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Motivation for this week

» A tantalizing case where the connection between polynomials and integers apparently
breaks down occurs with factoring

» Namely, it is known how to efficiently factor a given univariate polynomial over a
finite field into its irreducible components, whereas no such algorithms are known for
factoring a given integer into its prime factors

» Last week we saw how to factor efficiently univariate polynomials over a finite field

» The best known algorithms for factoring integers run in time that scales moderately
exponentially in the number of digits in the input; this week we study one such
algorithm
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Key content for Lecture 9

» Prime numbers, factorization, and smooth numbers

v

The prime number theorem

\{

Factoring by trial division

v

Difference of two squares and factoring

v

Quadratic congruences, square roots (exercise), and factoring

» Dixon’s random squares algorithm [8]



Prime numbers

v

An integer p € Z, is prime if the only positive integers that divide p are 1and p

v

The set P = {2,3,5,7, 11, ...} of prime numbers is infinite

v

Indeed, suppose that py, ps, . . ., py are the h least distinct primes

v

Then, p1p; - - - pp + 1is not divisible by any of the py, ps, . .., pp and thus must have a
prime divisor p with p > p1,pa2, ..., pn



The prime number theorem

» For x > 1, let us write 7 (x) for the number of prime numbers at most x

Theorem 19 (Prime number theorem)
For all x > 59 it holds that

X 1 X 3
—1+ <rm(x) < —|1+
In x 2Inx In x 2Inx

Proof.
See e.g. Rosser and Schoenfeld [22, Theorem 1]



Factorization of an integer

> LetNEZZZ

» The factorization of N consists of distinct primes p1, pa, . . ., pr and positive integers
ap, o, . . ., ar such that

N=pi'py - pr
» The primes p1, pa,. . ., pr are the prime factors of N
» The factorization of N is unique up to ordering of the prime factors
» We say that N is a prime power if r = 1

» We say that N is squarefree if a; =a, =---a, = 1



Example: Factorization

» The factorization of 2027651281 is
2027651281 = 44021 - 46061



Smooth integer

» Let B>2

» Let N € Z>, have factorization

N=pips - pr

» We say that N € Z> is B-smooth if N =1or p,ps,...,pr < B



Example: Smooth integer

» The integer 1218719480020992 is 3-smooth
» Indeed, the factorization of 1218719480020992 is

1218719480020992 = 2%° .

319



Factoring an integer

» The factoring problem asks us to compute the factorization
N=pips - pr
for an integer N € Z3, given as input

» To solve the factoring problem it suffices to either (i) present a proper divisor d of N
with 2 < d < N — 1, or (ii) assert that N is prime

» Indeed, in case (i) we obtain the factorization of N by merging the recursive
factorizations of d and N/d

» We have that d is a proper divisor of N if and only if N/d is a proper divisor of N; thus,
without loss of generality we can assume that a proper divisor satisfies 2 < d < VN



Trial division

» Let N € Z5; be given as input

1. For all d=2,3,...,|_\/NJ
a. If d divides N, then output d and stop

2. Assert that N is prime and stop
> This algorithm runs in time O(N'/?(log N)°) for a constant ¢ > 0

» We leave as an exercise the design of an algorithm that computes | VN] in time
O((log N)¢) given N as input



Detecting and factoring prime powers

» Let N € Z5; be given as input

» In time O((log N)€) for a constant ¢ > 0 we can either output a prime p and a positive
integer a such that N = p® or assert that N is not a prime power (exercise)

» This design makes use that we can test primality in time polynomial in log N [1]



Difference of two squares and factoring

» Suppose that N € Z, is odd and not a prime power

» Thus, there exist distinct odd a, b € Z~3 with
a+ b\’ a-b\?
N =ab = -
2 2

» Similarly, for integers s, t € Z>1 we have that

N = s* -t
implies the factorization

N=(s+t)(s—1)



Example: Difference of two squares and factoring

» We have
2027651281 = 45041% — 1020°
» Thus,
2027651281 = (45041 — 1020) (45041 + 1020) = 44021 - 46061



Quadratic congruences and square roots

» Suppose that N € Z>5 is odd and has r > 2 distinct prime factors
» Let s? = t? (mod N) withs,t € {1,2,...,N— 1} and gcd(s, N) = gcd(t, N) = 1

» Then, there are exactly 2" choices for s such that s?> = t* (mod N) (exercise)



