9. Factoring integers

CS-E4500 Advanced Course on Algorithms
Spring 2019

Petteri Kaski
Department of Computer Science
Aalto University

Motivation for this week

» A tantalizing case where the connection between polynomials and integers apparently
breaks down occurs with factoring

» Namely, it is known how to efficiently factor a given univariate polynomial over a
finite field into its irreducible components, whereas no such algorithms are known for
factoring a given integer into its prime factors

» Last week we saw how to factor efficiently univariate polynomials over a finite field

» The best known algorithms for factoring integers run in time that scales moderately
exponentially in the number of digits in the input; this week we study one such
algorithm

Factoring integers

Modern Computer Algebra iredition

Joachim von zur Gathen and Jiirgen Gerhard

(von zur Gathen and Gerhard [11],
Sections 19.1-3, 19.5)

Factoring integers

(Wagstaff [28])

STUDENT MATHEMATICAL LIBRARY

Volume 68

The J
of Factzl)ring

en3

x 233
Ry
L3547

Samuel S. Wagstaff, Jr.

Erany

X400 x4 D -

. x-1)

L SX 0TSS5 5034 5t wsscsuseas
" AU UL, - gUh g, ygtins
PO R Yo
* K10 0= 00 (k131 33y

TSRS OSTTLISS TS5 81064
2304467 = 15967 - 4937
- RTLE

100 - exp (TARTTTR)

Factoring integers

Prime Numbers
A Computational Perspective

Second Edition

(Crandall and Pomerance [7])

Richard Crandall

@ Springer Carl Pomerance

Key content for Lecture 9

» Prime numbers, factorization, and smooth numbers

v

The prime number theorem

\{

Factoring by trial division

v

Difference of two squares and factoring

v

Quadratic congruences, square roots (exercise), and factoring

» Dixon’s random squares algorithm [8]

Prime numbers

v

An integer p € Z, is prime if the only positive integers that divide p are 1and p

v

The set P = {2,3,5,7, 11, ...} of prime numbers is infinite

v

Indeed, suppose that py, ps, . . ., py are the h least distinct primes

v

Then, p1p; - - - pp + 1is not divisible by any of the py, ps, . .., pp and thus must have a
prime divisor p with p > p1,pa2, ..., pn

The prime number theorem

» For x > 1, let us write 7 (x) for the number of prime numbers at most x

Theorem 19 (Prime number theorem)
For all x > 59 it holds that

X 1 X 3
—1+ <rm(x) < —|1+
In x 2Inx In x 2Inx

Proof.
See e.g. Rosser and Schoenfeld [22, Theorem 1]

Factorization of an integer

> LetNEZZZ

» The factorization of N consists of distinct primes p1, pa, . . ., pr and positive integers
ap, o, . . ., ar such that

N=pi'py - pr
» The primes p1, pa,. . ., pr are the prime factors of N
» The factorization of N is unique up to ordering of the prime factors
» We say that N is a prime power if r = 1

» We say that N is squarefree if a; =a, =---a, = 1

Example: Factorization

» The factorization of 2027651281 is
2027651281 = 44021 - 46061

Smooth integer

» Let B>2

» Let N € Z>, have factorization

N=pips - pr

» We say that N € Z> is B-smooth if N =1or p,ps,...,pr < B

Example: Smooth integer

» The integer 1218719480020992 is 3-smooth
» Indeed, the factorization of 1218719480020992 is

1218719480020992 = 2%° .

319

Factoring an integer

» The factoring problem asks us to compute the factorization
N=pips - pr
for an integer N € Z3, given as input

» To solve the factoring problem it suffices to either (i) present a proper divisor d of N
with 2 < d < N — 1, or (ii) assert that N is prime

» Indeed, in case (i) we obtain the factorization of N by merging the recursive
factorizations of d and N/d

» We have that d is a proper divisor of N if and only if N/d is a proper divisor of N; thus,
without loss of generality we can assume that a proper divisor satisfies 2 < d < VN

Trial division

» Let N € Z5; be given as input

1. For all d=2,3,...,|_\/NJ
a. If d divides N, then output d and stop

2. Assert that N is prime and stop
> This algorithm runs in time O(N'/?(log N)°) for a constant ¢ > 0

» We leave as an exercise the design of an algorithm that computes | VN] in time
O((log N)¢) given N as input

