Chapter 5

ELECTROMAGNETIC OPTICS II

Pulse propagation in dispersive media

Phase velocity: $c=\frac{\omega}{k}$

Pulse at $z=0$
Pulse at z

$$
U(z, t)=\mathcal{A}(t-z / v) \exp \left[j \omega_{0}(t-z / c)\right]
$$

Group velocity: $v=\frac{d \omega}{d k}=\frac{c_{0}}{N}$
Group index: $N=n-\lambda_{0} \frac{d n}{d \lambda_{0}}$
Group velocity dispersion (GVD): v is frequency dependent \Rightarrow Different frequency components travel to the same z in different times. The delay due to δv is

$$
\begin{aligned}
\delta \tau & =\frac{d \tau_{d}}{d \nu} \delta \nu=\frac{d}{d \nu}\left(\frac{z}{v}\right) \delta \nu=D_{\nu} z \delta \nu \\
D_{\nu} & =\frac{d}{d \nu}\left(\frac{1}{v}\right)=\frac{\lambda_{o}^{3}}{c_{o}^{2}} \frac{d^{2} n}{d \lambda_{o}^{2}} \quad \text { GVD coefficient }
\end{aligned}
$$

* If the spectral width of a pulse is σ_{v}, the pulse spread will be $\sigma_{\tau}=\left|D_{\nu}\right| \sigma_{\nu} z$.

$$
z=z_{2}
$$

Normal and anomalous dispersion

Artificial optical nanomaterials: Metamaterials ($\mu \neq \mu_{0}$)

$\mathbf{k} \times \mathbf{H}_{0}=-\omega \epsilon \mathbf{E}_{0}$ $\mathbf{k} \times \mathbf{E}_{0}=\omega \mu \mathbf{H}_{0}$.
$\eta=\sqrt{\frac{\mu}{\epsilon}}$,
$n=\sqrt{\frac{\epsilon}{\epsilon_{0}}} \sqrt{\frac{\mu}{\mu_{0}}}$
$\mathbf{S}=\frac{1}{2} \mathbf{E} \times \mathbf{H}^{*}$

$$
\frac{\epsilon=-|\epsilon|,}{\vec{\mu}=-|\mu|}
$$

$$
\mathbf{k} \times \mathbf{H}_{0}=\omega|\epsilon| \mathbf{E}_{0}
$$

$$
\mathbf{k} \times \mathbf{E}_{0}=-\omega|\mu| \mathbf{H}_{0}
$$

$$
\eta>0, \quad n<0
$$

Chapter 6

POLARIZATION OPTICS I

Light polarization

$$
\mathcal{E}(z, t)=\mathcal{E}_{x} \widehat{\mathbf{x}}+\mathcal{E}_{y} \widehat{\mathbf{y}}, \quad\left\{\begin{array}{l}
\varepsilon_{x}=\mathrm{a}_{x} \cos \left[\omega\left(t-\frac{z}{c}\right)+\varphi_{x}\right] \\
\mathcal{E}_{y}=\mathrm{a}_{y} \cos \left[\omega\left(t-\frac{z}{c}\right)+\varphi_{y}\right]
\end{array} \quad \underline{\varphi=\varphi_{y}-\varphi_{x}}\right.
$$

Poincaré sphere and Stokes parameters

$\mathcal{E}(z, t)=\operatorname{Re}\left\{\mathbf{A} \exp \left[j \omega\left(t-\frac{z}{c}\right)\right]\right\}$, where $\mathbf{A}=A_{x} \widehat{\mathbf{x}}+A_{y} \widehat{\mathbf{y}}$.
Stokes parameters: $\quad \mathrm{s}_{0}=\mathrm{a}_{x}^{2}+\mathrm{a}_{y}^{2} \quad=\left|A_{x}\right|^{2}+\left|A_{y}\right|^{2} \quad$ (intensity)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathrm{s}_{1}=\mathrm{a}_{x}^{2}-\mathrm{a}_{y}^{2}=\left|A_{x}\right|^{2}-\left|A_{y}\right|^{2} \\
\mathrm{~S}_{2}=2 \mathrm{a}_{x} \mathrm{a}_{y} \cos \varphi=2 \operatorname{Re}\left\{A_{x}^{*} A_{y}\right\} \\
\mathrm{S}_{3}=2 \mathrm{a}_{x} \mathrm{a}_{y} \sin \varphi=2 \operatorname{Im}\left\{A_{x}^{*} A_{y}\right\} . \\
\mathrm{S}_{1}^{2}+\mathrm{S}_{2}^{2}+\mathrm{S}_{3}^{2}=\mathrm{S}_{0}^{2}
\end{array}\right.
\end{aligned}
$$

Unit-radius Poincaré sphere is the surface of coordinates $\left(s_{1}, s_{2}, s_{3}\right)=\left(\frac{S_{1}}{s_{0}}, \frac{S_{2}}{S_{0}}, \frac{S_{3}}{S_{0}}\right)$.

Each point $\left(s_{1}, s_{2}, s_{3}\right)$ on the sphere defines a certain polarization state.

