Decision making and problem solving ecture 9

- Analytic Hierarchy Process
- Outranking methods

Motivation

\square When alternatives are evaluated w.r.t. multiple attributes / criteria, decision-making can be supported by methods of

- Multiattribute value theory (certain attribute-specific performances)
- Multiattribute utility theory (uncertain attribute-specific performances)
\square MAVT and MAUT have a strong axiomatic basis
\square Yet, other popular multicriteria methods exist

Analytic Hierarchy Process (AHP)

] Thomas L. Saaty (1977, 1980)
\square Enormously popular

- Thousands of reported applications
- Dedicated conferences and scientificjournals
\square Several decision support tools
- Expert Choice, WebHipre etc.
\square Not based on the axiomatization of preferences - therefore remains controversial

Problem structuring in AHP

- Objectives, subobjectives / criteria, and alternatives are represented as a hierarchy of elements (cf. value tree)

Aalto University School of Science

Local priorities

- For each objective / sub-objective, a local priority vector is determined to reflect the relative importance of those elements placed immediately below the objective / sub-objective
- Pairwise comparisons:
- For (sub-)objectives: "Which sub-objective / criterion is more important for the attainment of the objective? How much more important is it?"
- For alternatives: "Which alternative contributes more to the attainment of the criterion? How much more does it contribute?"
- Responses on a verbal scale correspond to

Verbal statement	Scale	
	1-to-9	Balanced
Equally important		
	1	1.00
Slightly more important	2	1.22
-	3	1.50
Strongly more important	4	1.86
-	5	2.33
Very strongly more important	6	3.00
-	7	4.00
Extremely more important	8	5.67
	9	9.00

Balanced								
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$\mathrm{w}_{1}=1-\mathrm{w}_{2}$								

Aalto University School of Science

Pairwise comparison matrix

- Weight ratios $r_{i j}=\frac{w_{i}}{w_{j}}$ form a pairwise comparison matrix A :

Incosistency in pairwise comparison matrices

\square Problem: pairwise comparisons are not necessarily consistent
\square E.g., if learning is slightly more importannt (3) than college preparation, which is strongly more important (5) than school life, then learning should be 3×5 times more important than school life \ldots but this is impossible with the applied scale
\rightarrow Weights need to be estimated

Local priority vector

- The local priority vector w (=estimated weights) is obtained by normalizing the eigenvector corresponding to the largest eigenvalue of matrix A :

$$
\begin{gathered}
A w=\lambda_{\text {max }} w, \\
w:=\frac{1}{\sum_{i=1}^{n} w_{i}} w .
\end{gathered}
$$

- Matlab:
- [v,lambda]=eig(A) returns the eigenvectors and eigenvalues of A
$\gg \operatorname{real}(\mathrm{v}(:, 1)) /$ sum $($ real $(\mathrm{v}(:, 1)))$
ans $=$
$\quad 0.1571$
$\quad 0.5936$
$\quad 0.2493$

	Learning			W
	A	B	C	
A	1	$1 / 3$	$1 / 2$	0.16
B	3	1	3	0.59
C	2	$1 / 3$	1	0.25

Only one eigenvector with all real elements: $(0.237,0.896,0.376) \rightarrow$ normalized eigenvector $w=(0.16$, $0.59,0.25)$.

```
> A=[lllllu.5; 3 1 3; 2 1/3 1]
A =
\begin{tabular}{lll}
1.0000 & 0.3333 & 0.5000 \\
3.0000 & 1.0000 & 3.0000 \\
2.0000 & 0.3333 & 1.0000
\end{tabular}
```

>> [$\mathrm{v}, \mathrm{l}]=\mathrm{eig}(\mathrm{A})$

Local priority vectors = "weights"

	Learning			w		Friends			W
	A	B	C			A	B	C	
A	1	1/3	1/2	0.16	A	1	1	1	0.33
B	3	1	3	0.59	B	1	1	1	0.33
C	2	1/3	1	0.25	C	1	1	1	0.33
	School life			W		Voc. training			W
	A	B	C			A	B	C	
A	1	5	1	0.45	A	1	9	7	0.77
B	1/5	1	1/5	0.09	B	1/9	1	5	0.05
C	1	5	1	0.46	C	1/7	1/5	1	0.17
	College prep.			W		Music classes			W
	A	B	C			A	B	C	
A	1	1/2	1	0.25	A	1	6	4	0.69
B	2	1	2	0.50	B	1/6	1	1/3	0.09
C	1	1/2	1	0.25	C	1/4	3	1	0.22

