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Recap 
Visual patterns



Summary on glyph design

• Certain visual features “pop out” (pre-attentive features)

• Data variables should (usually) be mapped to pre-

attentive features (they are processed fast)

• Restrictions (if you want pre-attentive design):

• conjunction searches are usually not pre-attentive

• one can effectively display only limited number of visual 

variables, with limited accuracy

• integral visual dimensions interfere with each other: you 

should use separable dimensions instead

!3



A model for perceptual 
processing

1.Parallel processing to extract low-
level properties of the visual scene


• rapid parallel processing

• extraction of features, 
orientation, colour, texture and 
movement patterns


• iconic store

• bottom-up, data driven 
processing


2.Pattern perception 
• slow serial processing

• involves both working memory 
and long-term memory


• arbitrary symbols relevant

• different pathways for object 
recognition and visually guided 
motion


3.Visual working memory

!4 Ware 2013



Patterns in 2D data
• Exploratory visualization is based on finding patterns from data


• Oversimplification: the patterns are recognized between pre-
attentive processing and higher level object perception


• Relevant questions:

• How do we see groups?

• How can 2D space be divided into perceptually distinct regions?

• When are two patterns similar?

• When do two different elements appear to be related?


• Patterns may be perceived even where there is only visual noise

!5



Gestalt laws
• Gestalt is form in German

• The Gestalt School of 

Psychology (1912 onwards) 
investigated the way we 
perceive form


• They produced several Gestalt 
laws (laws of organisation) of 
pattern perception


• The Gestalt laws translate 
directly into design principles of 
visual displays


• Many of the rules seem obvious, 
but they are violated often

BRADLEY AND PETRY 

tion and depth, and a slight difference in apparent size of the front and 
back faces of the cube. 

The subjective Necker cube (Bradley, Dumais, and Petry, 1976) is a 
three-dimensional variation of a phenomenon, long known, called sub- 
jective contour (Schumann, 1904). A standard configuration for the per- 
ception of subjective contour is presented in Figure 2 (Kanizsa, 1955). 
The 'sides' of a triangle are perceived as faint contours or edges extending 
from one black disc to the next. As with the subjective Necker cube, the 
perception of these contours is illusory. Further, the triangle bounded by 
these subjective contours appears slightly brighter than the background 
on which the triangle rests, even though the reflectances are equal. Fig- 
ures 1 and 2 are similar in that they both produce phenomenally complete 
objects (cube, triangle) that appear brighter than their backgrounds and 
are bounded by illusory contours between the inducing elements. 

However, in one important respect the visual arrays in Figures 1 and 2 
are different. In Figure 1, an alternative perceptual organization is pos- 
sible, whereby the previously noted subjective contours disappear, to be 
replaced by a new set of illusory contours elsewhere in the display. The 

w ' 

Figure 1. The subjective Necker cube. A phenomenally complete Necker cube 
can be seen overlying a white surface and eight black discs; so viewed, illusory 
contours corresponding to the bars of the cube can be seen extending between 
the discs. The illusory bars of the cube disappear when the discs are seen 
as 'holes' in an interposing surface, through which the comers of a partially 
occluded cube are viewed; curved subjective contours are then seen demarcating 
the interior edges of the 'holes' 

254 
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Gestalt laws
• Similarity

• Good continuation

• Proximity

• Symmetry

• Closure

• Relative size

• Common fate


- some “new” motion-based Gestalt(-like) laws:

• Patterns from motion

• Animation and perception of shapes

• Causality

!7



Similarity
• Similar objects appear to be grouped together

• When designing a grid layout of a data set, code rows 

and/or columns using low-level visual channel properties, 
such as colour and texture

integral dimensions

emphasise overall pattern

separable dimensions

segment rows and columns!8



Good continuation
• Visual complete objects are more likely to be constructed 

from visual elements that are smooth and continuous, 
rather than ones that contain abrupt changes in direction


• In networks, lines connecting nodes should be smooth 
and continuous, so the nodes are easily identified

The pattern on the left is perceived as a curve overlapping a rectangle 
(centre) rather than 2 irregular shapes touching (right).