Jones vectors

$\mathcal{E}(z, t)=\operatorname{Re}\left\{\mathbf{A} \exp \left[j \omega\left(t-\frac{z}{c}\right)\right]\right\}$, where $\mathbf{A}=A_{x} \widehat{\mathbf{x}}+A_{y} \widehat{\mathbf{y}}$.
Jones vector: $\mathbf{J}=\left[\begin{array}{l}A_{x} \\ A_{y}\end{array}\right]$
The Jones vector can be normalized by requiring $\left|A_{x}\right|^{2}+\left|A_{y}\right|^{2}=1$. Then,

For orthogonal polarizations, $\left(\mathbf{J}_{1} \cdot \mathbf{J}_{2}\right)=A_{1 x} A_{2 x}^{*}+A_{1 y} A_{2 y}^{*}=0$. Any polarization can then be expanded as $\mathbf{J}=\alpha_{1} \mathbf{J}_{1}+\alpha_{2} \mathbf{J}_{2}=\left(\mathbf{J} \cdot \mathbf{J}_{1}\right) \mathbf{J}_{1}+\left(\mathbf{J} \cdot \mathbf{J}_{2}\right) \mathbf{J}_{2}$.

Jones matrices

$$
\left[\begin{array}{l}
A_{2 x} \\
A_{2 y}
\end{array}\right]=\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]\left[\begin{array}{c}
A_{1 x} \\
A_{1 y}
\end{array}\right] \quad \Rightarrow \quad \mathbf{J}_{2}=\mathbf{T} \mathbf{J}_{1}
$$

Polarization rotator:

Coordinate transformation:
$\mathbf{R}(\theta)=\left[\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$

Reflection and refraction

$$
\begin{array}{ll}
\mathbf{t}=\left[\begin{array}{cc}
\mathrm{t}_{x} & 0 \\
0 & \mathrm{t}_{y}
\end{array}\right], & \mathbf{r}=\left[\begin{array}{cc}
\mathrm{r}_{x} & 0 \\
0 & \mathrm{r}_{y}
\end{array}\right] \\
E_{2 x}=\mathrm{t}_{x} E_{1 x}, & E_{2 y}=\mathrm{t}_{y} E_{1 y} \\
E_{3 x}=\mathrm{r}_{x} E_{1 x}, & E_{3 y}=\mathrm{r}_{y} E_{1 y}
\end{array}
$$

The electromagnetic boundary conditions yield the solutions:

$$
\begin{aligned}
& \mathrm{r}_{x}=\frac{\eta_{2} \sec \theta_{2}-\eta_{1} \sec \theta_{1}}{\eta_{2} \sec \theta_{2}+\eta_{1} \sec \theta_{1}}, \quad \mathrm{t}_{x}=1+\mathrm{r}_{x}, \\
& \mathrm{r}_{y}=\frac{\eta_{2} \cos \theta_{2}-\eta_{1} \cos \theta_{1}}{\eta_{2} \cos \theta_{2}+\eta_{1} \cos \theta_{1}}, \quad \mathrm{t}_{y}=\left(1+\mathrm{r}_{y}\right) \frac{\cos \theta_{1}}{\cos \theta_{2}}
\end{aligned}
$$

For nonmagnetic transparent dielectrics, one obtains the Fresnel equations:

$$
\begin{array}{lll}
\mathrm{r}_{x}=\frac{n_{1} \cos \theta_{1}-n_{2} \cos \theta_{2}}{n_{1} \cos \theta_{1}+n_{2} \cos \theta_{2}}, & \mathbf{t}_{x}=1+\mathrm{r}_{x}, & \cos \theta_{2}=\sqrt{1-\sin ^{2} \theta_{2}} \\
\mathrm{r}_{y}=\frac{n_{1} \sec \theta_{1}-n_{2} \sec \theta_{2}}{n_{1} \sec \theta_{1}+n_{2} \sec \theta_{2}}, & \mathrm{t}_{y}=\left(1+\mathrm{r}_{y}\right) \frac{\cos \theta_{1}}{\cos \theta_{2}} & =\sqrt{1-\left(n_{1} / n_{2}\right)^{2} \sin ^{2} \theta_{1}}
\end{array}
$$

Reflection at a boundary

Figure 6.2-2 Magnitude and phase of the reflection coefficient as a function of the angle of incidence for external reflection of the TEpolarized wave $\left(n_{2} / n_{1}=1.5\right)$.

| | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |φ_{x}| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| 0 | | | | | |

Figure 6.2-3 Magnitude and phase of the reflection coefficient as a function of the angle of incidence for internal reflection of the TEpolarized wave ($n_{1} / n_{2}=1.5$).

TE and TM polarizations show different
magnitudes and phases of both r and t.

Figure 6.2-4 Magnitude and phase of the reflection coefficient as a function of the angle of incidence for external reflection of the TMpolarized wave ($n_{2} / n_{1}=1.5$).

Total internal reflection at

$$
\sin \theta_{c}=\frac{n_{2}}{n_{1}} \sin 90^{\circ}=\frac{n_{2}}{n_{1}}
$$

Figure 6.2-5 Magnitude and phase of the reflection coefficient as a function of the angle of incidence for internal reflection of the TMpolarized wave ($n_{1} / n_{2}=1.5$).

We have $r_{T M}=0$ at the Brewster angle: $\tan \theta_{\mathrm{B}}=n_{2} / n_{1}$.
Power reflection and transmission: $R=|r|^{2}$ and $T=1-R \neq|t|^{2}$.

