{pi}$$

Computing a p^{th} root of a p^{th} power in characteristic p

- ▶ Let p be the characteristic of \mathbb{F}_q
- ▶ Let $g = \sum_{i=0}^{d} \psi_i x^i \in \mathbb{F}_q[x]$
- From the previous slide, we have $g^p = \sum_{i=0}^d \psi_i^p x^{pi}$
- ► Suppose we are given $h = \sum_{i=0}^{d} \eta_i x^{pi}$ as input and we want to compute a p^{th} root of h
- ▶ By Fermat's little theorem, for $\eta = \psi^p$ with $\psi \in \mathbb{F}_q$ we have $\eta^{q/p} = (\psi^p)^{q/p} = \psi^q = \psi$
- ► Thus, we have $h = g^p$ for

$$g = \sum_{i=0}^{d} \eta_i^{q/p} x^i$$

(exercise: how do you compute $\eta^{q/p}$ fast, given $\eta \in \mathbb{F}_q$ together with q and p as input?)

Example: Computing the squarefree part

► Let us compute the squarefree part of $f = 2 + 2x + x^2 + 2x^4 + 2x^5 + 2x^6 + 2x^8 + 2x^9 + x^{10} + x^{11} + x^{12} + x^{13} \in \mathbb{F}_3[x]$

► We have

$$f' = 2 + 2x + 2x^3 + x^4 + x^7 + x^9 + 2x^{10} + x^{12}$$

► And thus

$$u = \gcd(f, f') = 2 + 2x + 2x^4 + x^6$$

$$v = f/u = 1 + 2x^2 + x^3 + 2x^4 + 2x^5 + x^6 + x^7$$

$$w = 1 + x^3$$

- ► Since $w \ne 1$ we proceed to take the p^{th} root for p = 3, and obtain $w^{1/3} = 1 + x$
- ► The squarefree part of $w^{1/3}$ is trivially 1 + x, so we obtain that

$$(1+x)v = 1 + x + 2x^2 + x^5 + 2x^7 + x^8$$

is the squarefree part of f

Distinct-degree decomposition of a squarefree polynomial

- ► Let $g \in \mathbb{F}_q[x]$ be monic and squarefree of degree at least 1
- ► The **distinct-degree decomposition** of g is the sequence $g_1, g_2, \ldots, g_s \in \mathbb{F}_q[x]$ such that $g_s \neq 1$ and for all $i = 1, 2, \ldots, s$ we have that g_i is the product of all monic irreducible polynomials of degree i that divide g
- ightharpoonup The distinct-degree decomposition of g is unique
- ► We also have $g = g_1g_2 \cdots g_s$
- ► To factor g it suffices to factor each of g_1, g_2, \ldots, g_s

Example: Distinct-degree decomposition

► The polynomial

$$g = 1 + x + 2x^2 + x^5 + 2x^7 + x^8 \in \mathbb{F}_q[x]$$

is monic and squarefree of degree at least 1

 \blacktriangleright The distinct-degree decomposition of g is

$$g_1 = 1 + x$$

 $g_2 = 2 + x + x^3 + x^4$
 $g_3 = x^3 + 2x + 2$

Extended Fermat's little theorem

Theorem 18 (Extended Fermat's little theorem)

Let q be a prime power and let $d \in \mathbb{Z}_{\geq 1}$. Then, $x^{q^d} - x \in \mathbb{F}_q[x]$ is the product of all monic irreducible polynomials in $\mathbb{F}_q[x]$ whose degree divides d

Proof.