Detecting and factoring prime powers

» Let N € Z5; be given as input

» In time O((log N)€) for a constant ¢ > 0 we can either output a prime p and a positive
integer a such that N = p® or assert that N is not a prime power (exercise)

» This design makes use that we can test primality in time polynomial in log N [1]

Difference of two squares and factoring

» Suppose that N € Z, is odd and not a prime power

» Thus, there exist distinct odd a, b € Z~3 with
a+ b\’ a-b\?
N =ab = -
2 2

» Similarly, for integers s, t € Z>1 we have that

N = s* -t
implies the factorization

N=(s+t)(s—1)

Example: Difference of two squares and factoring

» We have
2027651281 = 45041% — 1020°
» Thus,
2027651281 = (45041 — 1020) (45041 + 1020) = 44021 - 46061

Quadratic congruences and square roots

» Suppose that N € Z>5 is odd and has r > 2 distinct prime factors
» Let s? = t? (mod N) withs,t € {1,2,...,N— 1} and gcd(s, N) = gcd(t, N) = 1

» Then, there are exactly 2" choices for s such that s?> = t* (mod N) (exercise)

Quadratic congruences and factoring

» Suppose that N € Z; is odd and has r > 2 distinct prime factors
» Let s> = 2 (mod N) withs,t € {1,2,...,N— 1} and gcd(s, N) = gcd(t, N) = 1
» That is, there exists an integer q with s — t? = (s — t)(s + t) = gN

» We thus have that gcd(s + t, N) is a proper divisor of N unless N divides s — t or N
divides s + t

» That is, gcd(s + t, N) is a proper divisor of N unless s = £t (mod N)

» Thus, there are 2" — 2 choices for s such that gcd(s + ¢, N) is a proper divisor of N

Dixon’s random squares algorithm

v

Let us describe Dixon’s [8] random squares method of factoring

\4

Suppose that N € Z5 15 is odd and not a prime power
(in particular, N has r > 2 distinct prime factors)

\4

We may furthermore assume that VN is not an integer
(otherwise we would have a proper divisor of N; computing | VN] is an exercise)

\4

Let B be a parameter whose value is fixed later

v

The algorithm consists of three parts
i. Find the h = n(B) least primes p; < p; < -+ < pp with p, < B;
if p; divides N for some j = 1,2,..., h, then output p; and stop

ii. Find h+ 1integers2 < s < N — 2 coprime to N whose square s* rem N is B-smooth

iii. Find a quadratic congruence modulo N using the h + 1 discovered integers

Finding smooth random squares

1. Set j « 1
2. Whilej < h+1do
a. Select a uniform random s; € {2,3,...,N -2}
b. If gcd(s;, N) # 1 then output ged(s;, N) and stop

c. Setu sf rem N

d. Fori=1,2,...,h
i Seta,-j%o

ii. While p; divides u, set aj; < a;; + 1and u « u/p;

e. Ifu=1thensetj«— j+1

Example: Finding smooth random squares (1/3)

» Let N =2028455971; we observe that N is odd and not a prime power

» Let us work with B=50and h=15withpy =2, p, =3,p3 =5,p4 =7, p5 = 11, ps = 13,
p7 =17, pg =19, pg = 23, p1o = 29, p11 = 31, p12 = 37, p13 = 41, p1g = 43, p15 = 47

Example: Finding smooth random squares (2/3)

» Suppose we obtain the h+ 1 = 16 smooth squares

1450852 rem N = 33 .5.7%.13.31-41
149391% rem N = 2° - 5% - 11 - 232

154209% rem N = 2° - 5% - 11-23 - 29
159846% rem N = 28 - 3.7.113 . 132
1604742 rem N = 2" . 7.11-13 .43
170440% rem N = 2 - 13 - 292 - 313

1711222 rem N =2-5-7-13-23-29 - 31-47
180169% rem N = 3% - 5% . 17 - 31 .47
1802002 rem N = 2* - 32 . 112 . 312
1802442 rem N =2°.3.5%.11-13. 19
1803762 rem N = 2* .32 .5.11-13-19 - 41
1805562 rem N = 2° . 3% .52 . 11.13 . 47
1811362 rem N = 2* - 3% .5.19.. 312
1811562 rem N = 2° - 3-52.132.19 . 47
181663% rem N = 3% - 11- 133 . 31

