$$
\begin{aligned}
& \overline{\bar{A}} \cdot \bar{a}=\bar{e}(\bar{f} \cdot \tilde{a}) \\
& \bar{a} \cdot \overline{\bar{A}}=\bar{f}(\bar{a} \cdot \bar{e}) \\
& \text { t. } \\
& =\overline{\bar{A}}^{\top} \cdot \bar{a} \\
& \overline{\bar{A}} \cdot \overline{\bar{B}}=\left(\overline{\bar{B}}^{\top} \cdot \overline{\bar{A}}^{\top}\right)^{\top} \\
& (\overline{\bar{A}} \cdot \overline{\bar{B}}) \cdot \overline{\bar{C}}=\overline{\bar{A}} \cdot(\overline{\bar{B}} \cdot \overline{\bar{C}}) \\
& \overline{\bar{C}}: \bar{D}=\left(\bar{c}_{1} \cdot \bar{d}_{1}\right)\left(\bar{c}_{2} \cdot \bar{d}_{2}\right) \\
& \dot{c}_{1} \bar{c}_{2} \quad \bar{d}_{1} \dot{d}_{2} \\
& \overline{\bar{C}} \underset{\bar{D}}{\bar{D}}=\left(\bar{c}_{1} \times \bar{d}_{1}\right)\left(\bar{c}_{2} \times \bar{d}_{2}\right) \\
& \overline{\bar{A}}: \overline{\bar{S}}=\overline{\bar{S}}: \overline{\bar{A}}=\overline{\bar{S}}^{\top}: \overline{\bar{A}}^{\top}=\overline{\bar{A}}^{\top}: \overline{\bar{S}}^{\top}=-\overline{\bar{A}}: \overline{\bar{S}} \\
& =0 \\
& \bar{I}: \bar{I}=3 \\
& \overline{\bar{I}} \underset{y}{\bar{I}}=\left(\bar{u}_{y} \bar{u}_{x}+\bar{u}_{y} \bar{u}_{y}+\bar{u}_{z} \bar{u}_{z}\right) \times\left(\bar{u}_{x} \bar{u}_{v}+\bar{u}_{y} \bar{u}_{y}+\bar{u}_{z} \bar{u}_{z}\right) \\
& =\bar{u}_{z} \bar{u}_{z}+\bar{u}_{y} \bar{u}_{y}+\bar{u}_{z} \bar{u}_{z}+\bar{u}_{y} \bar{u}_{y}+\bar{u}_{y} \bar{u}_{y}+\bar{u}_{x} \bar{u}_{x}=2 \overline{\tilde{I}}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\bar{A}} \cdot \bar{A}=\overline{\bar{A}}^{2} \\
& \frac{1}{2} \overline{\bar{A}} \times \overline{\bar{A}}=\overline{\bar{A}}^{(2)} \\
& \operatorname{tr} \overline{\bar{A}}=\overline{\bar{A}}: \overline{\bar{I}} \\
& \text { ppm } \bar{A}=\frac{1}{2} \bar{A} \times \bar{A}: \bar{I}=\operatorname{tr} \overline{\bar{A}}^{(2)} \\
& \text { let } \overline{\bar{A}}=\frac{1}{6} \bar{A} \times \overline{\bar{A}}: \overline{\bar{A}} \\
& \operatorname{spm}=\frac{1}{2} \dot{\bar{I}} \times \overline{\bar{I}}: \bar{I}=3 \\
& \operatorname{dut} \overline{\bar{I}}=1 \\
& \overline{\bar{A}}^{-1} \cdot \overline{\bar{A}}=\overline{\bar{I}} \\
& \overline{\bar{A}}^{-1}=\frac{\overline{\bar{A}}^{(2) T}}{\operatorname{dut} \bar{A}^{\prime}} \\
& \overline{\bar{A}} \cdot \bar{A}^{-1}=I \\
& \overline{\bar{A}} \times \overline{\bar{B}}: \overline{\bar{I}}=\bar{a}_{1} \bar{a}_{2} \times \bar{b}_{1} \bar{b}_{2}: \overline{\bar{I}}=\left(\bar{a}_{1} \times \bar{b}_{1}\right)\left(\bar{a}_{2} \times \bar{b}_{2}\right): \overline{\bar{I}} \\
& =\bar{a}_{1} \times \bar{b}_{1} \cdot \bar{a}_{2} \times \bar{b}_{2}=\bar{a}_{1} \cdot \bar{b}_{1} \times\left(\bar{a}_{2} \times \bar{b}_{2}\right) \\
& =\bar{a}_{1} \cdot\left(\bar{a}_{2} \bar{b}_{1} \cdot \bar{b}_{2}-\bar{b}_{2} \bar{b}_{1} \cdot \bar{a}_{2}\right) \\
& \begin{array}{l}
=\left(\bar{a}_{1} \cdot \bar{a}_{2}\right)\left(\bar{b}_{1} \cdot \bar{b}_{2}\right)-(\underbrace{\left(\bar{b}_{2}\right)\left(\bar{a}_{2} \cdot \bar{b}_{1}\right.}_{\bar{a}_{1} \cdot \bar{a}_{2}: \bar{b}_{2} \bar{b}_{1}}) \\
=\operatorname{tr} \overline{\bar{A}} \operatorname{tr} \overline{\bar{B}}-\overline{\bar{A}}: \bar{B}^{\top}
\end{array} \\
& \begin{array}{r}
=\operatorname{tr} \overline{\bar{A}} \operatorname{tr} \overline{\bar{B}}-\underbrace{\mathcal{A}^{\top}}_{(\overline{\bar{A}} \cdot \overline{\bar{B}}): \overline{\bar{A}}: \overline{\bar{B}}^{\top}}=\operatorname{tr}(\overline{\bar{A}} \cdot \bar{B})
\end{array} \\
& \operatorname{tr} \overline{\bar{A}} \cdot \overline{\bar{B}}=\operatorname{tr} \bar{a}_{1} \bar{a}_{2} \cdot \bar{b}_{1} \bar{b}_{2}=\bar{a}_{2} \cdot \bar{b}_{1}, \bar{a}_{1} \cdot \bar{b}_{2}
\end{aligned}
$$

