

Decision making and problem solving – Lecture 9

- Analytic Hierarchy Process
- Outranking methods

Liesiö, Punkka, Salo, Vilkkumaa

Motivation

- When alternatives are evaluated w.r.t. multiple attributes / criteria, decision-making can be supported by methods of
 - Multiattribute value theory (certain attribute-specific performances)
 - Multiattribute utility theory (uncertain attribute-specific performances)
- □ MAVT and MAUT have a strong axiomatic basis
- □ Yet, other popular multicriteria methods exist

Aalto University School of Science

Analytic Hierarchy Process (AHP)

□ Thomas L. Saaty (1977, 1980)

Enormously popular

- Thousands of reported applications
- Dedicated conferences and scientific journals

Several decision support tools

- Expert Choice, WebHipre etc.
- Not based on the axiomatization of preferences therefore remains controversial

Problem structuring in AHP

Objectives, subobjectives / criteria, and alternatives are represented as a <u>hierarchy</u> of elements (cf. value tree)

Local priorities

For each objective / sub-objective, a local priority vector is determined to reflect the relative importance of those elements placed immediately below the objective / sub-objective

□ Pairwise comparisons:

- For (sub-)objectives: "Which sub-objective / criterion is more important for the attainment of the objective? How much more important is it?"
- For alternatives: "Which alternative contributes more to the attainment of the criterion? How much more does it contribute?"

Responses on a verbal scale correspond to weight ratios

	Scale			
Verbal statement	1-to-9	Balanced		
Equally important	1	1.00		
-	2	1.22		
Slightly more important	3	1.50		
-	4	1.86		
Strongly more important	5	2.33		
-	6	3.00		
Very strongly more important	7	4.00		
-	8	5.67		
Extremely more important	9	9.00		

Pairwise comparison matrix

Weight ratios $r_{ij} = \frac{w_i}{w_j}$ form a pairwise
comparison matrix A:

$$A = \begin{bmatrix} r_{11} & \cdots & r_{1n} \\ \vdots & \ddots & \vdots \\ r_{n1} = 1/r_{1n} & \cdots & r_{nn} \end{bmatrix}$$

	L	F	SL	VT	СР	MC
Learning	1	4	3	1	3	4
Friends	1/4	1	7	3	1/5	1
School life	1/3	1/7	1	1/5	1/5	1/6
Voc. training	1	1/3	5	1	1	1/3
College prep.	1/3	5	5	1	1	3
Music classes	1/4	1	6	3	1/3	1

	Learning				Friends				School life			
	А	В	С		А	В	С		А	В	С	Ν
А	1	1/3	1⁄2	А	1	1	1	А	1	5	1	stro
В	3	1	3	В	1	1	1	В	1/5	1	1/5	
С	2	1/3	1	С	1	1	1	С	1	5	1	

Music classes are strongly – very strongly more important than school life

	Vo	c. train	ing		Co	llege p	orep.	
	А	В	С		А	В	С	
А	1	9	7	А	1	1/2	1	A
В	1/9	1	5	В	2	1	2	В
С	1/7	1/5	1	С	1	1/2	1	С

ep.		Music classes							
С		А	В	С					
1	А	1	6	4					
2	В	1/6	1	1/3					
1	С	1/4	3	1					

Incosistency in pairwise comparison matrices

Problem: pairwise comparisons are not necessarily consistent

□ E.g., if learning is slightly more importannt (3) than college preparation, which is strongly more important (5) than school life, then learning should be 3×5 times more important than school life ... but this is impossible with the applied scale

 \rightarrow Weights need to be estimated

Aalto University School of Science

Local priority vector

The local priority vector w (=estimated weights) is obtained by normalizing the eigenvector corresponding to the largest eigenvalue of matrix A:

$$Aw = \lambda_{max} w_{i}$$
$$w = \frac{1}{\sum_{i=1}^{n} w_{i}} w_{i}$$

Matlab:

 [v,lambda]=eig(A) returns the eigenvectors and eigenvalues of A

		Learnir	W	
	А	В	С	
А	1	1/3	1/2	0.16
В	3	1	3	0.59
С	2	1/3	1	0.25
		1		

Only one eigenvector with all real elements: $(0.237, 0.896, 0.376) \rightarrow$ normalized eigenvector *w*=(0.16, 0.59, 0.25).