Ware 2013!9



Good continuation
• Connectedness is one of the most 

powerful grouping principles

• It is easier to perceive connections when 

contours run smoothlyGood continuation

60

Good continuation (continued) [Gestalt laws] (30)

• Connectedness is maybe the most powerful of the grouping principles

• It is easier to perceive connections when contours connect smoothly:

Ware 2013!10



Proximity
• Things that are near to each other appear to be grouped 

together

• Proximity is one of the most powerful gestalt laws

• Place the data elements into proximity to emphasise 

connections between them

Proximity or nearness

62

Proximity or nearness [Gestalt laws] (32)

Things that are near to each other appear to be grouped together.

• Proximity is one of the most powerful of the Gestalt laws

• Place the data elements in proximity in a display to emphasize

relationships between them

!11



Symmetry
• Symmetrically 

arranged pairs of lines 
are perceived together


• Use symmetry to make 
pattern comparisons 
easier


• Symmetrical relations 
should be arranged on 
horizontal or vertical 
axes (as symmetries 
are more easily 
perceived), unless a 
framing pattern is used 

Ware 2013!12



Closure
• A closed contour tends to be seen as 

an object

• There is a perceptual tendency to close 

contours that have gaps in them

• When a closed contour is seen, there is 

a very strong perceptual tendency of 
dividing space into a region enclosed 
by the contour (a common region) and 
a region outside the contour


• In window-based interface strong 
framing effects inhibit between window 
comparisons: related items should not 
be based in separate windows

Closure

64

Closure [Gestalt laws] (34)

Closed controus tend to be seen as objects. There is a tendency to close

controus that have gaps in them.

• Closed controus are extremely important in segmenting windows-based

interface

• The strong framing effect inhibits between-window-comparisons: related

information should not be placed in separate windows

!13



Relative size
• Smaller components of a pattern tend to be perceived as 

an object

Rubin’s reversible 
face-vase figure

(multistability) Ware 2013!14



Common fate

• Relative motion is an 
extremely efficient method of 
showing patterns from data


• Data points oscillate around 
center point


• Variables: frequency, phase, 
amplitude of motion


• Phase is the most effective 
variable

!15



Animation and perception 
of shape

• Gestalt laws also work for animated images: structures 
and patterns are seen from partial data (as with static 
images)


• Mystery lights in the dark:

!16



Causality
• Launching: an object is perceived to set another into motion

• Perception of launching requires precise timing (delays less than 
0.07-0.16 s)

• Already infants can perceive causal relations, such as launching

!17

No delay

Delay of 0.2 s
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Reading this text might be 
difficult because of the famous 
Finnish politician stealing your 
attention. Motion and especially 
appearance of a new object 
attracts attention. Human faces 
seem to be especially effective.

This seems right and makes 
ecological sense. When early 
man was outside a cave, 
awareness of emerging objects 
in the periphery would have had 
clear survival value. Such 
movement may have signalled 
immediate and deadly danger.

Sometimes it is difficult for you 
to guide your attention
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Parallel coordinates

High-dimensional data
Parallel coordinates
• line graphs: x -axis are individual dimensions
• each data point is a line
• somewhat counter-intuitive and may result in cluttered picture
• order of dimensions matter
• but may reveal information that is not visible in other designs
• works better as an interactive tool
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Big data: too much 
for one view?

Dynamic visualization


• interactive navigation in information space

• data reduction techniques 

    (clustering, dimensionality reduction)



Interactive visualisations
• Interactive visualisations can be characterised by feedback loops

!22

• Three levels of feedback:

1. visual-manual control loop 

(data manipulation)

2. view refinement and 

navigation control loop 
(exploration and 
navigation)  
[discussed here] 

3. problem solving loop


• Relevant time scales:

1. ~0.1 s (psychological 

moment)

2. ~1 s (unprepared response)

3. ~10 s (unit task)



Way-finding in real spaces
• Seigel and White (1975):


1. Key landmarks (e.g., post office, church) are learned 
with no spatial understanding (declarative knowledge)


2. Procedural knowledge about routes from a location to 
another is learned, landmarks act as decision points 
(e.g., turn left at church; procedural knowledge)


3. Cognitive map is formed (e.g., the church is about 1 
kilometre north from train station; cognitive spatial maps)


• Cognitive maps form more rapidly if they have access to maps


• Lessons to accelerate formation of cognitive maps: provide 
distinctive landmarks (focus) and overview maps (context)

!23



Navigation + focus&context
• Focus+context problem: how to find details from a larger context in 

information space. Or, how to navigate efficiently in abstract spaces.


