9. Factoring integers

CS-E4500 Advanced Course on Algorithms Spring 2019

> Petteri Kaski Department of Computer Science Aalto University

Motivation for this week

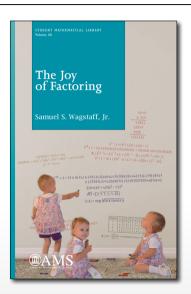
- ► A tantalizing case where the connection between polynomials and integers apparently breaks down occurs with **factoring**
- ► Namely, it is known how to efficiently factor a given univariate polynomial over a finite field into its irreducible components, whereas no such algorithms are known for factoring a given integer into its prime factors
- ► Last week we saw how to factor efficiently univariate polynomials over a finite field
- ► The best known algorithms for factoring integers run in time that scales moderately exponentially in the number of digits in the input; this week we study one such algorithm

Factoring integers

(von zur Gathen and Gerhard [11], Sections 19.1–3, 19.5)

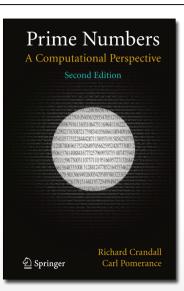
Factoring integers

(Wagstaff [28])



Factoring integers

(Crandall and Pomerance [7])



Key content for Lecture 9

- ► Prime numbers, factorization, and smooth numbers
- ► The prime number theorem
- ► Factoring by **trial division**
- ► Difference of two squares and factoring
- Quadratic congruences, square roots (exercise), and factoring
- ► Dixon's random squares algorithm [8]

Prime numbers

- ▶ An integer $p \in \mathbb{Z}_{\geq 2}$ is **prime** if the only positive integers that divide p are 1 and p
- ► The set $\mathbb{P} = \{2, 3, 5, 7, 11, \ldots\}$ of prime numbers is infinite
- ▶ Indeed, suppose that $p_1, p_2, ..., p_h$ are the h least distinct primes
- ► Then, $p_1p_2\cdots p_h+1$ is not divisible by any of the p_1,p_2,\ldots,p_h and thus must have a prime divisor p with $p>p_1,p_2,\ldots,p_h$

The prime number theorem

► For $x \ge 1$, let us write $\pi(x)$ for the number of prime numbers at most x

Theorem 19 (Prime number theorem)

For all x > 59 it holds that

$$\frac{x}{\ln x} \left(1 + \frac{1}{2\ln x} \right) < \pi(x) < \frac{x}{\ln x} \left(1 + \frac{3}{2\ln x} \right)$$

Proof.

See e.g. Rosser and Schoenfeld [22, Theorem 1]

Factorization of an integer

- ► Let $N \in \mathbb{Z}_{\geq 2}$
- ► The **factorization** of *N* consists of distinct primes p_1, p_2, \ldots, p_r and positive integers a_1, a_2, \ldots, a_r such that

$$N=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

- ▶ The primes $p_1, p_2, ..., p_r$ are the **prime factors** of N
- \blacktriangleright The factorization of N is unique up to ordering of the prime factors
- ► We say that *N* is a **prime power** if r = 1
- ▶ We say that *N* is **squarefree** if $a_1 = a_2 = \cdots = a_r = 1$

Example: Factorization

► The factorization of 2027651281 is

 $2027651281 = 44021 \cdot 46061$

Smooth integer

- ▶ Let $B \ge 2$
- ▶ Let $N \in \mathbb{Z}_{\geq 2}$ have factorization

$$N=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

▶ We say that $N \in \mathbb{Z}_{\geq 1}$ is *B*-smooth if N = 1 or $p_1, p_2, \dots, p_r \leq B$

Example: Smooth integer

- ► The integer 1218719480020992 is 3-smooth
- ▶ Indeed, the factorization of 1218719480020992 is

$$1218719480020992 = 2^{20} \cdot 3^{19}$$

Factoring an integer

► The **factoring problem** asks us to compute the factorization

$$N = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$

for an integer $N \in \mathbb{Z}_{\geq 2}$ given as input

- ► To solve the factoring problem it suffices to either (i) present a **proper divisor** d of N with $2 \le d \le N 1$, or (ii) assert that N is prime
- ► Indeed, in case (i) we obtain the factorization of N by merging the recursive factorizations of d and N/d
- ► We have that d is a proper divisor of N if and only if N/d is a proper divisor of N; thus, without loss of generality we can assume that a proper divisor satisfies $2 \le d \le \sqrt{N}$