Quadratic congruences and factoring

» Suppose that N € Z; is odd and has r > 2 distinct prime factors
» Let s> = 2 (mod N) withs,t € {1,2,...,N— 1} and gcd(s, N) = gcd(t, N) = 1
» That is, there exists an integer q with s — t? = (s — t)(s + t) = gN

» We thus have that gcd(s + t, N) is a proper divisor of N unless N divides s — t or N
divides s + t

» That is, gcd(s + t, N) is a proper divisor of N unless s = £t (mod N)

» Thus, there are 2" — 2 choices for s such that gcd(s + ¢, N) is a proper divisor of N



Dixon’s random squares algorithm

v

Let us describe Dixon’s [8] random squares method of factoring

\4

Suppose that N € Z5 15 is odd and not a prime power
(in particular, N has r > 2 distinct prime factors)

\4

We may furthermore assume that VN is not an integer
(otherwise we would have a proper divisor of N; computing | VN] is an exercise)

\4

Let B be a parameter whose value is fixed later

v

The algorithm consists of three parts
i. Find the h = n(B) least primes p; < p; < -+ < pp with p, < B;
if p; divides N for some j = 1,2,..., h, then output p; and stop

ii. Find h+ 1integers2 < s < N — 2 coprime to N whose square s* rem N is B-smooth

iii. Find a quadratic congruence modulo N using the h + 1 discovered integers



Finding smooth random squares

1. Set j « 1
2. Whilej < h+1do
a. Select a uniform random s; € {2,3,...,N -2}
b. If gcd(s;, N) # 1 then output ged(s;, N) and stop

c. Setu sf rem N

d. Fori=1,2,...,h
i Seta,-j%o

ii. While p; divides u, set aj; < a;; + 1and u « u/p;

e. Ifu=1thensetj«— j+1



Example: Finding smooth random squares (1/3)

» Let N =2028455971; we observe that N is odd and not a prime power

» Let us work with B=50and h=15withpy =2, p, =3,p3 =5,p4 =7, p5 = 11, ps = 13,
p7 =17, pg =19, pg = 23, p1o = 29, p11 = 31, p12 = 37, p13 = 41, p1g = 43, p15 = 47



Example: Finding smooth random squares (2/3)

» Suppose we obtain the h+ 1 = 16 smooth squares

1450852 rem N = 33 .5.7%.13.31-41
149391% rem N = 2° - 5% - 11 - 232

154209% rem N = 2° - 5% - 11-23 - 29
159846% rem N = 28 - 3.7.113 . 132
1604742 rem N = 2" . 7.11-13 .43
170440% rem N = 2 - 13 - 292 - 313

1711222 rem N =2-5-7-13-23-29 - 31-47
180169% rem N = 3% - 5% . 17 - 31 .47
1802002 rem N = 2* - 32 . 112 . 312
1802442 rem N =2°.3.5%.11-13. 19
1803762 rem N = 2* .32 .5.11-13-19 - 41
1805562 rem N = 2° . 3% .52 . 11.13 . 47
1811362 rem N = 2* - 3% .5.19.. 312
1811562 rem N = 2° - 3-52.132.19 . 47
181663% rem N = 3% - 11- 133 . 31

1817442 rem N = 2% - 3% .53 . 11.17 .19



Example: Finding smooth random squares (3/3)

» We thus have the h x (h+ 1) = 15 X 16 matrix
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A lower bound for the number of smooth squares

Lemma 20 (A lower bound for the number of smooth squares)

Let S = {s € Z) : s> rem N is pp-smooth} and let d be a positive integer with pzd < N.
Furthermore, suppose that none of p1, pa, . . ., pp divides N.
Then,

h2d

512 5o




Proof |

> Let us recall that we write ZJ, for the set of integers 1 < a < N — 1 coprime to N
> Let Q={a€Zy :Abe Z} b?> = a (mod N)}

» For x > 1and an integer k € Zx let us write Ty(x) for the set of all integers a € Z>;
such that a < x and there exist integers ky, ko, ..., kn € Zso with ki + ko + ... + kp = k

— ok ke kn
and a=py'py* - p,

» Since none of py, ps, ..., pn divides N, for all a € Ti(x) we have that aand N are
coprime

e e

» Let N = q;'q,” - - - g be the factorization of N



Proof Il

» By the Chinese Remainder Theorem, we have the isomorphism

X X X
Zy — 17, quzz X"'Xqur

X

B
given by

€1 €2 er

a (aremgq,',aremqy},...,aremgq,")