1817442 rem N = 2% - 3% .53 . 11.17 .19

Example: Finding smooth random squares (3/3)

» We thus have the h x (h+ 1) = 15 X 16 matrix

0 4 5 45 45 0 4

1 1

15

0 5 6 8

1 2 3 5 1 6
2 0 3 1
00 000 0 0 0 O

0o 0 0 2 2

30 0 1
2 50

1

12 0 3

2

0 1
1
0 0 0 2
1
0 0 0

0

1

30 0

1 1.0 0
1

1

1
1

1
1

0 2 3 0

0 0
1

1

0 0 2

1

1

0 0000 0 O

0 0 0 O
0 0 0 O

1

1
0 0 00 0 0 0 0 O

0 0 00 0 0 0 0 O

00 0 0 O
0
1

0
0

1
1
1

0
2
3

0

1

2 0 0 0 2 0

0 0 0

1

o0 0 0 O0OO0OO0OOO0OTO0OTO0OTUO

0 0 0 O

1

o000 0 O0OOT1TTOOOOO
10 0 0 00 00 0 O0 OO
0

0 0 0

0

1 0 0

0

1 0 0 0 1

1

A=

A lower bound for the number of smooth squares

Lemma 20 (A lower bound for the number of smooth squares)

Let S = {s € Z) : s> rem N is pp-smooth} and let d be a positive integer with pzd < N.
Furthermore, suppose that none of p1, pa, . . ., pp divides N.
Then,

h2d

512 5o

Proof |

> Let us recall that we write ZJ, for the set of integers 1 < a < N — 1 coprime to N
> Let Q={a€Zy :Abe Z} b?> = a (mod N)}

» For x > 1and an integer k € Zx let us write Ty(x) for the set of all integers a € Z>;
such that a < x and there exist integers ky, ko, ..., kn € Zso with ki + ko + ... + kp = k

— ok ke kn
and a=py'py* - p,

» Since none of py, ps, ..., pn divides N, for all a € Ti(x) we have that aand N are
coprime

e e

» Let N = q;'q,” - - - g be the factorization of N

Proof Il

» By the Chinese Remainder Theorem, we have the isomorphism

X X X
Zy — 17, quzz X"'Xqur

X

B
given by

€1 €2 er

a (aremgq,',aremqy},...,aremgq,")

» Fori= 1,2,...,randaEZE, let us define

1 if there exists b € Z « with b* = a(mod q7"),
xi(a) =) i
—1 otherwise

> The map y(a) = (x1(a), x2(a), ..., x-(a)) € {=1,1}" is a homomorphism from Z7, to
{-1, 1}

> In particular, for all a € Z}, we have a € Q if and only if y(a) = (1,1,...,1)

Proof 11l

» Foreachse {—1,1}", let

Us={ace Td(\/_ x(a) = s}

» Since VN is not an integer, for b, c € Us; we observe that 1 < bc < N -1 and
x(bc) = (1,1,...,1); in particular, bc € QN Tr4(N)

» Let m: Useq—1,1)rUs X Us — V be a surjective map given by (b, c) = m(b, c¢) = bc
> We have V € QN Tog(N) and [V|(%) > Ese(oy1yr 1Usl?

> Since every a € Q has exactly 2" square roots in Z, (exercise), from V C QN Tp4(N)
we have that |S| > 27| V|

Proof IV

» Combining inequalities, we have

2d_]r 2
|S|2(d) 2 31Ul

se{-1,1}"

» By the Cauchy—-Schwartz inequality and the definition of the sets Us, we have

2
Y |U5|22(Z}r|us|) = ITa(VM)P

se{-=1,1}" {-1,1

» Since pg < VN, an element of T4(VN) chooses exactly d primes up to py, possibly
with repetition; thus,

_ _ d
ITd(W)I:(d;h1 1):(d+3 1)2%

Proof V

» Combining inequalities, we obtain

2d\"'(hd* pd
'S'Z(d) (W) ")