	L	F	SL	VT	CP	MC	W
Learning	1	4	3	1	3	4	0.32
Friends	$1 / 4$	1	7	3	$1 / 5$	1	0.14
Schoo life	$1 / 3$	$1 / 7$	1	$1 / 5$	$1 / 5$	$1 / 6$	0.03
Voc. Training	1	$1 / 3$	5	1	1	$1 / 3$	0.13
College prep.	$1 / 3$	5	5	1	1	3	0.24
Music classes	$1 / 4$	1	6	3	$1 / 3$	1	0.14

Consistency checks

- The consistency of the pairwise comparison matrix A is studied by comparing the consistency index (Cl) of A to the average consistency index $R I$ of a random pairwise comparison matrix:

$$
C I=\frac{\lambda_{\max }-n}{n-1}, \quad C R=\frac{C I}{R I}
$$

n	3	4	5	6	7	8	9	10
RI	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49

- Rule of thumb: if $\mathrm{CR}>0.10$, comparisons are so inconsistent that they should be revised

A"

Aalto University

 School of ScienceThree alternatives, $n=3$:

- Learning: $\lambda_{\text {max }}=3.05, C R=0.04$
- Friends: $\lambda_{\text {max }}=3.00, C R=0$
\square School life: $\lambda_{\max }=3.00, C R=0$
\square Voc. training $\lambda_{\max }=3.40, C R=0.34$
College prep: $\lambda_{\text {max }}=3.00, C R=0$
- Music classes: $\lambda_{\max }=3.05, C R=0.04$

Six attributes, $n=6$:

- All attributes: $\lambda_{\max }=7.42, C R=0.23$
>> real (max (1))
ans $=$
$3.0536 \quad-0.0268 \quad-0.0268$
21.3.2019

Total priorities

- The total (overall) priorities are obtained recursively:

$$
w_{k}=\sum_{i=1}^{n} w_{i} w_{k}^{i}
$$

where

- w_{i} is the total priority of criterion i,
- w_{k}^{i} is the local priority of criterion / alternative k with regard to criterion i,
- The sum is computed over all criteria i below which criterion / alternative k is positioned in the hierarchy

	Learning			W		Friends			w	
	A	B	C			A	B	C		
A	1	$1 / 3$	$1 / 2$	0.16		A	1	1	1	0.33
B	3	1	3	0.59		B	1	1	1	0.33
C	2	$1 / 3$	1	0.25		C	1	1	1	0.33

A^{39}

Aalto University

 School of Science$$
w_{A}=\sum_{i=1}^{6} w_{i} w_{k}^{i}=0.32 \cdot 0.16+0.14 \cdot 0.33+\ldots
$$

Total priorities

	Learning			w		Friends			w
	A	B	C			A	B	C	
A	1	1/3	1/2	0.16	A	1	1	1	0.33
B	3	1	3	0.59	B	1	1	1	0.33
C	2	1/3	1	0.25	C	1	1	1	0.33
	School life			w		Voc. training			w
	A	B	C			A	B	C	
A	1	5	1	0.45	A	1	9	7	0.77
B	1/5	1	1/5	0.09	B	1/9	1	5	0.05
C	1	5	1	0.46	C	1/7	1/5	1	0.17
	College prep.			w		Music classes			w
	A	B	C			A	B	C	
A	1	1/2	1	0.25	A	1	6	4	0.69
B	2	1	2	0.50	B	1/6	1	1/3	0.09
C	1	1/2	1	0.25	C	1/4	3	1	0.22

	L	F	SL	VT	CP	MC	w									
Learning	1	4	3	1	3	4	0.32									
Friends	$1 / 4$	1	7	3	$1 / 5$	1	0.14									
Schoo life	$1 / 3$	$1 / 7$	1	$1 / 5$	$1 / 5$	$1 / 6$	0.03									
Voc. Training	1	$1 / 3$	5	1	1	$1 / 3$	0.13									
College prep.	$1 / 3$	5	5	1	1	3	0.24									
Music classes	$1 / 4$	1	6	3	$1 / 3$	1	0.14									
:---	:---:	:---:	:---:	:---:	:---:	:---:	:---:									
	0.32	0.14	0.03	0.13	0.24	0.14										
	L	F	SL	VT	CP	MC	Total w									
A	0.16	0.33	0.45	0.77	0.25	0.69	0.37									
B	0.59	0.33	0.09	0.05	0.50	0.09	$\mathbf{0 . 3 8}$									
C	0.25	0.33	0.46	0.17	0.25	0.22	0.25									

