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PART Il
Dimensionality Reduction



Literature on dimensionality
reduction for visualisation

e MDS: Borg, Kroenen, Modern multidimensional scaling:
theory and applications. Springer, 1997.

e PCA: any book on matrix algebra.

e Jarkko Venna 2007, Academic Dissertation, http://lib.tkK.fi/
Diss/2007/isbn9789512287529/

e |ee & Verleysen, 2007. Nonlinear dimensionality reduction.
Springer.

* For a reasonably recent brief review see Verleysen & Lee,
2013. https://doi.org/10.1007/978-3-642-42054-2 77

e (Not to be confused with dimensionality reduction for
machine learning where target dimensionality is often higher!)
e See http://www.ikKi.fi/kaip/p/dimensionality reduction_1.nb.html




Dimensionality reduction

* Assume you have n m-dimensional data points
* Further assume that we can define a meaningful distance pj;
between data points i and |

* Assume dimensionality m is so large that a data point cannot
be visualised by "traditional” methods

* Problem statement: Given a dimensionality k (typically k=2 or
k=3), find an embedding X of data points into k-dimensional
space (=locations of data points) such that the Euclidean
distance between data points i and j d;j(X) in the embedding
matches (a function of) the original distance pjj as well as
possible.

e See http://www.ikKi.fi/kaip/p/dimensionality reduction_1.nb.html
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Dimensionality reduction

e Problem statement: Find an embedding X of (n-D) data
points into k-dimensional (k=2..3) space such that the
distances between data points in the embedding match
those between corresponding original points as well as
possible.

e What does "as well as possible" mean?

* Long distances?

e Short distances?

* Neighbourhood relations?

* All embeddings have to make compromises. We will first
study embeddings that preserve long distances.

e See http://www.iki.fi/kaip/p/dimensionality reduction_1.nb.html
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Dimensionality reduction

® Goal: project the data into a low-dimensional (1-3D)

space, while maintaining the correct (visual
perception of) relations between the nodes

® Obviously, in a general case, some information will
be inevitably lost in the projection (e.g., there is a
trade-off between precision and recall)

® There are several methods, with varying
optimisation goals and complexities

® Some optimisation goals:

If the nodes are nearby in the original

representation, they should also be nearby in the

projection (recall, sometimes called continuity,
or preservation of the original neighborhoods).

If the nodes are nearby in the projection,

should also be nearby in the original

they

representation (precision, sometimes called

trustworthiness).

The (global) distances between nodes should be

preserved as well as possible.
Angles between nearby nodes should be

preserved as well as possible (conformality).
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Dimensionality reduction

* Problem statement: Given a dimensionality k (typically k=2 or k=3), find
an embedding X of data points into k-dimensional space such that the
Euclidean distance between data points i and j d;j(X) in the embedding
matches (a function of) the original distance pj as well as possible.

* Today, we will review methods that try to preserve long distances as
well as possible:
e Metric multidimensional scaling (MDS)
e Nonmetric MDS
e Sammon mapping
* Principal component analysis (PCA)
* Independent component analysis (ICA)

e [ The alternative is to preserve short distances (neighborhoods), leading
to manifold embeddings ]



Example: colours
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Example: colours

e How is the similarity of colors perceived?

* Pairs of 14 colors were rated by 31 people. Ratings were averaged
(Ekman 1954, https://doi.org/10.1080/00223980.1954.9712953).

- . -
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465 .42 .50 08 239 87 47 =06 00:=32 A7 .2 .91 82
A79l 42 44 81 — 12:-.36 =26 .15 =00.-11 00 .33 23 1.03
490) .18 22 47 54 —-07 .08 .48 .40 .00 .22 .17 .07 .00
504| .06 .09 .17 25 61 - .31 .28 45 .68 .01 .00 .00 -.15
.53? 07 .07 .10 .10 .31 .62 13 .35 .02 .31 .00 .00 -.75
555| .04 .07 .08 .09 .26 .45 .73 — -.05 .17 -.09 -.22 -32 -.34
5841 .02 .02 02 .02 07 a4 .22 33 —-05-01 -.06-.16 =18
go0| .07 .04 .01 .01 .02 .08 .14 .19 .58 - .21 .07 -.39 -.40
10| .09 07 .02 .00 .02 .02 .05 .04 .37 .74 - -.08 -13 -.11

