CS-E4840

Information Visualization Lecture 8a: Interaction

Tassu Takala tapio.takala@aalto.fi 25 March 2019

Recap
Visual patterns

Summary on glyph design

- Certain visual features "pop out" (pre-attentive features)
- Data variables should (usually) be mapped to preattentive features (they are processed fast)
- Restrictions (if you want pre-attentive design):
- conjunction searches are usually not pre-attentive
- one can effectively display only limited number of visual variables, with limited accuracy
- integral visual dimensions interfere with each other: you should use separable dimensions instead

A model for perceptual processing

1.Parallel processing to extract lowlevel properties of the visual scene

- rapid parallel processing
- extraction of features, orientation, colour, texture and movement patterns
- iconic store
- bottom-up, data driven processing
2.Pattern perception
- slow serial processing
- involves both working memory and long-term memory
- arbitrary symbols relevant
- different pathways for object recognition and visually guided motion

3.Visual working memory

Patterns in 2D data

- Exploratory visualization is based on finding patterns from data
- Oversimplification: the patterns are recognized between preattentive processing and higher level object perception
- Relevant questions:
- How do we see groups?
- How can 2D space be divided into perceptually distinct regions?
- When are two patterns similar?
- When do two different elements appear to be related?
- Patterns may be perceived even where there is only visual noise

Gestalt laws

- Gestalt is form in German
- The Gestalt School of Psychology (1912 onwards) investigated the way we perceive form
- They produced several Gestalt laws (laws of organisation) of pattern perception
- The Gestalt laws translate directly into design principles of visual displays
- Many of the rules seem obvious, but they are violated often

Figure 1. The subjective Necker cube. A phenomenally complete Necker cube can be seen overlying a white surface and eight black discs; so viewed, illusory contours corresponding to the bars of the cube can be seen extending between the discs. The illusory bars of the cube disappear when the discs are seen as 'holes' in an interposing surface, through which the comers of a partially occluded cube are viewed; curved subjective contours are then seen demarcating the interior edges of the 'holes'

Gestalt laws

- Similarity
- Good continuation
- Proximity
- Symmetry
- Closure
- Relative size
- Common fate
- some "new" motion-based Gestalt(-like) laws:
- Patterns from motion
- Animation and perception of shapes
- Causality

Similarity

- Similar objects appear to be grouped together
- When designing a grid layout of a data set, code rows and/or columns using low-level visual channel properties, such as colour and texture

Good continuation

- Visual complete objects are more likely to be constructed from visual elements that are smooth and continuous, rather than ones that contain abrupt changes in direction
- In networks, lines connecting nodes should be smooth and continuous, so the nodes are easily identified

The pattern on the left is perceived as a curve overlapping a rectangle (centre) rather than 2 irregular shapes touching (right).

Good continuation

- Connectedness is one of the most powerful grouping principles
- It is easier to perceive connections when contours run smoothly

Proximity

- Things that are near to each other appear to be grouped together
- Proximity is one of the most powerful gestalt laws
- Place the data elements into proximity to emphasise connections between them

- ○○○○○ -
- - ○○○○

Symmetry

- Symmetrically arranged pairs of lines are perceived together
- Use symmetry to make pattern comparisons easier

- Symmetrical relations should be arranged on horizontal or vertical axes (as symmetries are more easily perceived), unless a framing pattern is used

Closure

- A closed contour tends to be seen as an object
- There is a perceptual tendency to close contours that have gaps in them
- When a closed contour is seen, there is a very strong perceptual tendency of dividing space into a region enclosed by the contour (a common region) and a region outside the contour
- In window-based interface strong framing effects inhibit between window comparisons: related items should not
 be based in separate windows

Relative size

- Smaller components of a pattern tend to be perceived as an object

Rubin's reversible face-vase figure (multistability)

Common fate

- Relative motion is an extremely efficient method of showing patterns from data
- Data points oscillate around center point
- Variables: frequency, phase, amplitude of motion
- Phase is the most effective variable

Animation and perception of shape

- Gestalt laws also work for animated images: structures and patterns are seen from partial data (as with static images)
- Mystery lights in the dark:

Causality

- Launching: an object is perceived to set another into motion
- Perception of launching requires precise timing (delays less than 0.07-0.16 s)
- Already infants can perceive causal relations, such as launching

Sometimes it is difficult for you to guide your attention

Reading this text might be difficult because of the famous Finnish politician stealing your attention. Motion and especially appearance of a new object attracts attention. Human faces seem to be especially effective. This seems right and makes ecological sense. When early man was outside a cave, awareness of emerging objects in the periphery would have had clear survival value. Such movement may have signalled immediate and deadly danger.