» This completes the proof

Expected number of iterations

» From Lemma 20 we thus have that a uniform random s; € {2,3,..., N — 2} satisfies

that sj? rem N is B-smooth and gcd(s;, N) = 1 with probability at least
2d

- -2 d d
',f/l_; > L0 > z(zhs)w where in the last inequality we have assumed that % > 4

_ . oy . . 2d
here h = (B) and d is a positive integer with p;® < N

» Thus, in expectation we need at most 2(h + 1) (2;112);/\/ iterations of the while loop to find

h + 1 smooth random squares

> Let B= N2 and recall from Theorem 19 that for all large enough B we have both

h=n(B)> 2z and2(h+1) < B

» Since (2d)! < (2d)%9, in expectation the number of iterations is at most

(2d)IN g B(zdln B)2N Y

h2d B2d (In N)?*

(h+1)

Finding a quadratic congruence modulo N (1/2)

» Let us now turn to the last part of the algorithm that finds a quadratic congruence
modulo N

> The coefficients a;; for i = 1,2,...,hand j=1,2,...,h+ 1froman hx (h+ 1) integer
matrix

» The h+ 1 columns of this matrix are linearly dependent modulo 2
1. Finde; € {0,1} for j=0,1,..., h+ 1such that ¢; = 1 for at least one j and, for all

i=1,2,...,h we have
h+1

> ajej=0 (mod 2) (36)
j=1
> Since h < B, this can be done in time O(B?) using, for example, Gaussian elimination

» let £ =1,2,...,h+1withe,=Tande =0forall j=¢+1,0+2,...,h+1

Finding a quadratic congruence modulo N (2/2)

2. Next, set

3. Foralli=1,2,...,h,set

and observe from (36) that d; is a nonnegative integer
4. Set

tepf‘pgz---pzh rem N

» By construction we now have s? = t* (mod N)

Example: Finding a quadratic congruence modulo N (1/2)

» Let us continue working with N = 2028455971;
recall the smooth squares and the h x (h + 1) matrix A from the earlier example

» We have Ae = 0 (mod 2) for the vector € € {0, 1} with

.
e:[0011001101000001]

» We also have d = (Ae€)/2 with
d=[1247132111110001]T
» Accordingly,
s = (154209 - 159846 - 171122 - 180169 - 180244 - 181744) rem N = 1840185960

and

t=("-3*.5".7-11*.132.17-19-23-29 - 31- 47) rem N = 1325950600

Example: Finding a quadratic congruence modulo N (2/2)

» We have
N = 2028455971
s = 1840185960
t = 1325950600

» We readily check that s> = t> (mod N)

» Furthermore, we have
ged(s + t, N) = 46073
ged(s — t, N) = 44027

which splits N = 46073 - 44027 = 2028455971 into two proper divisors
(which are in fact prime)

The probability to obtain a proper divisor of N

» We claim that with probability at least 1/2 it holds that s # +t (mod N) and thus
gcd(s + t, N) is a proper divisor of N

> Indeed, observe that the coefficients a;; depend only on the values sf rem N; thus, t

depends only on the values sf rem N

» Condition on the values sy, 55, . . ., sp—1 and study the distribution of the value s,

conditioned on the value sf, rem N

» We have that s, has 2" possible values (the 2" possible square roots of sf, rem N),
exactly 2 of which lead to the outcome s = t (mod N) or s = —t (mod N) since e, = 1

» Because each possible value of sy occurs with probability 277, in aggregate (over all
conditionings) we have that s = t (mod N) or s = —t (mod N) with probability at
most 2" < 1/2 since r > 2

Expected running time (1/2)

» Recall that we let B = N2 for a positive integer d = d(N) such that B — oo and
(B/(2dIn B))*? > 4as N — o

» Recall that we obtain h + 1 smooth squares in expectation in at most N'/29(In N)?
iterations of the while loop

» Since h < B, each iteration runs in time O(B(log N)¢) for a constant ¢ > 0

» The time to find a quadratic congruence modulo N is at most O(B? + B(log N)°) for a
constant ¢ > 0

» Thus, the entire algorithm runs in at most O(N%(In N)?9(log N)€) expected time and
outputs a proper divisor of N with probability at least 1/2

Expected running time (2/2)