$$
\operatorname{spm} \overline{\bar{A}}=\frac{1}{2} \overline{\bar{A}} \times \overline{\bar{A}}: \overline{\bar{I}}=\frac{1}{2}\left((\operatorname{tr} \overline{\bar{A}})^{2}-\operatorname{tr} \overline{\bar{A}}^{2}\right)
$$

COMPLETE: $\quad \operatorname{det} \overline{\bar{A}} \neq 0$
PLANAR (STRICTLY): $\begin{gathered}\operatorname{det} \bar{A}=0, ~ s p m \overline{\bar{A}} \neq 0 \\ = \\ =\end{gathered}$
LINEAR: $\operatorname{det} \overline{\bar{A}}=0$, rpm $\overline{\bar{A}}=0$
$\bar{a} \bar{b} \quad \bar{a} \bar{b} \times \bar{a} \bar{b}=0$

$$
\begin{aligned}
(\bar{a} \bar{b}+\bar{c} \bar{d}) \times(\bar{a} \bar{b}+\bar{c} \bar{d})= & 2(\bar{a} \times \bar{c})(\bar{b} \times \bar{d}) \\
& (\downarrow):(\bar{a} \bar{b}+\bar{c} \bar{d})
\end{aligned}
$$

$\left[(\overline{\bar{A}}: \overline{\bar{I}})(\overline{\bar{B}}: \overline{\bar{I}})-\overline{\bar{A}}: \overline{\bar{B}}^{T}\right] \overline{\bar{I}}-\left(\overline{\bar{A}}: \overline{\bar{I}} \overline{\bar{B}}^{T}-\left(\overline{\bar{B}}: \overline{\bar{I}}^{\bar{A}} \overline{\bar{A}}^{T}+(\overline{\bar{A}} \cdot \overline{\bar{B}}+\overline{\bar{B}} \cdot \overline{\bar{A}})^{T} .(2.51)\right.\right.$