62| 12 11 .01 .01 .01 .02 .02 .03 .27 .50 .76 — -.03 -.16
651 13 13 .05 02 02 02 .02 .02 .20 .41 62 .8 - -.11
-[i?'-fl 16 14 03 04 00 .0l .00 .02 .23 .28 55 .68 .76 —

Similarities of colors with different wavelengths (lower half, Ekman 1954) and residuals of 1D MDS representation (upper half) [B 4.1].
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Multidimensional scaling
(MDS)

Formally, an MDS algorithm is given as input the original
distances pj (called proximities) between data points i and j
MDS algorithm then tries to find a k-dimensional (usually
k=2 or k=3) representation X for the points

MDS tries to find representation X that minimises the error
function (called stress, by convention)

2
or =Y (f(pi) — dij(X))
i<j
where djj(X) is the Euclidean distance between the data

points / and j in representation X and f is a function that
defines the MDS model (next slide).
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Multidimensional scaling (MDS)
or =Y (f(pig) — dij (X))’

1<J

e The choice of f defines the MDS model. For example:
e f(pij)=pij - absolute MDS (linear model)
e f(pi)=b pij - ratio MDS (linear model)
f(pi)=a+b pij - interval MDS (linear model)
e f(pij)=a+b log pj - useful in psychology (logarithmic)
f(p
(

j) can be any monotonically increasing function
ordinal or nonmetric MDS)
- this would be the most important special case of MDS

e The parameters of f (such as a and b above) are optimised at
the same time as the representation X (i.e., the locations of
the projected points)

- details of the optimisation algorithms is outside the scope of this course
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k = 3 (honmetric MDS)
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Evaluating the mapping
example: colour

—e— nonmetric MDS

stress

Scree plot gives the stress as a function of k.
Here k=1 is too small but k=2 already gives
quite a good result.
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Classical MDS and
Sammon mapping

e Sammon mapping: given a distance pj find a representation X that

minimises 2
E = E (dij (X) _ pij) classical MDS:
. the same
i< Pig without this

* As compared to MDS Sammon mapping should be more

accurate for shorter distances but less accurate for longer (why?)

* Like in nonmetric MDS, solution is found by gradient descent,
which may end up in a local minimum

e Classical MDS is an instance of metric MDS

* a.k.a. principal Coordinates Analysis (PCoA), Torgerson Scaling,
or Torgerson-Gower scaling.
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Municipal elections In
Espoo in 2017

Survey of candidates done by Helsingin Sanomat

Here included only 10 parties with largest number of candidates nationally.
Each candidate rated each of the m=49 statements on a scale from 1 to 5,
where 1=disagree and 5=agree:

1.
2.
3.

Euthanasia should be allowed.
| prefer public instead of the private sector to produce my local health services.

Same gender couples should have the same marital and adoptation rights than
the different genre couples.

4. Good brother networks influence municipal decision-making.
5.

n=515 candidates in total, i.e., we have a data 515x49 matrix.

Distance pjj between candidates i and j is the Euclidean distance of their respective
49-dimensional rating vectors. What is a 2-dimensional representation that
preserves these distances faithfully?
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Municipal elections
iIn Espoo in 2017

Espoo 2017 (nonmetric MDS)
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Espoo 2017 (metric MDS) Espoo 2017 (Sammon)
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Performance of MDS

e MDS is tries to preserve the large distances at the expense of small ones, hence, it can
“collapse” some small distances on the expense of preserving large distances

® A projection is trustworthy (precision) if k closest neighbours of a sample on the
projection are also close by in the original space. A projection preserves the original
neighbourhoods (recall) if all k closest neighbours of a sample in the original space are also
close by in the projection.
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Precision and recall as a function of the neighbourhood size k for a yeast data set. Non-
metric (ordinal) MDS (NMDS) is shown in blue. Larger precision and recall is better.
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Performance of MDS

Relatively good recall, not very good precision

MDS algorithms typically have running times of the order
O(N2), where N is the number of data items.

This is not very good: N=1,000 data items are ok, but
N=1,000,000 is getting slow.

