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Motivation

q When alternatives are evaluated w.r.t. multiple attributes / criteria,
decision-making can be supported by methods of

– Multiattribute value theory (certain attribute-specific performances)
– Multiattribute utility theory (uncertain attribute-specific performances)

q MAVT and MAUT have a strong axiomatic basis

q Yet, other popular multicriteria methods exist
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Analytic Hierarchy Process (AHP)

q Thomas L. Saaty (1977, 1980)

q Enormously popular
– Thousands of reported applications
– Dedicated conferences and scientific journals

q Several decision support tools
– Expert Choice, WebHipre etc.

q Not based on the axiomatization of preferences – therefore remains
controversial
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Problem structuring in AHP

q Objectives, sub-
objectives / criteria,
and alternatives
are represented as
a hierarchy of
elements (cf. value
tree)
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Balanced

Local priorities
q For each objective / sub-objective, a local priority

vector is determined to reflect the relative
importance of those elements placed immediately
below the objective / sub-objective

q Pairwise comparisons:
– For (sub-)objectives: ”Which sub-objective /

criterion is more important for the attainment of the
objective? How much more important is it?”

– For alternatives: ”Which alternative contributes
more to the attainment of the criterion? How much
more does it contribute?”

q Responses on a verbal scale correspond to
weight ratios
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Scale
Verbal statement 1-to-9 Balanced

Equally important 1 1.00
- 2 1.22

Slightly more important 3 1.50
- 4 1.86

Strongly more important 5 2.33
- 6 3.00

Very strongly more important 7 4.00
- 8 5.67

Extremely more important 9 9.00



Pairwise comparison matrix
q Weight ratios ௜௝ݎ = ௪೔

௪ೕ
form a pairwise

comparison matrix A:
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L F SL VT CP MC

Learning 1 4 3 1 3 4

Friends 1/4 1 7 3 1/5 1

School life 1/3 1/7 1 1/5 1/5 1/6

Voc. training 1 1/3 5 1 1 1/3

College prep. 1/3 5 5 1 1 3

Music classes 1/4 1 6 3 1/3 1

Learning

A B C

A 1 1/3 ½

B 3 1 3

C 2 1/3 1

Voc. training

A B C

A 1 9 7

B 1/9 1 5

C 1/7 1/5 1

Friends

A B C

A 1 1 1

B 1 1 1

C 1 1 1

College prep.

A B C

A 1 1/2 1

B 2 1 2

C 1 1/2 1

School life

A B C

A 1 5 1

B 1/5 1 1/5

C 1 5 1

Music classes

A B C

A 1 6 4

B 1/6 1 1/3

C 1/4 3 1

ܣ =
ଵଵݎ ⋯ ଵ௡ݎ
⋮ ⋱ ⋮

௡ଵݎ = ଵ௡ݎ/1 ⋯ ௡௡ݎ
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Music classes are strongly – very
strongly more important than school life



Incosistency in pairwise comparison
matrices
q Problem: pairwise comparisons are not necessarily consistent

q E.g., if learning is slightly more importannt (3) than college
preparation, which is strongly more important (5) than school life, then
learning should be 3 × 5 times more important than school life … but
this is impossible with the applied scale

→ Weights need to be estimated
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Local priority vector

q The local priority vector w (=estimated
weights) is obtained by normalizing the
eigenvector corresponding to the largest
eigenvalue of matrix A:

ݓܣ = ,ݓ௠௔௫ߣ

:ݓ =
1

∑ ௜ݓ
௡
௜ୀଵ

.ݓ

q Matlab:
– [v,lambda]=eig(A) returns the eigenvectors

and eigenvalues of A
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Learning W
A B C

A 1 1/3 1/2 0.16

B 3 1 3 0.59

C 2 1/3 1 0.25

Only one eigenvector with all real
elements: (0.237, 0.896, 0.376) →
normalized eigenvector w=(0.16,
0.59, 0.25).