>	> A=[1 1/3	.5; 3 1 3	3; 2 1/3	1]		
A	=					
	1.0000	0.3333	0.500	00		
	2.0000	0.3333	1.000	00		
> v	> [v,l]=eig	(A)				
	0.2370 + 0.8957 + 0.3762 +	0.0000i 0.0000i 0.0000i	0.1185 -0.8957 0.1881	+ 0.2052i + 0.0000i - 0.3258i	0.1185 -0.8957 0.1881	- 0.2052i + 0.0000i + 0.3258i
1	=		J			
	3.0536 + 0.0000 + 0.0000 +	0.0000i 0.0000i 0.0000i	0.0000	+ 0.0000i + 0.4038i + 0.0000i	0.0000 0.0000 -0.0268	+ 0.0000i + 0.0000i - 0.4038i
	1					

Local priority vectors = "weights"

	Learning		W		Friends			W	
	А	В	С			А	В	С	
А	1	1/3	1/2	0.16	А	1	1	1	0.33
В	3	1	3	0.59	В	1	1	1	0.33
С	2	1/3	1	0.25	С	1	1	1	0.33

	S	chool	life	W		Voc. training		W	
	А	В	С			А	В	С	
А	1	5	1	0.45	А	1	9	7	0.77
В	1/5	1	1/5	0.09	В	1/9	1	5	0.05
С	1	5	1	0.46	С	1/7	1/5	1	0.17

	College prep.		W		Music classes			W	
	А	В	С			А	В	С	
А	1	1/2	1	0.25	А	1	6	4	0.69
В	2	1	2	0.50	В	1/6	1	1/3	0.09
С	1	1/2	1	0.25	С	1/4	3	1	0.22

	L	F	SL	VT	СР	MC	W
Learning	1	4	3	1	3	4	0.32
Friends	1/4	1	7	3	1/5	1	0.14
Schoo life	1/3	1/7	1	1/5	1/5	1/6	0.03
Voc. Training	1	1/3	5	1	1	1/3	0.13
College prep.	1/3	5	5	1	1	3	0.24
Music classes	1/4	1	6	3	1/3	1	0.14

Consistency checks

 The consistency of the pairwise comparison matrix A is studied by comparing the consistency index (CI) of A to the average consistency index RI of a random pairwise comparison matrix:

$$CI = \frac{\lambda_{max} - n}{n - 1}, \qquad CR = \frac{CI}{RI}$$

n	3	4	5	6	7	8	9	10
RI	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49

Rule of thumb: if CR>0.10, comparisons are so inconsistent that they should be revised

Aalto University School of Science Three alternatives, *n*=3:

- $\Box \quad \text{Learning: } \lambda_{max} = 3.05, CR = 0.04$
- **G** Friends: $\lambda_{max} = 3.00, CR = 0$
- **School life:** $\lambda_{max} = 3.00, CR = 0$
- \Box Voc. training $\lambda_{max} = 3.40$, CR = 0.34
- **College prep:** $\lambda_{max} = 3.00, CR = 0$
- **D** Music classes: $\lambda_{max} = 3.05$, CR = 0.04

Six attributes, *n=6:*

All attributes:
$$\lambda_{max} = 7.42$$
, $CR = 0.23$

>> real(max(l))
ans =
3.0536 -0.0268 -0.0268
21.3.2019
10

Total priorities

The total (overall) priorities are obtained recursively:

$$w_k = \sum_{i=1}^n w_i \, w_k^i,$$

where

- w_i is the total priority of criterion i,
- wⁱ_k is the local priority of criterion / alternative k with regard to criterion i,
- The sum is computed over all criteria i below which criterion / alternative k is positioned in the hierarchy

$$w_A = \sum_{i=1}^6 w_i \, w_k^i = 0.32 \cdot 0.16 + 0.14 \cdot 0.33 + \dots$$

Total priorities

	L	earnin	g	w		Friends		w	
	А	В	С			А	В	С	
А	1	1/3	1/2	0.16	А	1	1	1	0.33
В	3	1	3	0.59	В	1	1	1	0.33
С	2	1/3	1	0.25	С	1	1	1	0.33
	S	chool I	ife	W		Voc. training		ing	W
	А	В	С			А	В	С	
А	1	5	1	0.45	А	1	9	7	0.77
В	1/5	1	1/5	0.09	В	1/9	1	5	0.05
С	1	5	1	0.46	С	1/7	1/5	1	0.17
	Co	llege p	rep.	W		Mus	ic clas	ses	W
	А	В	С			А	В	С	
А	1	1/2	1	0.25	А	1	6	4	0.69