Small multiples (trellis)

Parallel coordinates

https://bl.ocks.org/jasondavies/1341281

Big data: too much for one view?

Dynamic visualization

- interactive navigation in information space
- data reduction techniques
(clustering, dimensionality reduction)

Interactive visualisations

- Interactive visualisations can be characterised by feedback loops
- Three levels of feedback:

1. visual-manual control loop (data manipulation)
2. view refinement and navigation control loop (exploration and navigation) [discussed here]
3. problem solving loop

- Relevant time scales:

1. $\sim 0.1 \mathrm{~s}$ (psychological
 moment)
2. $\sim 1 \mathrm{~s}$ (unprepared response)
3. $\sim 10 \mathrm{~s}$ (unit task)

Way-finding in real spaces

- Seigel and White (1975):

1. Key landmarks (e.g., post office, church) are learned with no spatial understanding (declarative knowledge)
2. Procedural knowledge about routes from a location to another is learned, landmarks act as decision points (e.g., turn left at church; procedural knowledge)
3. Cognitive map is formed (e.g., the church is about 1 kilometre north from train station; cognitive spatial maps)

- Cognitive maps form more rapidly if they have access to maps
- Lessons to accelerate formation of cognitive maps: provide distinctive landmarks (focus) and overview maps (context)

- Focus+context problem: how to find details from a larger context in information space. Or, how to navigate efficiently in abstract spaces.
- Effective view navigation (Furnas 1997): how to present information such that the traversal time from one node to another is minimised; and the network is navigable (all targets should have a good residue in each node)
- There are several visual techniques to help this (providing user overview, position and landmarks):
- Elision techniques. Part of the structure are hidden until they are needed.
- Distortion techniques. Magnify regions of interest, decrease space of irrelevant regions.
- Rapid zooming techniques. User zooms in and out of regions of interest.
- Multiple windows. Some windows show overview and others content.
- Micro-macro readings. A good static visualisation supports focus+context.

Showing focus\&context simultaneously in 2D space

Fisheye distortion

Simultaneous linear scales (works well when animated - why?)

Effective View Navigation in abstract information space

- Theoretical view by Furnas (1997) https://doi.org/10.1145/258549.258800
- The information landscape can be thought as a tree or network G
- Effective View Navigation in G, EVN(G): how to organise information with links so that we have
- small views: number of outgoing links from a view (maximal out-degree, MOD) is small;

EVT

efficient traversal

- short paths: the expected cost of traversal (number of steps, defined by network diameter, DIA) is minimised;
and
- all targets have a good residue ('scent' of target) in each node, and outlink-info is small
- requires good semantic classification of nodes
graph of the list, (c) local window view of the list, (d) associated part of viewing graph, showing that out degree is constant, (e) sequence of traversal steps showing the diameter of viewing graph is $O(n)$.

(a)

(b)

(c)

Figure 2. An example of an Efficiently View Traversable Structure (a) logical graph of a balanced tree, (b) in gray, part of the viewing graph for giving local view path showing the diameter to be $O(\log (n))$.

(b)
(c)

(d)

Figure 3. Fixing the list viewer. (a) logical graph of the ordered list again, (b) the list is folded up in 2-D (c) part of the viewing graph showing the 2-D view-neigh-
bors of Node6 in the list: out degree is $O(1)$, (d) diame ter of viewing graph is now reduced to $O($ sqrt $(n))$. (e) Unfolding the list, some view-neighbors of Node6 are far away, causing a decrease in diameter.