Local priority vectors = ”weights”
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L F SL VT CP MC W

Learning 1 4 3 1 3 4 0.32

Friends 1/4 1 7 3 1/5 1 0.14

Schoo life 1/3 1/7 1 1/5 1/5 1/6 0.03

Voc. Training 1 1/3 5 1 1 1/3 0.13

College prep. 1/3 5 5 1 1 3 0.24

Music classes 1/4 1 6 3 1/3 1 0.14

Learning W

A B C

A 1 1/3 1/2 0.16

B 3 1 3 0.59

C 2 1/3 1 0.25

School life W

A B C

A 1 5 1 0.45

B 1/5 1 1/5 0.09

C 1 5 1 0.46

College prep. W

A B C

A 1 1/2 1 0.25

B 2 1 2 0.50

C 1 1/2 1 0.25

Friends W

A B C

A 1 1 1 0.33

B 1 1 1 0.33

C 1 1 1 0.33

Voc. training W

A B C

A 1 9 7 0.77

B 1/9 1 5 0.05

C 1/7 1/5 1 0.17

Music classes W

A B C

A 1 6 4 0.69

B 1/6 1 1/3 0.09

C 1/4 3 1 0.22



Consistency checks

q The consistency of the pairwise
comparison matrix A is studied by
comparing the consistency index (CI)
of A to the average consistency index
RI of a random pairwise comparison
matrix:

ܫܥ =
௠௔௫ߣ − ݊
݊ − 1

, ܴܥ =
ܫܥ
ܫܴ

q Rule of thumb: if CR>0.10,
comparisons are so inconsistent that
they should be revised
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n 3 4 5 6 7 8 9 10

RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

Three alternatives, n=3:

q Learning: =௠௔௫ߣ 3.05, ܴܥ = 0.04
q Friends: =௠௔௫ߣ 3.00, ܴܥ = 0
q School life: =௠௔௫ߣ 3.00, ܴܥ = 0
q Voc. training =௠௔௫ߣ 3.40, ܴܥ = 0.34
q College prep: =௠௔௫ߣ 3.00, ܴܥ = 0
q Music classes: =௠௔௫ߣ 3.05, ܴܥ = 0.04

Six attributes, n=6:

q All attributes: =௠௔௫ߣ 7.42, ܴܥ = 0.23



Total priorities
q The total (overall) priorities are

obtained recursively:

௞ݓ =෍ ௜ݓ

௡

௜ୀଵ
௞ݓ
௜ ,

where
– ௜ݓ is the total priority of criterion i,
– ௞ݓ

௜ is the local priority of criterion /
alternative k with regard to criterion i,

– The sum is computed over all criteria i
below which criterion / alternative k is
positioned in the hierarchy
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0.32 0.14 0.03 0.13 0.24 0.14

0.16 0.33

஺ݓ = ∑ ௜ݓ
଺
௜ୀଵ ௞ݓ

௜ = 0.32 ȉ 0.16 + 0.14 ȉ 0.33 +…



Total priorities
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L F SL VT CP MC w

Learning 1 4 3 1 3 4 0.32

Friends 1/4 1 7 3 1/5 1 0.14

Schoo life 1/3 1/7 1 1/5 1/5 1/6 0.03

Voc. Training 1 1/3 5 1 1 1/3 0.13

College prep. 1/3 5 5 1 1 3 0.24

Music classes 1/4 1 6 3 1/3 1 0.14

Learning w

A B C

A 1 1/3 1/2 0.16

B 3 1 3 0.59

C 2 1/3 1 0.25

School life w

A B C

A 1 5 1 0.45

B 1/5 1 1/5 0.09

C 1 5 1 0.46

College prep. w

A B C

A 1 1/2 1 0.25

B 2 1 2 0.50

C 1 1/2 1 0.25

Friends w

A B C

A 1 1 1 0.33

B 1 1 1 0.33

C 1 1 1 0.33

Voc. training w

A B C

A 1 9 7 0.77

B 1/9 1 5 0.05

C 1/7 1/5 1 0.17

Music classes w

A B C

A 1 6 4 0.69

B 1/6 1 1/3 0.09

C 1/4 3 1 0.22

0.32 0.14 0.03 0.13 0.24 0.14

L F SL VT CP MC Total w

A 0.16 0.33 0.45 0.77 0.25 0.69 0.37

B 0.59 0.33 0.09 0.05 0.50 0.09 0.38

C 0.25 0.33 0.46 0.17 0.25 0.22 0.25

E.g.,
wB=0.32*0.59+0.14*0.33+0.03*0.09+
0.13*0.05+0.24*0.50+0.14*0.09



Problems with AHP

q Rank reversals: the introduction of an additional
alternative may change the relative ranking of the other
alternatives

q Example:
– Alternatives A and B are compared w.r.t. two ”equally important”

criteria C1 and C2 (wC1 = wC2 = 0.5)
– A is better than B:

஺ݓ =
1
2 ×

1
5 +

1
2 ×

5
6 ≈ 0.517, ஻ݓ =

1
2 ×

4
5 +

1
2 ×

1
6 ≈ 0.483

– Add C which is identical to A:

஺ݓ = ஼ݓ =
1
2

×
1
6

+
1
2

×
5
11

≈ 0.311, ஻ݓ =
1
2

×
4
6

+
1
2

×
1
11

≈ 0.379

– Now B is better than A!
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C1 C2

A 1 5

B 4 1

C 1 5



Methods based on outranking relations

q Basic question: is there enough preference information / evidence
to state that an alternative is at least as good as some other
alternative?

q I.e., does an alternative outrank some other alternative?
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Indifference and preference thresholds divide
the measurement scale into three parts
q If the difference between the criterion-specific

performances of A and B is below a pre-
defined indifference threshold, then A and
B are ”equally good” w.r.t. this criterion

q If the difference between the criterion-specific
performances of A and B is above a pre-
defined preference threshold, then A is
preferred to B w.r.t this criterion

q Between indifference and preference
thresholds, the DM is uncertain about
preference
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PROMETHEE I & II

q In PROMETHEE methods, the degree
to which alternative k is preferred to l
is

෍ ௜ݓ
௡

௜ୀଵ
,݇)௜ܨ ݈) ≥ 0,

where
– ௜ݓ is the weight of criterion i
– ,݇)௜ܨ ݈) =1, if k is preferred to l w.r.t. criterion i,
– ,݇)௜ܨ ݈) =0, if the DM is indifferent between k

and l w.r.t. criterion i, or l is preferred to k
– ,݇)௜ܨ ݈) ∈ (0,1), if preference between k and l

w.r.t. criterion i is uncertain
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PROMETHEE I & II
q PROMETHEE I: k is preferred to k’, if

෍ ෍ ,݇)௜ܨ௜ݓ ݈)
௡

௜ୀଵ

 

௟ஷ௞
> ෍ ෍ ,′݇)௜ܨ௜ݓ ݈)

௡

௜ୀଵ

 

௟ஷ௞ᇱ

෍ ෍ ,݈)௜ܨ௜ݓ ݇)
௡

௜ୀଵ

 

௟ஷ௞
< ෍ ෍ ,݈)௜ܨ௜ݓ ݇′)

௡

௜ୀଵ

 

௟ஷ௞ᇱ

q PROMETHEE II: k is preferred to k’, if

௡௘௧ܨ ݇ = ෍ ෍ ,݇)௜ܨ]௜ݓ ݈)
௡

௜ୀଵ
− [(݇,݈)௜ܨ

 

௟ஷ௞
> ෍ ෍ ,′݇)௜ܨ]௜ݓ ݈)

௡

௜ୀଵ
− ,݈)௜ܨ ݇′)]

 

௟ஷ௞ᇱ
= ௡௘௧ܨ ݇′
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There is more
evidence in
favor of k than k’

There is less
evidence
against k than k’

The ”net evidence” for
k is larger than for k’



PROMETHEE: Example
Revenue Market share

x1 1M€ 10%

x2 0.5M€ 20%

x3 0 30%

Indiff. threshold 0 10%

Pref. threshold 0.5M€ 20%

Weight 1 1

Revenue F1 Market share
F2

Weighted
Fw=w1F1+w2F2

x1, x2 1 0 1

x2, x1 0 0 0

x1, x3 1 0 1

x3, x1 0 1 1

x2, x3 1 0 1

x3, x2 0 0 0

10% 20%0

ଶܨ

1

0

0.5M€0

ଵܨ

1

0



PROMETHEE I: Example
q PROMETHEE I:

– ଵݔ is preferred to ଶ, ifݔ
෍ ௜ܨ ,ଵݔ ଶݔ + ௜ܨ ,ଵݔ ଷݔ

ଶ

௜ୀଵ
ୀଵାଵୀଶ

> ෍ ௜ܨ ଶݔ ଵݔ, + ௜ܨ ଶݔ , ଷݔ
ଶ

௜ୀଵ
ୀ଴ାଵୀଵ

෍ ௜ܨ ,ଶݔ ଵݔ + ௜ܨ ,ଷݔ ଵݔ
ଶ

௜ୀଵ
ୀ଴ାଵୀଵ

< ෍ ௜ܨ ,ଵݔ ଶݔ + ௜ܨ ଷݔ , ଶݔ
ଶ

௜ୀଵ
ୀଵା଴ୀଵ

– ଵݔ is not preferred to ଶݔ due to the latter condition
– ଶݔ is not preferred to ଵݔ due to both conditions
– ଵݔ is preferred to ଷݔ