0.50

0.25

В

С

1/6

1/4

1/3

1

1

3

0.09

0.22

2

1

В

С

2

1

1

1/2

	L	F	SL	VT	СР	MC	w
Learning	1	4	3	1	3	4	0.32
Friends	1/4	1	7	3	1/5	1	0.14
Schoo life	1/3	1/7	1	1/5	1/5	1/6	0.03
Voc. Training	1	1/3	5	1	1	1/3	0.13
College prep.	1/3	5	5	1	1	3	0.24
Music classes	1/4	1	6	3	1/3	1	0.14

	0.32	0.14	0.03	0.13	0.24	0.14	
	L	F	SL	VT	CP	MC	Total w
А	0.16	0.33	0.45	0.77	0.25	0.69	0.37
В	0.59	0.33	0.09	0.05	0.50	0.09	0.38
С	0.25	0.33	0.46	0.17	0.25	0.22	0.25

E.g.,

w_B=0.32*0.59+0.14*0.33+0.03*0.09+ 0.13*0.05+0.24*0.50+0.14*0.09

Problems with AHP

Rank reversals: the introduction of an additional alternative may change the relative ranking of the other alternatives

Example:

- Alternatives A and B are compared w.r.t. two "equally important" criteria C_1 and C_2 ($w_{C1} = w_{C2} = 0.5$)
- A is better than B:

$$w_A = \frac{1}{2} \times \frac{1}{5} + \frac{1}{2} \times \frac{5}{6} \approx 0.517,$$
 $w_B = \frac{1}{2} \times \frac{4}{5} + \frac{1}{2} \times \frac{1}{6} \approx 0.483$

- Add C which is identical to A: $w_A = w_C = \frac{1}{2} \times \frac{1}{6} + \frac{1}{2} \times \frac{5}{11} \approx 0.311,$ $w_B = \frac{1}{2} \times \frac{4}{6} + \frac{1}{2} \times \frac{1}{11} \approx 0.379$

– Now B is better than A!

Methods based on outranking relations

- Basic question: is there enough preference information / evidence to state that an alternative is at least as good as some other alternative?
- □ I.e., does an alternative *outrank* some other alternative?

Indifference and preference thresholds divide the measurement scale into three parts

- If the difference between the criterion-specific performances of A and B is below a predefined indifference threshold, then A and B are "equally good" w.r.t. this criterion
- If the difference between the criterion-specific performances of A and B is above a predefined **preference threshold**, then A is preferred to B w.r.t this criterion
- Between indifference and preference thresholds, the DM is uncertain about preference

Aalto University School of Science

PROMETHEE I & II

In PROMETHEE methods, the degree to which alternative k is preferred to l is

$$\sum_{i=1}^{n} w_i F_i(k, l) \ge 0,$$

where

- w_i is the weight of criterion i
- $F_i(k, l) = 1$, if k is preferred to I w.r.t. criterion i,
- $F_i(k, l) = 0$, if the DM is indifferent between k and I w.r.t. criterion i, or I is preferred to k
- $F_i(k, l) \in (0,1)$, if preference between k and l w.r.t. criterion i is uncertain

PROMETHEE I & II

PROMETHEE: Example^{*F*₂}

	Revenue	Market share
X ¹	1M€	10%
X ²	0.5M€	20%
X ³	0	30%
Indiff. threshold	0	10%
Pref. threshold	0.5M€	20%
Weight	1	1

	Revenue F ₁	Market share F ₂	Weighted $F_w = w_1F_1 + w_2F_2$
x ¹ , x ²	1	0	1
x ² , x ¹	0	0	0
x ¹ , x ³	1	0	1
x ³ , x ¹	0	1	1
x ² , x ³	1	0	1
x ³ , x ²	0	0	0

PROMETHEE I: Example

□ PROMETHEE I:

	F ₁	F ₂	F _w
x ¹ , x ²	1	0	1
x ² , x ¹	0	0	0
x ¹ , x ³	1	0	1
x ³ , x ¹	0	1	1
x ² , x ³	1	0	1
x ³ , x ²	0	0	0