• Effective view navigation (Furnas 1997): how to present information such 
that the traversal time from one node to another is minimised; and the 
network is navigable (all targets should have a good residue in each node)


• There are several visual techniques to help this (providing user overview, 
position and landmarks):

• Elision techniques. Part of the structure are hidden until they are 

needed.

• Distortion techniques. Magnify regions of interest, decrease space of 

irrelevant regions.

• Rapid zooming techniques. User zooms in and out of regions of interest.

• Multiple windows. Some windows show overview and others content.

• Micro-macro readings. A good static visualisation supports 

focus+context. 

!24



Showing focus&context 
simultaneously in 2D space

Mac OSX Dock

Fisheye distortion Simultaneous linear scales

(works well when animated – why?)



Effective View Navigation  
in abstract information space
• Theoretical view by Furnas (1997) 

https://doi.org/10.1145/258549.258800


• The information landscape can be thought as a tree 
or network G


• Effective View Navigation in G, EVN(G): how to 
organise information with links so that we have 

• small views: number of outgoing links from a view 
(maximal out-degree, MOD) is small;


• short paths: the expected cost of traversal 
(number of steps, defined by network diameter, 
DIA) is minimised;


• all targets have a good residue ('scent' of target) 
in each node, and outlink-info is small

• requires good semantic classification of nodes
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Some Efficiently View Traversable Structures

We begin by considering example structures that have good
EVT performance, based on classes of graphs that have the
proper degree and diameter properties.

•• example 2: local viewing of a balanced tree.
Trees are commonly used to represent information, from
organizational hierarchies, to library classification sys-
tems, to menu systems. An idealized version (a balanced
regular tree) appears in Figure 2(a). A typical tree viewing
strategy makes visible from a given node its parent and its
children (b), i.e., the viewing structure essentially mirrors
the logical structure. Here, regardless of the total size, n,
of the tree, the outdegree of each node in the viewing
graph is a constant, one more than the branching factor,
and we have nicely satisfied EVT1. The diameter of the
balanced tree is also well behaved, being twice the depth
of the tree, which is logarithmic in the size of the tree, and
hence O(log n). Thus,

EVT( BALANCED-REGULAR-TREEn ) = ( O(1), O(log n) ) ••

•• example 3: local viewing of a hypercube
Consider next a k-dimensional hypercube (not pictured)
that might be used to represent the structure of a factori-
ally designed set of objects, where there are k binary fac-
tors (cf. a simple but complete relational database with k
binary attributes), e.g., a set of objects that are either big
or small, red or green, round or square, in all various com-
binations. A navigational interface to such a data structure
could give, from a node corresponding to one combina-
tion of attributes, views simply showing its neighbors in
the hypercube, i.e., combinations differing in only one
attribute. Whether this would be a good interface for other
reasons or not, a simple analysis reveals that at least it
would have very reasonable EVT behavior:

EVT( HYPERCUBEn ) = (O(log n), O(log n)). ••

The conclusion of examples 2 and 3 is simply that, if one
can coerce the domain into either a reasonably balanced
and regular tree, or into a hypercube, view traversal will
be quite efficient. Small views and short paths suffice
even for very large structures. Knowing a large arsenal of
highly EVT structures presumably will be increasingly
useful as we have to deal with larger and larger informa-
tion worlds.

Figure 2. An example of an Efficiently View Traversable
Structure (a) logical graph of a balanced tree, (b) in
gray, part of the viewing graph for giving local views
of the tree showing the outdegree is constant, (c) a
path showing the diameter to be O(log(n)).

(a) (b)

(c)

Fixing Non-EVT Structures

What can one do with an information structure whose logical
structure does not directly translate into a viewing graph that
is EVT? The value of separating out the viewing graph from
the logical graph is that while the domain semantics may dic-
tate the logical graph, the interface designer can often craft
the viewing graph. Thus we next consider a number of strate-
gies for improving EVT behavior by the design of good view-
ing graphs. We illustrate by showing several ways to improve
the view navigation of lists, then mentioning some general
results and observations.