» Fori= 1,2,...,randaEZE, let us define

1 if there exists b € Z « with b* = a(mod q7"),
xi(a) = ) i
—1 otherwise

> The map y(a) = (x1(a), x2(a), ..., x-(a)) € {=1,1}" is a homomorphism from Z7, to
{-1, 1}

> In particular, for all a € Z}, we have a € Q if and only if y(a) = (1,1,...,1)



Proof 11l

» Foreachse {—1,1}", let

Us={ace Td(\/_ x(a) = s}

» Since VN is not an integer, for b, c € Us; we observe that 1 < bc < N -1 and
x(bc) = (1,1,...,1); in particular, bc € QN Tr4(N)

» Let m: Useq—1,1)rUs X Us — V be a surjective map given by (b, c) = m(b, c¢) = bc
> We have V € QN Tog(N) and [V|(%) > Ese(oy1yr 1Usl?

> Since every a € Q has exactly 2" square roots in Z, (exercise), from V C QN Tp4(N)
we have that |S| > 27| V|



Proof IV

» Combining inequalities, we have

2d_]r 2
|S|2(d) 2 31Ul

se{-1,1}"

» By the Cauchy—-Schwartz inequality and the definition of the sets Us, we have

2
Y |U5|22( Z}r|us|) = ITa(VM)P

se{-=1,1}" {-1,1

» Since pg < VN, an element of T4(VN) chooses exactly d primes up to py, possibly
with repetition; thus,

_ _ d
ITd(W)I:(d;h1 1):(d+3 1)2%



Proof V

» Combining inequalities, we obtain

2d\"'(hd\*  pd
'S'Z(d) (W) " )

» This completes the proof



Expected number of iterations

» From Lemma 20 we thus have that a uniform random s; € {2,3,..., N — 2} satisfies

that sj? rem N is B-smooth and gcd(s;, N) = 1 with probability at least
2d

- -2 d d
',f/l_; > L0 > z(zhs)w where in the last inequality we have assumed that % > 4

_ . oy . . 2d
here h = (B) and d is a positive integer with p;® < N

» Thus, in expectation we need at most 2(h + 1) (2;112);/\/ iterations of the while loop to find

h + 1 smooth random squares

> Let B= N2 and recall from Theorem 19 that for all large enough B we have both

h=n(B)> 2z and2(h+1) < B

» Since (2d)! < (2d)%9, in expectation the number of iterations is at most

(2d)IN g B(zdln B)2N Y

h2d B2d (In N)?*

(h+1)




Finding a quadratic congruence modulo N (1/2)

» Let us now turn to the last part of the algorithm that finds a quadratic congruence
modulo N

> The coefficients a;; for i = 1,2,...,hand j=1,2,...,h+ 1froman hx (h+ 1) integer
matrix

» The h+ 1 columns of this matrix are linearly dependent modulo 2
1. Finde; € {0,1} for j=0,1,..., h+ 1such that ¢; = 1 for at least one j and, for all

i=1,2,...,h we have
h+1

> ajej=0 (mod 2) (36)
j=1
> Since h < B, this can be done in time O(B?) using, for example, Gaussian elimination

» let £ =1,2,...,h+1withe,=Tande =0forall j=¢+1,0+2,...,h+1



Finding a quadratic congruence modulo N (2/2)

2. Next, set

3. Foralli=1,2,...,h,set

and observe from (36) that d; is a nonnegative integer
4. Set

tepf‘pgz---pzh rem N

» By construction we now have s? = t* (mod N)



Example: Finding a quadratic congruence modulo N (1/2)

» Let us continue working with N = 2028455971;
recall the smooth squares and the h x (h + 1) matrix A from the earlier example

» We have Ae = 0 (mod 2) for the vector € € {0, 1} with

.
e:[0011001101000001]

» We also have d = (Ae€)/2 with
d=[1247132111110001]T
» Accordingly,
s = (154209 - 159846 - 171122 - 180169 - 180244 - 181744) rem N = 1840185960

and

t=("-3*.5".7-11*.132.17-19-23-29 - 31- 47) rem N = 1325950600



Example: Finding a quadratic congruence modulo N (2/2)

» We have
N = 2028455971
s = 1840185960
t = 1325950600

» We readily check that s> = t> (mod N)

» Furthermore, we have
ged(s + t, N) = 46073
ged(s — t, N) = 44027

which splits N = 46073 - 44027 = 2028455971 into two proper divisors
(which are in fact prime)