– ଶݔ is not preferred to ଷݔ and vice versa

q Note: preferences are not transitive
– ଵݔ ≻ ଶݔ~ଷݔ ⇏ ଵݔ ≻ ଶݔ
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F1 F2 Fw

x1, x2 1 0 1

x2, x1 0 0 0

x1, x3 1 0 1

x3, x1 0 1 1

x2, x3 1 0 1

x3, x2 0 0 0



PROMETHEE I: Example (Cont’d)

q PROMETHEE I is also prone to rank
reversals:

– Remove ଶݔ

– Then,

෍ ௜ܨ ,ଵݔ ଷݔ
ଶ

௜ୀଵ
ୀଵ

≯ ෍ ௜ܨ ,ଷݔ ଵݔ
ଶ

௜ୀଵ
ୀଵ

෍ ௜ܨ ,ଷݔ ଵݔ
ଶ

௜ୀଵ
ୀଵ

≮ ෍ ௜ܨ ,ଵݔ ଷݔ
ଶ

௜ୀଵ
ୀଵ

→ ଵݔ is no longer preferred to ଷݔ
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F1 F2 Fw

x1, x2 1 0 1

x2, x1 0 0 0

x1, x3 1 0 1

x3, x1 0 1 1

x2, x3 1 0 1

x3, x2 0 0 0



PROMETHEE II: Example

q The ”net flow” of alternative ௝ݔ

௡௘௧ܨ ௝ݔ = ෍ ௝ݔ)௪ܨ] −(௞ݔ, [(௝ݔ,௞ݔ)௪ܨ
 

௞ஷ௝

– ௡௘௧ܨ ଵݔ = 1 − 0 + 1 − 1 = 1
– ௡௘௧ܨ ଶݔ = 0 − 1 + 1 − 0 = 0
– ௡௘௧ܨ ଷݔ = 1 − 1 + 0 − 1 = −1

→ ଵݔ ≻ ଶݔ ≻ ଷݔ
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F1 F2 Fw

x1, x2 1 0 1

x2, x1 0 0 0

x1, x3 1 0 1

x3, x1 0 1 1

x2, x3 1 0 1

x3, x2 0 0 0



PROMETHEE II: Example (Cont’d)

q PROMETHEE II is also prone to rank reversals
– Add two altrenatives that are equal to x3 in both criteria.

Then, x2 becomes the most preferred:
௡௘௧ܨ ଵݔ = 1 − 0 + 3 × 1− 1 = 1
௡௘௧ܨ ଶݔ = 0− 1 + 3 × 1 − 0 = 2
௡௘௧ܨ ଷ:ହݔ = 1 − 1 + 0− 1 = −1

– Add two alternatives that are equal to x1 in both criteria.
Then, x2 becomes the least preferred:
௡௘௧ܨ ଵ,ସ,ହݔ = 1− 0 + 1 − 1 + 2 × (0− 0) = 1

௡௘௧ܨ ଶݔ = 3 × 0− 1 + 1 − 0 = −2
௡௘௧ܨ ଷݔ = 3 × 1− 1 + 0 − 1 = −1

– Remove x2. Then, x1 and x3 are equally preferred.
௡௘௧ܨ ଵݔ = ௡௘௧ܨ ଷݔ = 1 − 1 = 0
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F1 F2 Fw

x1, x2 1 0 1

x2, x1 0 0 0

x1, x3 1 0 1

x3, x1 0 1 1

x2, x3 1 0 1

x3, x2 0 0 0



Summary

q AHP and outranking methods are commonly used for supporting
multiattribute decision-making

q Unlike MAVT (and MAUT), these methods do not build on the
axiomatization of preferences →

– Rank reversals
– Preferences are not necessarily transitive

q Elicitation of model parameters can be difficult
– Weights have no clear interpretation
– In outranking methods, statement ”I prefer 2€ to 1€” and ”I prefer 3€ to 1€” are both

modeled with the same number (1); to make a difference, indifference and
preference thresholds need to be carefully selected
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