Recall that the expected running time is at most O(N% (In N)?4(log N)©)

v

v

Observe that de(ln N)% = exp(3|”N +2dInIn N)

v

Solve In d = dInIn N and round up to obtain

[/ InN
| VinlnN
and thus, for all large enough N,

N2 (In N)2(log N)© = exp(O(Vin N1n In N))

Since B = N9 > exp(Vin N) for all large enough N, we obtain expected running
time at most exp(O(VIn NInIn N)) for Dixon’s algorithm

v

Remarks

» We have here barely scratched the surface of moderately-exponential-time
randomized algorithms for factoring integers

» To obtain a practical algorithm design that runs in moderately exponential time (based
on a heuristic analysis), more work is needed—the aforementioned exposition and
analysis of Dixon’s algorithm merely illustrates some of the key theoretical ideas

» Cf. Crandall and Pomerance [7] and Wagstaff [28] for a more comprehensive
introduction to integer factoring algorithms

Key content for Lecture 9

» Prime numbers, factorization, and smooth numbers
» The prime number theorem

» De Bruijn’s lower bound for smooth numbers (exercise)
» Factoring by trial division

» The factorial function and factoring—fast polynomial evaluation and the
Pollard-Strassen algorithm [21, 26]

» Difference of two squares and factoring
» Quadratic congruences, square roots (exercise), and factoring

» Dixon’s random squares algorithm [8]

Lecture schedule

Tue 15 Jan:
Tue 22 Jan:
Tue 29 Jan:
Tue 5 Feb:

Tue 12 Feb:

Tue 19 Feb:
Tue 27 Feb:
Tue 5 Mar:

Tue 12 Mar:
Tue 19 Mar:
Tue 26 Mar:

O B~ W N =

. Polynomials and integers

. The fast Fourier transform and fast multiplication

. Quotient and remainder

. Batch evaluation and interpolation

. Extended Euclidean algorithm and interpolation from erroneous data

Exam week — no lecture

. Identity testing and probabilistically checkable proofs

Break — no lecture

. Finite fields
. Factoring polynomials over finite fields
. Factoring integers

Learning objectives (1/2)

» Terminology and objectives of modern algorithmics, including elements of algebraic,
online, and randomised algorithms

» Ways of coping with uncertainty in computation, including error-correction and
proofs of correctness

» The art of solving a large problem by reduction to one or more smaller instances of the
same or a related problem

» (Linear) independence, dependence, and their abstractions as enablers of efficient
algorithms

Learning objectives (2/2)

» Making use of duality
> Often a problem has a corresponding dual problem that is obtainable from the original
(the primal) problem by means of an easy transformation

» The primal and dual control each other, enabling an algorithm designer to use the
interplay between the two representations

» Relaxation and tradeoffs between objectives and resources as design tools
> Instead of computing the exact optimum solution at considerable cost, often a less costly
but principled approximation suffices

> Instead of the complete dual, often only a randomly chosen partial dual or other
relaxation suffices to arrive at a solution with high probability

CS-E4500 Advanced Course in Algorithms (5 ECTS, -1V, Spring 2019)