The probability to obtain a proper divisor of N

» We claim that with probability at least 1/2 it holds that s # +t (mod N) and thus
gcd(s + t, N) is a proper divisor of N

> Indeed, observe that the coefficients a;; depend only on the values sf rem N; thus, t

depends only on the values sf rem N

» Condition on the values sy, 55, . . ., sp—1 and study the distribution of the value s,

conditioned on the value sf, rem N

» We have that s, has 2" possible values (the 2" possible square roots of sf, rem N),
exactly 2 of which lead to the outcome s = t (mod N) or s = —t (mod N) since e, = 1

» Because each possible value of sy occurs with probability 277, in aggregate (over all
conditionings) we have that s = t (mod N) or s = —t (mod N) with probability at
most 2" < 1/2 since r > 2



Expected running time (1/2)

» Recall that we let B = N2 for a positive integer d = d(N) such that B — oo and
(B/(2dIn B))*? > 4as N — o

» Recall that we obtain h + 1 smooth squares in expectation in at most N'/29(In N)?
iterations of the while loop

» Since h < B, each iteration runs in time O(B(log N)¢) for a constant ¢ > 0

» The time to find a quadratic congruence modulo N is at most O(B? + B(log N)°) for a
constant ¢ > 0

» Thus, the entire algorithm runs in at most O(N%(In N)?9(log N)€) expected time and
outputs a proper divisor of N with probability at least 1/2



Expected running time (2/2)

Recall that the expected running time is at most O(N% (In N)?4(log N)©)

v

v

Observe that de(ln N)% = exp(3|”N +2dInIn N)

v

Solve In d = dInIn N and round up to obtain

[/ InN
| VinlnN
and thus, for all large enough N,

N2 (In N)2(log N)© = exp(O(Vin N1n In N))

Since B = N9 > exp(Vin N) for all large enough N, we obtain expected running
time at most exp(O(VIn NInIn N)) for Dixon’s algorithm

v



Remarks

» We have here barely scratched the surface of moderately-exponential-time
randomized algorithms for factoring integers

» To obtain a practical algorithm design that runs in moderately exponential time (based
on a heuristic analysis), more work is needed—the aforementioned exposition and
analysis of Dixon’s algorithm merely illustrates some of the key theoretical ideas

» Cf. Crandall and Pomerance [7] and Wagstaff [28] for a more comprehensive
introduction to integer factoring algorithms



Key content for Lecture 9

» Prime numbers, factorization, and smooth numbers
» The prime number theorem

» De Bruijn’s lower bound for smooth numbers (exercise)
» Factoring by trial division

» The factorial function and factoring—fast polynomial evaluation and the
Pollard-Strassen algorithm [21, 26]

» Difference of two squares and factoring
» Quadratic congruences, square roots (exercise), and factoring

» Dixon’s random squares algorithm [8]



Lecture schedule

Tue 15 Jan:
Tue 22 Jan:
Tue 29 Jan:
Tue 5 Feb:

Tue 12 Feb:

Tue 19 Feb:
Tue 27 Feb:
Tue 5 Mar:

Tue 12 Mar:
Tue 19 Mar:
Tue 26 Mar:

O B~ W N =

. Polynomials and integers

. The fast Fourier transform and fast multiplication

. Quotient and remainder

. Batch evaluation and interpolation

. Extended Euclidean algorithm and interpolation from erroneous data

Exam week — no lecture

. Identity testing and probabilistically checkable proofs

Break — no lecture

. Finite fields
. Factoring polynomials over finite fields
. Factoring integers



Learning objectives (1/2)

» Terminology and objectives of modern algorithmics, including elements of algebraic,
online, and randomised algorithms

» Ways of coping with uncertainty in computation, including error-correction and
proofs of correctness

» The art of solving a large problem by reduction to one or more smaller instances of the
same or a related problem

» (Linear) independence, dependence, and their abstractions as enablers of efficient
algorithms



Learning objectives (2/2)

» Making use of duality
> Often a problem has a corresponding dual problem that is obtainable from the original
(the primal) problem by means of an easy transformation

» The primal and dual control each other, enabling an algorithm designer to use the
interplay between the two representations

» Relaxation and tradeoffs between objectives and resources as design tools
> Instead of computing the exact optimum solution at considerable cost, often a less costly
but principled approximation suffices

> Instead of the complete dual, often only a randomly chosen partial dual or other
relaxation suffices to arrive at a solution with high probability
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