Trial division

- ► Let $N \in \mathbb{Z}_{\geq 2}$ be given as input
- 1. For all $d = 2, 3, ..., \lfloor \sqrt{N} \rfloor$
 - a. If d divides N, then output d and stop
- 2. Assert that *N* is prime and stop
- ► This algorithm runs in time $O(N^{1/2}(\log N)^c)$ for a constant c > 0
- ► We leave as an exercise the design of an algorithm that computes $\lfloor \sqrt{N} \rfloor$ in time $O((\log N)^c)$ given N as input

Detecting and factoring prime powers

- ▶ Let $N \in \mathbb{Z}_{\geq 2}$ be given as input
- ▶ In time $O((\log N)^c)$ for a constant c > 0 we can either output a prime p and a positive integer a such that $N = p^a$ or assert that N is not a prime power (exercise)
- ▶ This design makes use that we can test primality in time polynomial in $\log N$ [1]

Difference of two squares and factoring

- ▶ Suppose that $N \in \mathbb{Z}_{\geq 2}$ is odd and not a prime power
- ▶ Thus, there exist distinct odd $a, b \in \mathbb{Z}_{\geq 3}$ with

$$N = ab = \left(\frac{a+b}{2}\right)^2 - \left(\frac{a-b}{2}\right)^2$$

▶ Similarly, for integers $s, t \in \mathbb{Z}_{\geq 1}$ we have that

$$N = s^2 - t^2$$

implies the factorization

$$N = (s+t)(s-t)$$

Example: Difference of two squares and factoring

▶ We have

$$2027651281 = 45041^2 - 1020^2$$

► Thus,

$$2027651281 = (45041 - 1020)(45041 + 1020) = 44021 \cdot 46061$$

Quadratic congruences and square roots

- ▶ Suppose that $N \in \mathbb{Z}_{\geq 15}$ is odd and has $r \geq 2$ distinct prime factors
- ► Let $s^2 \equiv t^2 \pmod{N}$ with $s, t \in \{1, 2, ..., N-1\}$ and gcd(s, N) = gcd(t, N) = 1
- ► Then, there are exactly 2^r choices for s such that $s^2 \equiv t^2 \pmod{N}$ (exercise)

Quadratic congruences and factoring

- ▶ Suppose that $N \in \mathbb{Z}_{\geq 2}$ is odd and has $r \geq 2$ distinct prime factors
- ► Let $s^2 \equiv t^2 \pmod{N}$ with $s, t \in \{1, 2, ..., N-1\}$ and gcd(s, N) = gcd(t, N) = 1
- ► That is, there exists an integer q with $s^2 t^2 = (s t)(s + t) = qN$
- ▶ We thus have that gcd(s + t, N) is a proper divisor of N unless N divides s t or N divides s + t
- ► That is, gcd(s + t, N) is a proper divisor of N unless $s \equiv \pm t \pmod{N}$
- ► Thus, there are $2^r 2$ choices for s such that gcd(s + t, N) is a proper divisor of N

Dixon's random squares algorithm

- ► Let us describe Dixon's [8] random squares method of factoring
- ► Suppose that $N \in \mathbb{Z}_{\geq 15}$ is odd and not a prime power (in particular, N has $r \geq 2$ distinct prime factors)
- ► We may furthermore assume that \sqrt{N} is not an integer (otherwise we would have a proper divisor of N; computing $\lfloor \sqrt{N} \rfloor$ is an exercise)
- ► Let *B* be a parameter whose value is fixed later
- ► The algorithm consists of three parts
 - i. Find the $h = \pi(B)$ least primes $p_1 < p_2 < \cdots < p_h$ with $p_h \le B$; if p_j divides N for some $j = 1, 2, \dots, h$, then output p_j and stop
 - ii. Find h + 1 integers $2 \le s \le N 2$ coprime to N whose square s^2 rem N is B-smooth
 - iii. Find a quadratic congruence modulo N using the h + 1 discovered integers