E.g.,
$\mathrm{w}_{\mathrm{B}}=0.32^{*} 0.59+0.14^{*} 0.33+0.03^{*} 0.09+$ $0.13^{*} 0.05+0.24^{*} 0.50+0.14^{*} 0.09$

Problems with AHP

- Rank reversals: the introduction of an additional alternative may change the relative ranking of the other alternatives
- Example:
- Alternatives A and B are compared w.r.t. two "equally important" criteria C_{1} and $\mathrm{C}_{2}\left(\mathrm{w}_{\mathrm{C} 1}=\mathrm{w}_{\mathrm{C} 2}=0.5\right)$
- A is better than B :

$$
w_{A}=\frac{1}{2} \times \frac{1}{5}+\frac{1}{2} \times \frac{5}{6} \approx 0.517, \quad w_{B}=\frac{1}{2} \times \frac{4}{5}+\frac{1}{2} \times \frac{1}{6} \approx 0.483
$$

- Add C which is identical to A:

	C_{1}	C_{2}
A	1	5
B	4	1
C	1	5

$$
w_{A}=w_{C}=\frac{1}{2} \times \frac{1}{6}+\frac{1}{2} \times \frac{5}{11} \approx 0.311, \quad w_{B}=\frac{1}{2} \times \frac{4}{6}+\frac{1}{2} \times \frac{1}{11} \approx 0.379
$$

- Now B is better than A!

Methods based on outranking relations

- Basic question: is there enough preference information / evidence to state that an alternative is at least as good as some other alternative?
I.e., does an alternative outrank some other alternative?

Indifference and preference thresholds divide the measurement scale into three parts

\square If the difference between the criterion-specific performances of A and B is below a predefined indifference threshold, then A and B are "equally good" w.r.t. this criterion

- If the difference between the criterion-specific performances of A and B is above a predefined preference threshold, then A is preferred to B w.r.t this criterion

Between indifference and preference thresholds, the DM is uncertain about preference

Indifference threshold

Preference threshold

PROMETHEE I \& II

- In PROMETHEE methods, the degree to which alternative k is preferred to I is

$$
\sum_{i=1}^{n} w_{i} F_{i}(k, l) \geq 0
$$

where

- $\quad w_{i}$ is the weight of criterion i
- $\quad F_{i}(k, l)=1$, if k is preferred to l w.r.t. criterion i ,
- $\quad F_{i}(k, l)=0$, if the DM is indifferent between k and l w.r.t. criterion i , or l is preferred to k
- $\quad F_{i}(k, l) \in(0,1)$, if preference between k and l w.r.t. criterion i is uncertain

PROMETHEE I \& II

- PROMETHEE I: k is preferred to k^{\prime}, if

$$
\begin{aligned}
& \sum_{l \neq k} \sum_{i=1}^{n} w_{i} F_{i}(k, l)>\sum_{l \neq k^{\prime}} \sum_{i=1}^{n} w_{i} F_{i}\left(k^{\prime}, l\right) \\
& \sum_{l \neq k} \sum_{i=1}^{n} w_{i} F_{i}(l, k)<\sum_{l \neq k} \sum_{i=1}^{n} w_{i} F_{i}\left(l, k^{\prime}\right)
\end{aligned}
$$

There is more evidence in favor of k than k^{\prime}

There is less evidence

- PROMETHEE II: k is preferred to k, if

$$
F_{\text {net }}(k)=\sum_{l \neq k} \sum_{i=1}^{n} w_{i}\left[F_{i}(k, l)-F_{i}(l, k)\right]>\sum_{l \neq k^{\prime}} \sum_{i=1}^{n} w_{i}\left[F_{i}\left(k^{\prime}, l\right)-F_{i}\left(l, k^{\prime}\right)\right]=F_{\text {net }}\left(k^{\prime}\right)
$$

Weight	1	1

	Revenue F_{1}	Market share F_{2}	Weighted $F_{w}=w_{1} F_{1}+w_{2} F_{2}$
x^{1}, x^{2}	1	0	1
x^{2}, x^{1}	0	0	0
x^{1}, x^{3}	1	0	1
x^{3}, x^{1}	0	1	1
x^{2}, x^{3}	1	0	1
x^{3}, x^{2}	0	0	0

PROMETHEE I: Example

- PROMETHEE I:

- x^{1} is preferred to x^{2}, if

	F_{1}	F_{2}	F_{w}
x^{1}, x^{2}	1	0	1
x^{2}, x^{1}	0	0	0
x^{1}, x^{3}	1	0	1
x^{3}, x^{1}	0	1	1
x^{2}, x^{3}	1	0	1
x^{3}, x^{2}	0	0	0

$$
\begin{aligned}
& \underbrace{\sum_{=1+1=2}^{2}\left(F_{i}\left(x^{1}, x^{2}\right)+F_{i}\left(x^{1}, x^{3}\right)\right)}_{i=1}>\underbrace{\sum_{i=0}^{2}\left(F_{i}\left(x^{2}, x^{1}\right)+F_{i}\left(x^{2}, x^{3}\right)\right)}_{=1=1} \\
& \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{2}, x^{1}\right)+F_{i}\left(x^{3}, x^{1}\right)\right)}_{=0+1=1}<\underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{1}, x^{2}\right)+F_{i}\left(x^{3}, x^{2}\right)\right)}_{=0+1=1} \\
&- x^{1} \text { is not preferred to } x^{2} \text { due to the latter condition } \\
&- x^{2} \text { is not preferred to } x^{1} \text { due to both conditions } \\
&- x^{1} \text { is preferred to } x^{3} \\
&- x^{2} \text { is not preferred to } x^{3} \text { and vice versa }
\end{aligned}
$$

\square Note: preferences are not transitive
$-x^{1}>x^{3} \sim x^{2} \nRightarrow x^{1}>x^{2}$

PROMETHEE I: Example (Cont'd)

- PROMETHEE I is also prone to rank reversals:
- Remove x^{2}
- Then,

$$
\begin{aligned}
& \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{1}, x^{3}\right)\right)}_{=1} \ngtr \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{3}, x^{1}\right)\right)}_{=1} \\
& \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{3}, x^{1}\right)\right)}_{=1} \nless \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{1}, x^{3}\right)\right)}_{=1}
\end{aligned}
$$

$\rightarrow x^{1}$ is no longer preferred to x^{3}

PROMETHEE II: Example

- The "net flow" of alternative x^{j}

$$
\begin{aligned}
F_{n e t}\left(x^{j}\right) & =\sum_{k \neq j}\left[F_{w}\left(x^{j}, x^{k}\right)-F_{w}\left(x^{k}, x^{j}\right)\right] \\
-\quad F_{n e t}\left(x^{1}\right) & =(1-0)+(1-1)=1 \\
- & F_{n e t}\left(x^{2}\right)=(0-1)+(1-0)=0 \\
- & F_{n e t}\left(x^{3}\right)=(1-1)+(0-1)=-1
\end{aligned}
$$

$$
\rightarrow x_{1}>x_{2}>x_{3}
$$

	F_{1}	F_{2}	F_{w}
x^{1}, x^{2}	1	0	1
x^{2}, x^{1}	0	0	0
x^{1}, x^{3}	1	0	1
x^{3}, x^{1}	0	1	1
x^{2}, x^{3}	1	0	1
x^{3}, x^{2}	0	0	0

PROMETHEE II: Example (Cont’d)

- PROMETHEE II is also prone to rank reversals
- Add two altrenatives that are equal to x^{3} in both criteria. Then, x^{2} becomes the most preferred:

$$
\begin{aligned}
& F_{n e t}\left(x^{1}\right)=(1-0)+3 \times(1-1)=1 \\
& F_{n e t}\left(x^{2}\right)=(0-1)+3 \times(1-0)=2 \\
& F_{n e t}\left(x^{3: 5}\right)=(1-1)+(0-1)=-1
\end{aligned}
$$

- Add two alternatives that are equal to x^{1} in both criteria. Then, x^{2} becomes the least preferred:

$$
\begin{gathered}
F_{n e t}\left(x^{1,4,5}\right)=(1-0)+(1-1)+2 \times(0-0)=1 \\
F_{n e t}\left(x^{2}\right)=3 \times(0-1)+(1-0)=-2 \\
F_{n e t}\left(x^{3}\right)=3 \times(1-1)+(0-1)=-1
\end{gathered}
$$

- Remove x^{2}. Then, x^{1} and x^{3} are equally preferred.

$$
F_{n e t}\left(x^{1}\right)=F_{n e t}\left(x^{3}\right)=(1-1)=0
$$

Summary

\square AHP and outranking methods are commonly used for supporting multiattribute decision-making
\square Unlike MAVT (and MAUT), these methods do not build on the axiomatization of preferences \rightarrow

- Rank reversals
- Preferences are not necessarily transitive
- Elicitation of model parameters can be difficult
- Weights have no clear interpretation
- In outranking methods, statement "I prefer $2 €$ to $1 €$ " and "I prefer $3 €$ to $1 €$ " are both modeled with the same number (1); to make a difference, indifference and preference thresholds need to be carefully selected