Some solutions: use landmark points (i.e., use MDS only on a
subset of data points and place the remaining points
according to those, use MDS on cluster centroids etc.), use
some other algorithm or modification of MDS.

MDS is not guaranteed to find the global optimum of the
stress (cost) function, nor it is guaranteed to converge to the
same solution at each run (many of the MDS algorithms are
quite good and reliable, though)
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Projection pursuit methods

MDS (and variants) are based on distance matrix between points.
If data is composed of vectors (such as Espoo municipal
elections 2017 data) we can use projection pursuit methods.

Projection pursuit methods try to find a linear subspace u that

maximises some quantity

E.g., for the election data let X be the 515x49 data matrix and f a

function. Problem: find 49-dimensional unit vector u such that f(A

u) is maximised.

* if fis variance we have principal component analysis (PCA)

e if fis a measure of non-gaussianity we have independent
component analysis (ICA)

Typically, we can find several directions u (possibly with

orthogonality conditions).
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Principal component
analysis (PCA)

..........................................

D=2
d:

e Basic idea: rotate the space such that the data becomes
maximally aligned with the coordinate axes



Principal component analysis (PCA)

e The principal component analysis (PCA) finds the
eigenvalues and -vectors of a matrix

® PCA is an example of the projection pursuit methods. It tries
to find a linear subspace that has maximal variance.

® Thus, the interesting quality in PCA is variance (distance).

® you could think PCA as a linearised version of MDS
(actually PCA is equivalent to one modification of MDS).

® PCA (unlike MDS) assumes that the data points are vectors in
a high-dimensional Euclidean space,

® The data points are projected to d-dimensional Euclidean
subspace (d«D) of the original space.

d
® The projection to d-dimensional subspace is linear, A=Y "e.e’
yi = Axi, where ex are orthogonal unit vectors. o=l

® Goal: nearby points remain nearby, distant points remain
distant.
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Principal component analysis (PCA)

® Goal, more formally: find such a projection (matrix A) to d-
dimensional subspace that the average error in the squared
Euclidean distances between data points is minimised.

N
Do llmi—as 1P =y — w5 1]

ij=1

where || || is the Euclidean distance and y;=A x..

N

IS
® Denote the mean vector by, 7= N;x
: . =, 1 O
® The covariance matrix reads then, €=+ > (z:-7)(z:-7)".
1=1
® The covariance matrix can be decomposed (spectral

decomposition) as D
P ) C = Z )\aeaeg
a=1
where Ay are the eigenvalues (A\j=A2=...>0) and eq are the

corresponding orthogonal unit eigenvectors. d
. . S : _ T
® The maximum variance projection is then given by 4= > caca
a=1
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Diamond shaped data
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Two clusters

clusters clusters (PCA)
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Principal component analysis (PCA)

® PCA can be computed easily with (almost) any software
that is capable of doing linear algebra.

® PCA is stable, there are no additional parameters, and it is
guaranteed always to converge to the same optimum.

® Hence, PCA is usually the first dimension reduction
method to try
(if it doesn’t work, then try something more fancy)

® If you find PCA difficult, this may help :-)
https://stats.stackexchange.com/questions/269 | /making-sense-

of-principal-component-analysis-eigenvectors-eigenvalues
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Independent component
analysis (ICA)

Goal: function f is a measure of non-Gaussianity. Non-
Gaussian directions are usually most independent.
Hence, ICA finds separate processes.

Like PCA, ICA (usually) makes a linear transformation, but
the component directions are not necessarily orthogonal.

ICA is unstable and may end up to a local minimum.
There are robust libraries to compute ICA: use the
libraries!
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Gaussian data

gaussian gaussian (ICA)
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Diamond shaped data

diamond diamond (ICA)
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Two clusters

clusters clusters (ICA)
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Municipal elections In
Espoo in 2017
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Glass
data

e 9D glass identification

database

PCA always projects
close-by points close
to each other, resulting
to reasonable recall
However, PCA (and
MDS) may also
“collapse” far away
data points into the
same location (unless
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subspace of the
original space), this
may lead to not so
good precision
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Next lecture: visualising manifolds

e The first principal component is given by the red line.
The green line on the right gives the “correct” non-linear dimension
(which PCA or ICA is of course unable to find).
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