Finding smooth random squares

- 1. Set $j \leftarrow 1$
- 2. While $j \le h + 1$ do
 - a. Select a uniform random $s_i \in \{2, 3, ..., N-2\}$
 - b. If $gcd(s_j, N) \neq 1$ then output $gcd(s_j, N)$ and stop
 - c. Set $u \leftarrow s_i^2 \operatorname{rem} N$
 - d. For i = 1, 2, ..., h
 - i. Set $a_{ii} \leftarrow 0$
 - ii. While p_i divides u, set $a_{ij} \leftarrow a_{ij} + 1$ and $u \leftarrow u/p_i$
 - e. If u = 1 then set $i \leftarrow i + 1$

Example: Finding smooth random squares (1/3)

- ► Let N = 2028455971; we observe that N is odd and not a prime power
- Let us work with B = 50 and h = 15 with $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$, $p_5 = 11$, $p_6 = 13$, $p_7 = 17$, $p_8 = 19$, $p_9 = 23$, $p_{10} = 29$, $p_{11} = 31$, $p_{12} = 37$, $p_{13} = 41$, $p_{14} = 43$, $p_{15} = 47$

Example: Finding smooth random squares (2/3)

► Suppose we obtain the h + 1 = 16 smooth squares

```
145085^2 \text{ rem } N = 3^3 \cdot 5 \cdot 7^3 \cdot 13 \cdot 31 \cdot 41
149391^2 \text{ rem } N = 2^5 \cdot 5^2 \cdot 11 \cdot 23^2
154209^2 \text{ rem } N = 2^6 \cdot 5^5 \cdot 11 \cdot 23 \cdot 29
159846^2 \text{ rem } N = 2^8 \cdot 3 \cdot 7 \cdot 11^3 \cdot 13^2
160474^2 \text{ rem } N = 2^{15} \cdot 7 \cdot 11 \cdot 13 \cdot 43
170440^2 \text{ rem } N = 2 \cdot 13 \cdot 29^2 \cdot 31^3
171122^2 \text{ rem } N = 2 \cdot 5 \cdot 7 \cdot 13 \cdot 23 \cdot 29 \cdot 31 \cdot 47
180169^2 \text{ rem } N = 3^2 \cdot 5^2 \cdot 17 \cdot 31 \cdot 47
180200^2 \text{ rem } N = 2^4 \cdot 3^2 \cdot 11^2 \cdot 31^2
180244^2 \text{ rem } N = 2^5 \cdot 3 \cdot 5^3 \cdot 11 \cdot 13 \cdot 19
180376^2 \text{ rem } N = 2^4 \cdot 3^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \cdot 41
180556^2 \text{ rem } N = 2^5 \cdot 3^3 \cdot 5^2 \cdot 11 \cdot 13 \cdot 47
181136^2 \text{ rem } N = 2^4 \cdot 3^5 \cdot 5 \cdot 19 \cdot 31^2
181156^2 \text{ rem } N = 2^5 \cdot 3 \cdot 5^2 \cdot 13^2 \cdot 19 \cdot 47
181663^2 \text{ rem } N = 3^6 \cdot 11 \cdot 13^3 \cdot 31
181744^2 \text{ rem } N = 2^4 \cdot 3^4 \cdot 5^3 \cdot 11 \cdot 17 \cdot 19
```

Example: Finding smooth random squares (3/3)

• We thus have the $h \times (h + 1) = 15 \times 16$ matrix

A lower bound for the number of smooth squares

Lemma 20 (A lower bound for the number of smooth squares)

Let $S = \{s \in \mathbb{Z}_N^{\times} : s^2 \text{ rem } N \text{ is } p_h\text{-smooth}\}$ and let d be a positive integer with $p_h^{2d} \leq N$. Furthermore, suppose that none of p_1, p_2, \ldots, p_h divides N. Then,