2019 | KALENTERI | 2019
Tammikuu | Helmikuu Maaliskuu | Huhtikuu Toukokuu I Kesakuu
1T udenwuodenpaiva 1]re 1T I 1]wa [[w4T9[1]kevappu 1]
2|ke 2|La 2| 2|To 2|su
3[m 3[su D3 3[ke 3[re 3[ma k23
4]pe 4|ma Vios || 4™ 4| 4m
5|t 5[14 skiainen 5[pe ®| 5[su 5|ke
6 5u Loppiainen 6[Ke Break 6|La 6ma VK 19 610
7|ma Vicoz 70 Q4 7[su 7| 7[Pe
8|1 8[re] 8|va V15 8[ke 8[La
9|ke 9|La 9T 9|To 9| Su Helluntaipéiva
10[10 10[su D4 6 10] ke 10[pe 10[Ma Vi2e
11]pe 1] ma ko7 T4 11]ma VKT 11T 11]ta 1T
12|t 2[n |5 12[n L7 12[pe ©|| 12]sutenpava 12[ke
13su 13| ke ©| 13[ke 13|La 13|Ma Vk 20 13| Te
ST oo ©| 14[e_Q5 14 Q7 ©|[74 [5u Paimusanmuntai Talm 4P
15| Ll 15(Pe 15|Pe 15|Ma Vk 16 15 (Ke 15|La
16]Ke 16[a 16[La 16[T 1610 16[su
170 Ol 17[su 17[su D7 17Ke 17pe 17| va vizs
18 [Pe 18] M WKGs | 18[Ma vk 127 || 18To 18|La 18T
19]ta o[l Exam Pl elv L8 19 | Pe Pitkaperjantal 19 | Su Kaatuneiden muistopaiva 19[Ke
20[su DI 20| e} 20| Ke Kevatpaiviffasaus 20[ta 20| ma V21 2010
B w0 21 weel 21 Q8 O|[21]su asiaispaiva 21T 21 [Pe Kesaptivanseisaus
22|t |2 22| P 22|Pe 22 | Ma 2. passidispaiva 22|Ke 22| La Juhannus
23[Ke 231 231 23] 23[To 23[su
24|10 Q2 24|su D5 24|su D8 24 |Ke 24]Pe 24[Ma Vk 26
25[pe 25| va Voo 75| 25va V13T 8 || 25]10 25[a 25[n
26[La 26t L6 @) 26[n |9 26]pe 26]su 26| ke
27su D2 @ 27]«e 27 [Ke 27]ta || 27|ma Vk22 2770
28|Ma wosT2|[28] Qf 28[T0 Q9 ®|| 28]su 28[Ti 28] Pe
29[t |3 29[Pe 29 |Ma Vk 18 29[Ke 29|l
30[ke 30[a 30| 30| To Helatorsta 30[su
31[ro Q3 31| Su Kesaaika alkfg) § 31|Pe
L = Lecture; hall T5, Tue 12-14
Q = Q &A session; hall T5, Thu 12-14
D = Problem set deadline; Sun 20:00
T =Tutorial (model solutions); hall T6, Mon 16-18

References |

[1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. (2) 160 (2004),
781-793.
[doi:10.4007/annals.2004.160.781].

[2] R.C.Baker, G. Harman, and J. Pintz, The difference between consecutive primes. I,
Proc. London Math. Soc. (3) 83 (2001), 532-562.
[doi:10.1112/plms/83.3.532].

[3] A.Bjorklund and P. Kaski, How proofs are prepared at Camelot: extended abstract,
in Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
PODC 2016, Chicago, IL, USA, July 25-28, 2016 (G. Giakkoupis, Ed.). ACM, 2016, pp.
391-400.

[doi:10.1145/2933057.2933101].

https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.1112/plms/83.3.532
https://doi.org/10.1145/2933057.2933101

References Il

[4] R.Brent and P. Zimmermann, Modern Computer Arithmetic, Cambrigde University
Press, 2011.
(WWW].

[5] M.L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider,
Nondeterministic extensions of the strong exponential time hypothesis and
consequences for non-reducibility, in Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016
(M. Sudan, Ed.). ACM, 2016, pp. 261-270.

[doi:10.1145/2840728.2840746].

[6] D.A.Cox,]. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, fourth ed.,
Springer, Cham, 2015.
[d0i:10.1007/978-3-319-16721-3].

https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://doi.org/10.1145/2840728.2840746
https://doi.org/10.1007/978-3-319-16721-3

References Il

[7] R.Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, second
ed., Springer, New York, 2005.
[d0i:10.1007/0-387-28979-8].

[8] J. D. Dixon, Asymptotically fast factorization of integers, Math. Comp. 36 (1981),
255-260.
[doi:10.2307/2007743].

[9] M. Fiirer, Faster integer multiplication, SIAM J. Comput. 39 (2009), 979-1005.
[doi:10.1137/070711761].

[10] S. Gao, A new algorithm for decoding Reed—Solomon codes, in Communications,
Information, and Network Security (V. K. Bhargava, H. V. Poor, V. Tarokh, and S. Yoon,
Eds.), Springer, 2003, pp. 55-68.

https://doi.org/10.1007/0-387-28979-8
https://doi.org/10.2307/2007743
https://doi.org/10.1137/070711761

References IV

[11] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, third ed., Cambridge
University Press, Cambridge, 2013.
[d0i:10.1017/CB0O9781139856065].