(Exercise in last week's problem set)

Computing the distinct-degree decomposition

- ▶ Let $g \in \mathbb{F}_q[x]$ be monic and squarefree of degree at least 1 given as input
- 1. Set $f \leftarrow g$, $h \leftarrow x$, and $i \leftarrow 1$
- 2. while $f \neq 1$ do
 - a. Set $h \leftarrow h^q \operatorname{rem} f$ using fast modular exponentiation
 - b. Set $g_i \leftarrow \gcd(h-x,f)$ [here we have the invariants that $h-x \equiv x^{q^i}-x \pmod{f}$ and f has no irreducible factors of degree less than i]
 - c. Set $f \leftarrow f/g_i$
 - d. Set $i \leftarrow i + 1$
- 3. Set $s \leftarrow i 1$
- 4. Output g_1, g_2, \ldots, g_s as the distinct-degree decomposition of g and stop

Equal-degree factorization

- ▶ Let $f \in \mathbb{F}_q[x]$ be monic and squarefree of degree $n \in \mathbb{Z}_{\geq 1}$ such that all irreducible factors of f have degree $d \in \mathbb{Z}_{\geq 1}$
- ▶ The equal-degree factorization task is to factor f given both f and d as input
- ► Clearly we must have that d divides n, and the task is trivial if d = n
- ► Let us next look at one possible algorithm for equal-degree factorization ...

The Cantor-Zassenhaus algorithm (1/2)

- ► Let *q* be an **odd** prime power
- ▶ Let $f \in \mathbb{F}_q[x]$ be monic of degree n = dr such that all $r \ge 2$ irreducible factors of f have degree d
- 1. Let $a \in \mathbb{F}_q[x]$ be a uniform random nonzero polynomial of degree at most n-1
- 2. Let $g \leftarrow \gcd(a, f)$. If $g \ne 1$, then output g and stop
- 3. Compute $s \leftarrow a^{(q^d-1)/2} \operatorname{rem} f$ using fast modular exponentiation
- 4. Let $g \leftarrow \gcd(s-1,f)$. If $g \neq 1$ and $g \neq f$, then output g and stop
- 5. Assert failure and stop

The Cantor-Zassenhaus algorithm (2/2)

- ► The Cantor–Zassenhaus algorithm outputs a proper divisor *g* of *f* (a **splitting polynomial** for *f*) with probability at least 1/2
- ► We can repeat the algorithm until a proper divisor *g* is found, and then recurse on *g* and *f*/*g* as appropriate to complete the equal-degree factorization of *f* into the *r* irreducible factors, each of degree *d*

Analysis of the Cantor-Zassenhaus algorithm I

- ▶ Let $f = f_1 f_2 \dots f_r$ be the factorization of the input f
- ▶ Let a be a uniform random nonzero polynomial of degree at most n-1
- ▶ If the algorithm stops in Step 2 we have that g splits f
- So suppose that we continue to Step 3; in this case a and f are coprime and thus a and f_i are coprime for each j = 1, 2, ..., r
- ▶ By the Chinese Remainder Theorem, we have the isomorphism

$$\chi: \mathbb{F}_q[x]/\langle f \rangle \to \mathbb{F}_q[x]/\langle f_1 \rangle \times \mathbb{F}_q[x]/\langle f_2 \rangle \times \cdots \times \mathbb{F}_q[x]/\langle f_r \rangle$$
 given for all $h \in \mathbb{F}_q/\langle f \rangle$ by $\chi(h) = (\chi_1(h), \chi_2(h), \dots, \chi_r(h))$ with $\chi_i(h) = h \operatorname{rem} f_i$ for all $i = 1, 2, \dots, r$

▶ Since each $f_i \in \mathbb{F}_q[x]$ is irreducible of degree d, we have that each $\mathbb{F}_q[x]/\langle f_i \rangle$ is isomorphic to \mathbb{F}_{q^d}