•• example 4: fixing the list (version 1) - more dimensions
One strategy for improving the View Traversability of a
list is to fold it up into two dimensions, making a multi-
column list (Figure 3).The logical graph is the same (a),
but by folding as in (b) one can give views that show two
dimensional local neighborhoods (c). These local neigh-
borhoods are of constant size, regardless of the size of the
list, so the outdegree of the viewing graph is still constant,
but the diameter of the graph is now sublinear, being
related to the square-root of the length of the list, so we
have

EVT( MULTI-COLUMN-LISTn ) = ( O(1 ), O(sqrt(n) ).

This square-root reduction in diameter presumably
explains why it is common practice to lay out lists of
moderate size in multiple columns (e.g., the “ls” com-
mand in UNIX or a page of the phone book). The advan-
tage is presumably that the eye (or viewing window) has
to move a much shorter distance to get from one part to
another.4One way to think about what has happened is

4  Some really long lists, for example a metropolitan phone
book, are folded up in 3-D: multiple columns per page, and
pages stacked one upon another. We take this format for
granted, but imagine how far one would have to move from the
beginning to the end of the list if one only had 1D or 2D in
which to place all those numbers! A similar analysis explains
how Cone Trees [6] provide better traversability using 3-D.

Figure 3. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) the list is folded up in 2-D (c)
part of the viewing graph showing the 2-D view-neigh-
bors of Node6 in the list: out degree is O(1), (d) diame-
ter of viewing graph is now reduced to O(sqrt(n)). (e)
Unfolding the list, some view-neighbors of Node6 are
far away, causing a decrease in diameter.

(a) (d)

(c)(b)

(e)

Furnas Effective View Navigability November 26, 1996 2

text the logical structure graph would be some sort of web.
We will assume the logical graph is finite.

We capture a basic property of the interface to the informa-
tion structure in terms of the notion of a viewing graph (actu-
ally a directed graph) defined as follows. It has a node for
each node in the logical structure. A directed link goes from a
node i to node j if the view from i includes j (and hence it is
possible to view-traverse from i to j). Note that the viewing
graph might be identical to the logical graph, but need not be.
For example, it is permissible to include in the current view,
points that are far away in the logical structure (e.g., vari-
ously, the root, home page, top of the list).

The conceptual introduction of the viewing graph allows us
to translate many discussion of views and viewing strategies
into discussions of the nature of the viewing graph. Here, in
particular, we are interested in classes of viewing-graphs that
allow the efficient use of space and time resources during
view traversal, even as the structures get very large: Users
have a comparatively small amount of screen real estate and a
finite amount of time for their interactions. For view traversal
these limitations translate correspondingly into two require-
ments on the viewing graph. First, if we assume the structure
to be huge, and the screen comparatively small, then the user
can only view a small subset of the structure from her current
location. In terms of the viewing graph this means, in some
reasonable sense,

Requirement EVT1 (small views). The number of
out-going links, or out-degree, of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

A second requirement reflects the interaction time limitation.
Even though the structure is huge, we would like it to take
only a reasonable number of steps to get from one place to
another. Thus (again in some reasonable sense) we need,

Requirement EVT2 (short paths). The distance (in
number of links) between pairs of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

We will say that a viewing graph is Efficiently View Travers-
able (EVT) insofar as it meets both of these requirements.
There are many “reasonable senses” one might consider for
formalizing these requirements. For analysis here we will use
a worst case characterization. The Maximal Out-Degree
(MOD, or largest out-degree of any node) will characterize
how well EVT1 is met (smaller values are better), and the
Diameter (DIA, or longest connecting path required any-
where) will characterize how well EVT2 is met (again,
smaller is better). Summarized as an ordered pair,

EVT(G) = (MOD(G), DIA(G)),

we can use them to compare the traversability of various
classes of view-traversable information structures.

•• example 1: a scrolling list
Consider an ordered list, sketched in Figure 1(a). Its logi-
cal structure connects each item with the item just before
and just after it in the list. Thus the logical graph (b) is a

line graph. A standard viewer for a long list is a simple
scrolling window (c), which when centered on one line
(marked by the star), shows a number of lines on either
side. Thus a piece of the viewing graph, shown in (d), has
links going from the starred node to all the nearby nodes
that can be seen in the view as centered at that node. The
complete viewing graph would have this replicated for all
nodes in the logical graph.