 $- x^{1} \text{ is preferred to } x^{2}, \text{ if}$ $\underbrace{\sum_{i=1}^{2} (F_{i}(x^{1}, x^{2}) + F_{i}(x^{1}, x^{3}))}_{=1+1=2} > \underbrace{\sum_{i=1}^{2} (F_{i}(x^{2}, x^{1}) + F_{i}(x^{2}, x^{3}))}_{=0+1=1}$ $\underbrace{\sum_{i=1}^{2} (F_{i}(x^{2}, x^{1}) + F_{i}(x^{3}, x^{1}))}_{=0+1=1} < \underbrace{\sum_{i=1}^{2} (F_{i}(x^{1}, x^{2}) + F_{i}(x^{3}, x^{2}))}_{=1+0=1}$ $- x^{1} \text{ is not preferred to } x^{2} \text{ due to the latter condition}$ $- x^{2} \text{ is not preferred to } x^{3}$ $- x^{2} \text{ is not preferred to } x^{3} \text{ and vice versa}$

□ Note: preferences are not transitive

 $- x^1 \succ x^3 \sim x^2 \not\Rightarrow x^1 \succ x^2$

PROMETHEE I: Example (Cont'd)

PROMETHEE I is also prone to rank reversals:

- Remove x^2
- Then, $\underbrace{\sum_{i=1}^{2} (F_i(x^1, x^3))}_{=1} \neq \underbrace{\sum_{i=1}^{2} (F_i(x^3, x^1))}_{=1}$ $\underbrace{\sum_{i=1}^{2} (F_i(x^3, x^1))}_{=1} \neq \underbrace{\sum_{i=1}^{2} (F_i(x^1, x^3))}_{=1}$ $\rightarrow x^1 \text{ is no longer preferred to } x^3$

	F ₁	F ₂	F _w
x ¹ , x ²	_1	0	_1
$\frac{1}{x^2, x^1}$	0	0	0
x ¹ , x ³	1	0	1
x ³ , x ¹	0	1	1
x ² , x ³	_1	0	_1
<u>x³ x²</u>			-0-

Aalto University School of Science

PROMETHEE II: Example

□ The "net flow" of alternative x^{j} $F_{net}(x^{j}) = \sum_{k \neq j} [F_w(x^{j}, x^k) - F_w(x^k, x^j)]$ $- F_{net}(x^1) = (1 - 0) + (1 - 1) = 1$ $- F_{net}(x^2) = (0 - 1) + (1 - 0) = 0$ $- F_{net}(x^3) = (1 - 1) + (0 - 1) = -1$

	F ₁	F ₂	F _w
x ¹ , x ²	1	0	1
x ² , x ¹	0	0	0
x ¹ , x ³	1	0	1
x ³ , x ¹	0	1	1
x ² , x ³	1	0	1
x ³ , x ²	0	0	0

PROMETHEE II: Example (Cont'd)

□ PROMETHEE II is also prone to rank reversals

- Add two altrenatives that are equal to x³ in both criteria.
 Then, x² becomes the most preferred:
 - $F_{net}(x^1) = (1-0) + 3 \times (1-1) = 1$ $F_{net}(x^2) = (0-1) + 3 \times (1-0) = 2$ $F_{net}(x^{3:5}) = (1-1) + (0-1) = -1$

Add two alternatives that are equal to x¹ in both criteria. Then, x² becomes the least preferred:

$$F_{net}(x^{1,4,5}) = (1-0) + (1-1) + 2 \times (0-0) = 1$$

$$F_{net}(x^2) = 3 \times (0-1) + (1-0) = -2$$

$$F_{net}(x^3) = 3 \times (1-1) + (0-1) = -1$$

- Remove x^2 . Then, x^1 and x^3 are equally preferred. $F_{net}(x^1) = F_{net}(x^3) = (1 - 1) = 0$

	F ₁	F ₂	F _w
x ¹ , x ²	1	0	1
x ² , x ¹	0	0	0
x ¹ , x ³	1	0	1
x ³ , x ¹	0	1	1
x ² , x ³	1	0	1
x ³ , x ²	0	0	0

Aalto University School of Science

Summary

- AHP and outranking methods are commonly used for supporting multiattribute decision-making
- $\hfill\square$ Unlike MAVT (and MAUT), these methods do not build on the axiomatization of preferences \rightarrow
 - Rank reversals
 - Preferences are not necessarily transitive
- Elicitation of model parameters can be difficult
 - Weights have no clear interpretation
 - In outranking methods, statement "I prefer 2€ to 1€" and "I prefer 3€ to 1€" are both modeled with the same number (1); to make a difference, indifference and preference thresholds need to be carefully selected