Notes on Furnas' EVN paper

- Theoretical view \Rightarrow can be applied in very different cases
- Written in 1997, when WWW was relatively new
- now search engines are often more effective than navigation with explicit links
- further development: semantic web
- (in both, search is based on auxiliary metadata)
- Example of EVN in the web: Wikipedia
- organized (partly) with hierarchical categories
- rich additional cross linking

Furnas'

fisheye view

- Introduced by Furnas in 1981, using text as an example. The concept can (and has been) generalised also to other data structures.
- Accessing large structures (like a text document or program code) by scrolling is slow. For example, it takes on average $\mathcal{O}(N)$ steps to scroll from one line of text to another, where N is the number of items (lines of text)
- Cost-knowledge characteristic function (CKCF) is the number of items (lines of text) that user can access as a function of steps (or time)
cost-knowledge characteristic function

Furnas' fisheye view

- Notation:
- . (focal point)
- $D(., x)$ (distance from focus), $D(.,)=$.0 .
- Example: $D(., x)$ is the number of links intervening on the path between two nodes

Furnas' fisheye view

- Notation (continued):
- $\operatorname{LOD}(x)$ (level of detail).
- Example: $\operatorname{LOD}(x)=-D(r, x)$, where r is the root of the tree

Furnas' fisheye view

- Notation (continued):
- $\operatorname{DOI}(x \mid)=.F(\operatorname{LOD}(x), D(., x))$ (degree of interest), where F is monotonously increasing in the first argument and decreasing in second.
- Example: $\operatorname{DOI}(x \mid)=.\operatorname{LOD}(x)-D(., x)=-D(., x)-D(r, x)$

- Fisheye view: display x if and only if the degree of interest $\operatorname{DOI}(x \mid$.), is above some threshold $k, \operatorname{DOI}(x \mid)>$.$k .$

Furnas' fisheye view

Original document:

```
70
7 1
7 2
73
7 4
75
76
7 7
7 8
7 9
80
>>81
82
83
84
85
8
87
8
89
90
91
92
```

```
                        i i. logarithmic compression, under user control
```

 i i. logarithmic compression, under user control
 iii. branching factor is critical
 iii. branching factor is critical
 c. Iso-DOI contours are ellipses
 c. Iso-DOI contours are ellipses
 e. The dangling tree
 e. The dangling tree
 Figure 2: shows the dangline DOI contours
 Figure 2: shows the dangline DOI contours
 f. Changing focii -- lowest common ancestor
 f. Changing focii -- lowest common ancestor
 B. Examples of Fisheye for Tree Structured Files
B. Examples of Fisheye for Tree Structured Files
1. Indent Structured Files: Structured Programs, Outlines, etc
1. Indent Structured Files: Structured Programs, Outlines, etc
a. Examples: Programs, Outlines, etc.
a. Examples: Programs, Outlines, etc.
b. Usually ordered - fisheye is compatible
b. Usually ordered - fisheye is compatible
c. Specific example 1: paper outline
c. Specific example 1: paper outline
Figures 3,4,5: outline, regular and fisheye views
Figures 3,4,5: outline, regular and fisheye views
some adjacent info missing
some adjacent info missing
ii. traded for global information
ii. traded for global information
d. Comment: standard window view = degenerate fisheye
d. Comment: standard window view = degenerate fisheye
e. Specific example 2: C program code
e. Specific example 2: C program code
Figures 4: C-program, regular and fisheye views
Figures 4: C-program, regular and fisheye views
i. What is shown
i. What is shown
ii. What is traded for what
ii. What is traded for what
f. Other indent structures: bi
f. Other indent structures: bi
2. Count, biol. taxon., org. hierarch..
2. Count, biol. taxon., org. hierarch..
Count-Until: A Simple Generalization of Indent Structure
Count-Until: A Simple Generalization of Indent Structure
a. Other similar structures
a. Other similar structures
i. in addition to indent

```
            i. in addition to indent
```