Analysis of the Cantor-Zassenhaus algorithm II

- We have $\chi_i(h) = 0$ if and only if f_i divides h
- ▶ In particular, h is a splitting polynomial for f if and only if there exist $i_0, i_{\neq 0} \in \{1, 2, ..., r\}$ such that $\chi_{i_0}(h) = 0$ and $\chi_{i_{\neq 0}}(h) \neq 0$
- Since χ is an isomorphism and a is coprime to each of f_1, f_2, \ldots, f_r , we have that $\chi_1(a), \chi_2(a), \ldots, \chi_r(a)$ are mutually independent uniform random elements in the multiplicative groups of $\mathbb{F}_q[x]/\langle f_1 \rangle, \mathbb{F}_q[x]/\langle f_2 \rangle, \ldots, \mathbb{F}_q[x]/\langle f_r \rangle$, each of which is isomorphic to the multiplicative group $\mathbb{F}_{q^d}^{\times}$
- ► Since q is odd and the multiplicative group $\mathbb{F}_{q^d}^{\times}$ is cyclic (recall last week), for a uniform random $b \in \mathbb{F}_{q^d}^{\times}$ we have $\Pr(b^{(q^d-1)/2}=1) = \Pr(b^{(q^d-1)/2}=-1) = 1/2$ (exercise)
- ► Thus, we have that $\chi(a^{(q^d-1)/2})$ is a uniform random vector with entries in $\{-1,1\}$
- ► In particular, with probability at least $1 2^{1-r}$ the vector $\chi(a^{(q^d-1)/2})$ has at least one 1-entry and at least one (-1)-entry

Analysis of the Cantor-Zassenhaus algorithm III

- ► Thus, since χ is an isomorphism, with probability at least $1 2^{1-r}$ the vector $\chi(a^{(q^d-1)/2} 1)$ has at least one zero entry and at least one nonzero entry
- ► The algorithm thus outputs a splitting polynomial and stops in Step 4 with probability at least $1 2^{1-r} \ge 1/2$ since $r \ge 2$

Summary: Factoring a polynomial over a finite field (1/2)

- ▶ Let a monic $f \in \mathbb{F}_q[x]$ be given as input
- 1. Compute the squarefree part $g \in \mathbb{F}_q[x]$ of f
- 2. Compute the distinct-degree decomposition $g_1, g_2, \dots, g_s \in \mathbb{F}_q[x]$ of g
- 3. For each i = 1, 2, ..., s, run an equal-degree factorization algorithm to factor g_i (e.g., for odd q, run Cantor–Zassenhaus algorithm)
- 4. Assemble all the monic irreducible factors $f_1, f_2, \dots, f_r \in \mathbb{F}_q[x]$ obtained in Step 3
- 5. For each j = 1, 2, ..., r, compute the maximum exponent $d_j \in \mathbb{Z}_{\geq 1}$ such that $f_j^{d_j}$ divides f
- 6. Return the factorization $f = f_1^{d_1} f_2^{d_2} \cdots f_r^{d_r}$

Summary: Factoring a polynomial over a finite field (2/2)

- ▶ We have presented one possible algorithm for efficiently factoring a given polynomial $f \in \mathbb{F}_q[x]$ into its irreducible factors
- ► Here by efficient we mean that the number of operations in \mathbb{F}_q executed by the algorithm is bounded by a polynomial in deg f and log q
- More efficient algorithms are known
 (cf. von zur Gathen and Gerhard [11] and Kedlaya and Umans [16])

Three applications

- Find all roots of a polynomial
 - ► The irreducible factors of degree 1 correspond to the distinct roots
- Testing for irreducibility
 - ► Test that the squarefree part agrees with the polynomial and then compute a distinct-degree decomposition to decide irreducibility
- ► Constructing an irreducible monic polynomial of degree *n*
 - ► Draw a uniform random monic polynomial of degree *n*, and test for irreducibility using the test above; repeat until an irreducible polynomial is found
 - Recalling the counting lemma for irreducible polynomials from the previous lecture, in expectation O(n) repeats are required

Recap of Lecture 8

- ► Factoring a monic polynomial into monic irreducible polynomials over a finite field
- ► Square-and-multiply algorithm for modular exponentiation (exercise)
- ► The squarefree part of a polynomial
 - Computing the squarefree part using the formal derivative, greatest common divisors, and modular exponentiation (exercise)
- ► The distinct-degree factorization of a squarefree polynomial
 - ► Computing the distinct-degree factorization using **extended Fermat's little theorem**, modular exponentiation, and greatest common divisors
- The equal-degree factorization of a polynomial with known identical degrees for the irreducible factors
 - ► Cantor-Zassenhaus algorithm and random splitting polynomials (analysis: exercise)