This viewing graph satisfies the first requirement, EVT1,
nicely: Regardless of the length of the list, the view size,
and hence the out-degree of the viewing graph, is always
the small fixed size of the viewing window. The diameter
requirement of EVT2, however, is problematic. Pure view
traversal for a scrolling list happens by clicking on an
item in the viewing window, e.g., the bottom line. That
item would then appear in the center of the screen, and
repeated clicks could move all the way through the list.
As seen in (e), moving from one end of the list to the
other requires a number of steps linear in the size of the
list. This means that overall

EVT( SCROLLING-LISTn) = ( O(1), O(n) ), 3

and, because of the diameter term, a scrolling list is not
very Effectively View Traversable. This formalizes the
intuition that while individual views in a scrolling list
interface are reasonable, unaided scrolling is a poor inter-
action technique for even moderate sized lists of a few
hundred items (where scrollbars were a needed inven-
tion), and impossible for huge ones (e.g., billions, where
even scroll bars will fail). ••

DESIGN FOR EVT

Fortunately from a design standpoint, things need not be so
bad. There are simple viewing structures that are highly EVT,
and there are ways to fix structures that are not.

3 O(1) means basically “in the limit proportional to 1”, i.e.,
constant -- an excellent score. O(n) means “in the limit propor-
tional to n”-- a pretty poor score. O(log n) would mean “in the
limit proportional to log n”-- quite respectable.

Figure 1. (a) Schematic of an ordered list, (b) logical
graph of the list, (c) local window view of the list, (d)
associated part of viewing graph, showing that out
degree is constant, (e) sequence of traversal steps
showing the diameter of viewing graph is O(n).

(a) (b) (c) (d) (e)
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Some Efficiently View Traversable Structures

We begin by considering example structures that have good
EVT performance, based on classes of graphs that have the
proper degree and diameter properties.

•• example 2: local viewing of a balanced tree.
Trees are commonly used to represent information, from
organizational hierarchies, to library classification sys-
tems, to menu systems. An idealized version (a balanced
regular tree) appears in Figure 2(a). A typical tree viewing
strategy makes visible from a given node its parent and its
children (b), i.e., the viewing structure essentially mirrors
the logical structure. Here, regardless of the total size, n,
of the tree, the outdegree of each node in the viewing
graph is a constant, one more than the branching factor,
and we have nicely satisfied EVT1. The diameter of the
balanced tree is also well behaved, being twice the depth
of the tree, which is logarithmic in the size of the tree, and
hence O(log n). Thus,

EVT( BALANCED-REGULAR-TREEn ) = ( O(1), O(log n) ) ••

•• example 3: local viewing of a hypercube
Consider next a k-dimensional hypercube (not pictured)
that might be used to represent the structure of a factori-
ally designed set of objects, where there are k binary fac-
tors (cf. a simple but complete relational database with k
binary attributes), e.g., a set of objects that are either big
or small, red or green, round or square, in all various com-
binations. A navigational interface to such a data structure
could give, from a node corresponding to one combina-
tion of attributes, views simply showing its neighbors in
the hypercube, i.e., combinations differing in only one
attribute. Whether this would be a good interface for other
reasons or not, a simple analysis reveals that at least it
would have very reasonable EVT behavior:

EVT( HYPERCUBEn ) = (O(log n), O(log n)). ••

The conclusion of examples 2 and 3 is simply that, if one
can coerce the domain into either a reasonably balanced
and regular tree, or into a hypercube, view traversal will
be quite efficient. Small views and short paths suffice
even for very large structures. Knowing a large arsenal of
highly EVT structures presumably will be increasingly
useful as we have to deal with larger and larger informa-
tion worlds.

Figure 2. An example of an Efficiently View Traversable
Structure (a) logical graph of a balanced tree, (b) in
gray, part of the viewing graph for giving local views
of the tree showing the outdegree is constant, (c) a
path showing the diameter to be O(log(n)).

(a) (b)

(c)

Fixing Non-EVT Structures

What can one do with an information structure whose logical
structure does not directly translate into a viewing graph that
is EVT? The value of separating out the viewing graph from
the logical graph is that while the domain semantics may dic-
tate the logical graph, the interface designer can often craft
the viewing graph. Thus we next consider a number of strate-
gies for improving EVT behavior by the design of good view-
ing graphs. We illustrate by showing several ways to improve
the view navigation of lists, then mentioning some general
results and observations.