Furnas' fisheye view

". . ." indicate missing lines, " \gg " signals the current line:

```
The FISHEYE view: a new look at structured files
    I. ABSTRACT
    II. INTRODUCTION
    I I I . GENERAL FORMULATION
    IV. A FISHEYE DEFINED FOR TREE STRUCTURES
        A. The Underlying Fisheye Construction and its Properties
            B. Examples of Fisheye for Tree Structured Files
            1. Indent Structured Files: Structured Programs, Outlines, etc.
            a. Examples: Programs, Outlines, etc.
            b. Usually ordered - fisheye is compatible
            c. Specific example 1: paper outline
                    Figure 3: outline, regular and fish views
                    i. some adjacent info missing
                    ii. traded for global information
            d. Comment: standard window view = degenerate fisheye
            e. Specific example 2: C program code
            f. Other indent structures: biol. taxon., org. hierarch.
            2. Count-Until: A Simple Generalization of Indent Structure
            3. Examples of the Tree Fisheye: Other Hierarchical Structures
    V. FISHEYE VIEWS FOR OTHER TYPES OF STRUCTURES
    VI. A FEW COMMENTS ON ALGORITHMS
    VII. OTHER ISSUES
    VIII. CONCLUDING REMARKS AND SUMMARY
```


Furnas'

fisheye view

- The Fisheye principle can be applied to all hierarchical (tree-like) data structures, if the Degree of Interest (DOI) function can be defined
- The expected cost of finding an arbitrary line (document) by traversing through Fisheye views is $\mathrm{O}(\log \mathrm{N})$
- One potential problem: the Fisheye view shows mbK nodes, where b is the branching factor of the tree, m is the height of the tree and K is the fisheye-order, typically adjustable by the user (in our example $\mathrm{K}=-1-\mathrm{D}(., \mathrm{r})$)

cost-knowledge characteristic function

Furnas'

fisheye view

- Fisheye view satisfies the requirements of effective view navigation (Furnas 1997), resulting to good cost-knowledge characteristic function:
- effective view traversable:
- reasonable number of choices at each step
- path from line x to line y is short, $O(\log N)$
- navigability:
- every view (screenshot)provides information (residue) that helps user to find the shortest path to line x
$t[0]=(t[0]+10000)$
for $(i=1-x[0]$
$\begin{aligned} \mathrm{t}[\mathrm{i}] & =(\mathrm{t}[\mathrm{i}]+10000) \\ & -x[\mathrm{i}]\end{aligned}$
[i-1] (1-t[i-1]/10000);
$t[k-1] \%=10000$
break;
case
for $(i=0 ; i<k ; i++) \quad t[i]=x[i] ;$
break;
case
exit (0) ;
default
noprint $=1$;
break;
if(!noprint) \{

if $(\mathrm{i}>0)$ \{
\#define DIG 40
\#define DIG 40
\#include <stdio.h>
\#include <stdio.h>
main()
main()
int c, i, x[DIG/4], t[DIG/4], k= DIG/4, noprint=0;
int c, i, x[DIG/4], t[DIG/4], k= DIG/4, noprint=0;
while((c=getchar()) != EOF){
while((c=getchar()) != EOF){
if(c>>=,0'\&\& c <='9')
if(c>>=,0'\&\& c <='9')
} else {
} else {
switch(c)
switch(c)
case
case
case
case
for(i=0;i<k;i++) t[i] = x[i]
for(i=0;i<k;i++) t[i] = x[i]
case q
case q
default
default
f(!noprint){
f(!noprint){
noprint=0
noprint=0
}
}

Hyperbolic tree browser

Lamping et al. CHI 1995. https://doi.org/10.1145/223904.223956

Spiral calendar

Mackinlay et al. 1995. https://doi.org/10.1145/192426.192470

Table lens (distortion technique)

- Table lens is a visualization tool for searching patterns and outliers in multivariate datasets (https://doi.org/10.1145/948449.948460)
- Time-cost function for different tasks (e.g., "find shape of the Nth column in the table lens") can be calculated and verified experimentally (see the article)
- Demo at https://mitweb.itn.liu.se/geovis/eXplorer/world/

Table 1. Relevant perceptual, cognitive, and motor time-cost parameters from the $\mathbf{H C I}$ literature.
Parameter

Micro-macro reading

- Focus+context in static visualisations

E. W. Maundȩg 1904 [EI 22].