$$
\begin{aligned}
& \overline{\bar{A}} \dot{\bar{A}} \overline{\bar{A}}=\left(\operatorname{tr}^{2} \overline{\bar{A}}-\operatorname{tr} \overline{\bar{A}}^{2}\right) \overline{\bar{I}}-2 \operatorname{tr} \overline{\bar{A}} \overline{\bar{A}}^{\top}+2 \overline{\bar{A}}^{2} T \\
& \overline{\bar{A}}^{(2)} \mathrm{T}=\frac{1}{2}(\overline{\bar{A}} \times \overline{\bar{A}})^{\top}=\underbrace{\frac{1}{2}\left(\operatorname{tr}^{2} \overline{\bar{A}}-\operatorname{tr} \overline{\bar{A}}^{2}\right)}_{\operatorname{spm} \overline{\bar{A}}} \overline{\bar{I}}-\operatorname{tr} \overline{\bar{A}} \overline{\bar{A}}+\overline{\bar{A}}^{2} \\
& f \\
& \operatorname{dut} \overline{\bar{A}} \overline{\bar{A}}^{-1} \\
& \overline{\bar{A}}^{3}-(\operatorname{tr} \overline{\bar{A}}) \overline{\bar{A}}^{2}+(\operatorname{spm} \overline{\bar{A}}) \overline{\bar{A}}-(\operatorname{det} \overline{\bar{A}}) \overline{\bar{I}}=0 \\
& \text { CAYLEY-HAMILTON }
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\bar{\varepsilon}}=\varepsilon_{0} \overline{\bar{\varepsilon}}_{r} \\
& \mu_{0}{ }^{\Sigma} \\
& E(\bar{r})=\bar{E}_{0} e^{-j \bar{k} \cdot \bar{r}} \\
& \bar{H}(\bar{r})=F_{0} e^{-j \bar{k} \cdot \bar{r}} \\
& \bar{k}=\underbrace{\omega \sqrt{\mu_{0} \varepsilon_{0}}}_{k_{0}} n \bar{u} \\
& \nabla_{v} E=-j \omega \mu_{0} \bar{H}=-j \bar{k} \times E \\
& \bar{k} \times \bar{E}=\omega \mu_{0} \bar{H} \\
& \nabla \times \bar{H}=j \omega \bar{D}=j \omega \varepsilon_{0} \bar{\varepsilon}_{r} \cdot \bar{E}=-j \bar{L} \times \bar{H} \\
& \bar{K} \nu \bar{F}_{1}=-\omega \varepsilon_{0} \overline{\bar{\varepsilon}}_{r} \cdot \bar{E} \\
& \overline{k_{c}} \times(\bar{k} \times \bar{E})=\omega \mu_{0}\left(-\omega \varepsilon_{0} \overline{\bar{\varepsilon}}, \bar{E}\right)=-k_{0}^{2} \overline{\bar{\varepsilon}} \cdot \bar{E} \\
& {[c_{0}^{2} \overline{\varepsilon_{r}}-\underbrace{\bar{k} \times \bar{y}]}_{\bar{k} \cdot \overline{\underline{I}}-\bar{k} \bar{k}} \cdot \bar{E}=0} \\
& \overline{\bar{D}} \cdot \bar{E}=0 \\
& \operatorname{det} \bar{D}=0 \\
& \text { ISOTROPIC: } \quad \overline{\bar{\varepsilon}}_{r}=\varepsilon_{r} \bar{I} \\
& \overline{\bar{D}}=\varepsilon_{0}^{2} \varepsilon_{r} \dot{\vec{T}}-\bar{k} \bar{k} \times \dot{\bar{I}} \\
& \bar{L}=k_{0} n \bar{u} \\
& =k_{0}{ }^{2} \varepsilon_{r} \overline{\bar{I}}-\bar{k} \cdot \bar{k} \overline{\bar{I}}+\bar{k} \bar{k} \\
& =k_{0}^{2} \varepsilon_{0} \bar{I}-k_{0}^{2} n^{2} \underbrace{\bar{u} \cdot \bar{u}}_{1} \overline{\bar{I}}+k_{0}^{2} n^{2} \bar{u} \bar{u} \\
& \operatorname{det} \overline{\bar{D}}=0 \quad \Rightarrow \quad \operatorname{det}\left(\left(\varepsilon_{r}-n^{2}\right) \hat{\bar{I}}+n^{2} \bar{u} \bar{u}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{dut} \overline{\bar{D}}=0 \quad \Rightarrow \quad \operatorname{det}\left(\left(\varepsilon_{r}-n^{2}\right) \bar{I}+n^{2} \bar{u} \bar{u}\right)=0 \\
& \bar{I}=\bar{u} \bar{u}+\bar{I}_{t} \quad \operatorname{det}\left(\varepsilon_{r} \overline{\bar{I}}-n^{2} \overline{\bar{I}}_{t}\right)=0 \\
& \operatorname{dut}\left(\begin{array}{ccc}
\varepsilon_{r} & 0 & 0 \\
0 & \varepsilon_{r}-h^{2} & 0 \\
0 & 0 & \varepsilon_{r}-h^{2}
\end{array}\right)=\varepsilon_{r}\left(\varepsilon_{r}-n^{2}\right)^{2}=0 \\
& \bar{D} \cdot \bar{D}=0 \quad \Rightarrow-j \bar{k} \cdot \varepsilon \bar{E}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{k}_{\times}(\bar{k} \times \bar{I})=\bar{k} \bar{k}-\bar{k} \cdot \bar{k} \overline{\bar{I}} \\
&=-\bar{k} \bar{k} \times \overline{\bar{I}} \\
& \bar{u}_{z} \times\left(\bar{u}_{z} \times \bar{I}\right)=\bar{u}_{z} \times\left(\bar{u}_{y} \bar{u}_{x}-\bar{u}_{x} \bar{u}_{y}\right)=-\bar{u}_{x} \bar{u}_{y}-\bar{u}_{y} \bar{u}_{z} \\
&=-\bar{I}+\bar{u}_{z} \bar{u}_{z} \\
& \bar{u}_{z} \bar{u}_{z} \times \bar{I}=\bar{u}_{z} \bar{u}_{z} \times\left(\bar{u}_{x} \bar{u}_{z}+\bar{u}_{y} \bar{u}_{y}+\bar{u}_{z} \bar{u}_{z}\right)=\bar{u}_{x} \bar{u}_{x}+\bar{u}_{y} \bar{u}_{y}
\end{aligned}
$$