•• example 4: fixing the list (version 1) - more dimensions
One strategy for improving the View Traversability of a
list is to fold it up into two dimensions, making a multi-
column list (Figure 3).The logical graph is the same (a),
but by folding as in (b) one can give views that show two
dimensional local neighborhoods (c). These local neigh-
borhoods are of constant size, regardless of the size of the
list, so the outdegree of the viewing graph is still constant,
but the diameter of the graph is now sublinear, being
related to the square-root of the length of the list, so we
have

EVT( MULTI-COLUMN-LISTn ) = ( O(1 ), O(sqrt(n) ).

This square-root reduction in diameter presumably
explains why it is common practice to lay out lists of
moderate size in multiple columns (e.g., the “ls” com-
mand in UNIX or a page of the phone book). The advan-
tage is presumably that the eye (or viewing window) has
to move a much shorter distance to get from one part to
another.4One way to think about what has happened is

4  Some really long lists, for example a metropolitan phone
book, are folded up in 3-D: multiple columns per page, and
pages stacked one upon another. We take this format for
granted, but imagine how far one would have to move from the
beginning to the end of the list if one only had 1D or 2D in
which to place all those numbers! A similar analysis explains
how Cone Trees [6] provide better traversability using 3-D.

Figure 3. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) the list is folded up in 2-D (c)
part of the viewing graph showing the 2-D view-neigh-
bors of Node6 in the list: out degree is O(1), (d) diame-
ter of viewing graph is now reduced to O(sqrt(n)). (e)
Unfolding the list, some view-neighbors of Node6 are
far away, causing a decrease in diameter.

(a) (d)

(c)(b)

(e)
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Notes on Furnas' EVN paper 

• Theoretical view  ⇒  can be applied in very different cases


• Written in 1997, when WWW was relatively new

• now search engines are often more effective than 

navigation with explicit links

• further development: semantic web

• (in both, search is based on auxiliary metadata)


• Example of EVN in the web: Wikipedia

• organized (partly) with hierarchical categories

• rich additional cross linking


 



Furnas' 
fisheye view

• Introduced by Furnas in 1981, using 
text as an example. The concept 
can (and has been) generalised also 
to other data structures.


• Accessing large structures (like a 
text document or program code) by 
scrolling is slow. For example, it 
takes on average O(N) steps to 
scroll from one line of text to 
another, where N is the number of 
items (lines of text)


• Cost-knowledge characteristic 
function (CKCF) is the number of 
items (lines of text) that user can 
access as a function of steps (or 
time)

Furnas’ Fisheye view [Focus+context] (11)

• Furnas 1981 [Card et al. p. 312] (recall effective view navigation)

• Accessing large structures has a bad cost structure (i.e. it takes lots of

time):

– scrolling is slow

– it is sometimes necessary to use distant part of structures in

connection with the current parts (e.g. in programming)

• It takes in average O (N) steps to go from one line (document) to

another, where N is the total number of lines (documents)

• Fisheye view of tree structures: show the immediate surroundings in

detail and only higher level elements of the more distant structures
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Example: fisheye view of outline of Furnas’ 1981 paper [Focus+context] (15)

Original document:

Furnas 1981 [C 321].
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Furnas' fisheye view
Fisheye view [Focus+context] (12)

• Notation:

– . (focal point)

– D(.,x) (distance from focus), D(., .) = 0.

– Example: D(.,x) is the number of links intervening on the path

between two nodes

"point"

0

1

2

3

5

6 6 66 4 42

5

4

3 D(x,.)
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Furnas' fisheye view
Fisheye view (continued) [Focus+context] (13)

• Notation (continued):

– LOD(x) (level of detail).

– Example: LOD(x) = −D(r,x), where r is the root of the tree

"point"

3

2

1

2

2

3 3 33 3 33

2

1

−LOD(x)0
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Furnas' fisheye viewFisheye view (continued) [Focus+context] (14)

• Notation (continued):

– DOI(x|.) = F(LOD(x),D(.,x)) (degree of interest), where F is
monotonously increasing in the first argument and decreasing in

second.