[12] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, Delegating computation: Interactive
proofs for muggles, J. ACM 62 (2015), 27:1-27:64.
[doi:10.1145/2699436].

[13] D. Harvey, J. van der Hoeven, and G. Lecerf, Even faster integer multiplication, J.
Complexity 36 (2016), 1-30.
[doi:10.1016/j.jc0.2016.03.001].

[14] D. Harvey, J. van der Hoeven, and G. Lecerf, Even faster integer multiplication, J.
Complexity 36 (2016), 1-30.
[doi:10.1016/j.jc0.2016.03.001].

https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1145/2699436
https://doi.org/10.1016/j.jco.2016.03.001
https://doi.org/10.1016/j.jco.2016.03.001

References V

[15] P. Kaski, Engineering a delegatable and error-tolerant algorithm for counting small
subgraphs, in Proceedings of the Twentieth Workshop on Algorithm Engineering and
Experiments, ALENEX 2018, New Orleans, LA, USA, January 7-8, 2018. (R. Pagh and
S. Venkatasubramanian, Eds.). SIAM, 2018, pp. 184-198.
[doi:10.1137/1.9781611975055.16].

[16] K.S. Kedlaya and C. Umans, Fast polynomial factorization and modular composition,
SIAM J. Comput. 40 (2011), 1767-1802.
[doi:10.1137/08073408X].

[17] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms,
3rd ed., Addison-Wesley, 1998.

[18] S. Lang, Algebra, third ed., Springer-Verlag, New York, 2002.
[d0i:10.1007/978-1-4613-0041-0].

https://doi.org/10.1137/1.9781611975055.16
https://doi.org/10.1137/08073408X
https://doi.org/10.1007/978-1-4613-0041-0

References VI

[19] R.Lidl and H. Niederreiter, Finite fields, second ed., Cambridge University Press,
Cambridge, 1997.

[20] N. Moller, On Schénhage’s algorithm and subquadratic integer GCD computation,
Math. Comp. 77 (2008), 589-607.
[doi:10.1090/S0025-5718-07-02017-0].

[21] J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge
Philos. Soc. 76 (1974), 521-528.

[22] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime
numbers, Il J. Math. 6 (1962), 64-94.
(WWW].

[23] A.Schénhage, Schnelle Multiplikation von Polynomen tber Kérpern der
Charakteristik 2, Acta Informat. 7 (1976/77), 395-398.
[doi:10.1007/BF00289470].

https://doi.org/10.1090/S0025-5718-07-02017-0
https://projecteuclid.org/euclid.ijm/1255631807
https://doi.org/10.1007/BF00289470

References VIl

[24] A.Schonhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computin
g p g puting
(Arch. Elektron. Rechnen) 7 (1971), 281-292.

[25] A. Shamir, How to share a secret, Comm. ACM 22 (1979), 612-613.
[d0i:10.1145/359168.359176].

[26] V. Strassen, Einige Resultate liber Berechnungskomplexitat, Jber. Deutsch.
Math.-Verein. 78 (1976/77), 1-8.

[27] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, 1992.
p
[d0i:10.1137/1.9781611970999].

[28] S.S. Wagstaff, Jr., The Joy of Factoring, American Mathematical Society, Providence,
RI, 2013.

[doi:10.1090/stml/068].

https://doi.org/10.1145/359168.359176
https://doi.org/10.1137/1.9781611970999
https://doi.org/10.1090/stml/068

References VIII

[29] M. Walfish and A. J. Blumberg, Verifying computations without reexecuting them,
Commun. ACM 58 (2015), 74-84.
[doi:10.1145/2641562].

[30] R.R.Williams, Strong ETH breaks with Merlin and Arthur: Short non-interactive
proofs of batch evaluation, in 37st Conference on Computational Complexity, CCC
2016, May 29 to June 1, 2016, Tokyo, Japan (R. Raz, Ed.). Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016, pp. 2:1-2:17.
[doi:10.4230/LIPlcs.CCC.2016.2].

https://doi.org/10.1145/2641562
https://doi.org/10.4230/LIPIcs.CCC.2016.2