– Example: DOI(x|.) = LOD(x)−D(.,x) = −D(.,x)−D(r,x)

"point"

−3

−3

−3

−5

−7

−9 −9 −9−9 −7 −7−5

−7

−5

DOI(x|.)−3

• Fisheye view: display x if and only if the degree of interest DOI(x|.), is

above some threshold k, DOI(x|.) > k.
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Furnas' fisheye viewExample: fisheye view of outline of Furnas’ 1981 paper [Focus+context] (15)

Original document:

Furnas 1981 [C 321].
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Furnas' fisheye viewFisheye view of outline of Furnas’ 1981 paper (continued) [Focus+context] (16)

“. . . ” indicate missing lines, “>>” signals the current line:

Furnas 1981 [C 321].

!33
NB. Common technique (outline view)  
       in current text editors
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Fisheye views

Scrolling

(Fisheye cost shown above is approximate; exact cost depends on the shape of the tree etc.)

Cost of knowledge characteristic function [Focus+context] (17)

• The fisheye principle can be applied to all hierarcical data structures if

the degree of interest -function (DOI) can be defined.

• The expected cost of finding finding an arbitrary line (document) from by

scrolling an ordered list is O (N):

• The expected cost of finding finding an arbitrary line (document) by

traversing though fisheye-views is O (logN):

• Fisheye shows of order mbK nodes, where b is the branching factor of

the tree, m is the height of the tree and K is the fisheye-order, typically
adjustable by the user (in our example K = −k−D(.,r)).

Furnas' 
fisheye view

• The Fisheye principle can be applied 
to all hierarchical (tree-like) data 
structures, if the Degree of Interest 
(DOI) function can be defined


• The expected cost of finding an 
arbitrary line (document) by traversing 
through Fisheye views is O(log N)


• One potential problem: the Fisheye 
view shows mbK nodes, where b is 
the branching factor of the tree, m is 
the height of the tree and K is the 
fisheye-order, typically adjustable by 
the user (in our example K=-1-D(.,r))

!34



Furnas' 
fisheye view
• Fisheye view satisfies the 

requirements of effective view 
navigation (Furnas 1997), resulting 
to good cost-knowledge 
characteristic function:

- effective view traversable: 

‣ reasonable number of 
choices at each step

‣ path from line x to line y 
is short, O(log N)

- navigability:

‣ every view 
(screenshot)provides 
information (residue) that 
helps user to find the 
shortest path to line x

Example: Fisheye view of program code [Focus+context] (18)

Original C program:

Furnas 1981 [C 324].

Fisheye view of program code (continued) [Focus+context] (19)

“. . . ” indicate missing lines, “>>” signals the current line:

Furnas 1981 [C 324].
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Hyperbolic tree browser

Lamping et al. CHI 1995. https://doi.org/10.1145/223904.223956
!36



Spiral calendar

Mackinlay et al. 1995. https://doi.org/10.1145/192426.192470
!37



Table lens (distortion technique)
• Table lens is a visualization tool for searching patterns and outliers in 

multivariate datasets (https://doi.org/10.1145/948449.948460)

• Time-cost function for different tasks (e.g., “find shape of the Nth column in 

the table lens”) can be calculated and verified experimentally (see the article)

• Demo at https://mitweb.itn.liu.se/geovis/eXplorer/world/ 

Table lens [Exploration and navigation] (28)

• Table lens is a visualization tool for searching patterns and outliers in
multivariate datasets, see

http://www.inxight.com/products/sdks/tl/

Table lens (continued) [Exploration and navigation] (30)

• Estimating the time needed to find the shape of the Nth column in the

Table lens (Pirolli and Rao 1996) [Card et al. p. 597]

Table lens [Exploration and navigation] (29)

• The time-cost function for finding important features of all variables in a

dataset can be calculated theoretically and verified experimentally

• Card and Rao 1994, Pirolli and Rao 1996 [Card et al. p. 597]
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Micro-macro reading
• Focus+context in static visualisations

Example: Sunspots [T-61.271] (21)

Christopher Schneier, 1630 [EI 21]. E. W. Maunder, 1904 [EI 22].

Chartjunk [T-61.271] (22)

Data ink ratio < 10 % Data ink ratio 70 %

Stanley Keller, Richard E. Ayres, William G. Bowen, 1967 [T 94].

Hermann grid (a variation) [T-61.271] (23)

Telling truth about the data [T-61.271] (24)

It is easy to make misleading visualizations, on purpose or by mistake.

A visualization may be perceived incorrectly, even if it would be

technically faithful to the underlying data.

New York Times, 19 December 1978 [T 61]
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