$$|S| \ge \frac{h^{2d}}{(2d)!}$$

Proof I

- ▶ Let us recall that we write \mathbb{Z}_N^{\times} for the set of integers $1 \le a \le N-1$ coprime to N
- ► Let $Q = \{a \in \mathbb{Z}_N^{\times} : \exists b \in \mathbb{Z}_N^{\times} \ b^2 \equiv a \pmod{N}\}$
- ► For $x \ge 1$ and an integer $k \in \mathbb{Z}_{\ge 0}$ let us write $T_d(x)$ for the set of all integers $a \in \mathbb{Z}_{\ge 1}$ such that $a \le x$ and there exist integers $k_1, k_2, \ldots, k_h \in \mathbb{Z}_{\ge 0}$ with $k_1 + k_2 + \ldots + k_h = k$ and $a = p_1^{k_1} p_2^{k_2} \cdots p_h^{k_h}$
- ▶ Since none of $p_1, p_2, ..., p_h$ divides N, for all $a \in T_k(x)$ we have that a and N are coprime
- ► Let $N = q_1^{e_1} q_2^{e_2} \cdots q_r^{e_r}$ be the factorization of N

Proof II

▶ By the Chinese Remainder Theorem, we have the isomorphism

$$\mathbb{Z}_N^{\times} \to \mathbb{Z}_{q_1^{e_1}}^{\times} \times \mathbb{Z}_{q_2^{e_2}}^{\times} \times \cdots \times \mathbb{Z}_{q_r^{e_r}}^{\times}$$

given by

$$a \mapsto (a \operatorname{rem} q_1^{e_1}, a \operatorname{rem} q_2^{e_2}, \dots, a \operatorname{rem} q_r^{e_r})$$

For i = 1, 2, ..., r and $a \in \mathbb{Z}_N^{\times}$, let us define

$$\chi_i(a) = \begin{cases} 1 & \text{if there exists } b \in \mathbb{Z}_{q_i^{e_i}} \text{ with } b^2 \equiv a \pmod{q_i^{e_i}}, \\ -1 & \text{otherwise} \end{cases}$$

- ► The map $\chi(a) = (\chi_1(a), \chi_2(a), \dots, \chi_r(a)) \in \{-1, 1\}^r$ is a homomorphism from \mathbb{Z}_N^{\times} to $\{-1, 1\}^r$
- ▶ In particular, for all $a \in \mathbb{Z}_N^{\times}$ we have $a \in Q$ if and only if $\chi(a) = (1, 1, ..., 1)$

Proof III

► For each $s \in \{-1, 1\}^r$, let

$$U_s = \{a \in T_d(\sqrt{N}) : \chi(a) = s\}$$

- ► Since \sqrt{N} is not an integer, for $b, c \in U_s$ we observe that $1 \le bc \le N 1$ and $\chi(bc) = (1, 1, ..., 1)$; in particular, $bc \in Q \cap T_{2d}(N)$
- ▶ Let $m: \bigcup_{s \in \{-1,1\}^r} U_s \times U_s \to V$ be a surjective map given by $(b,c) \mapsto m(b,c) = bc$
- ▶ We have $V \subseteq Q \cap T_{2d}(N)$ and $|V|\binom{2d}{d} \ge \sum_{s \in \{-1,1\}^r} |U_s|^2$
- ► Since every $a \in Q$ has exactly 2^r square roots in \mathbb{Z}_N^{\times} (exercise), from $V \subseteq Q \cap T_{2d}(N)$ we have that $|S| \ge 2^r |V|$

Proof IV

► Combining inequalities, we have

$$|S| \ge {2d \choose d}^{-1} 2^r \sum_{s \in \{-1,1\}^r} |U_s|^2$$

▶ By the Cauchy–Schwartz inequality and the definition of the sets U_s , we have

$$2^{r} \sum_{s \in \{-1,1\}^{r}} |U_{s}|^{2} \ge \left(\sum_{s \in \{-1,1\}^{r}} |U_{s}|\right)^{2} = |T_{d}(\sqrt{N})|^{2}$$

► Since $p_h^d \le \sqrt{N}$, an element of $T_d(\sqrt{N})$ chooses exactly d primes up to p_h , possibly with repetition; thus,

$$|T_d(\sqrt{N})| = {d+h-1 \choose h-1} = {d+h-1 \choose d} \ge \frac{h^d}{d!}$$

Proof V

► Combining inequalities, we obtain

$$|S| \ge {2d \choose d}^{-1} \left(\frac{h^d}{d!}\right)^2 = \frac{h^{2d}}{(2d)!}$$

► This completes the proof

Expected number of iterations

► From Lemma 20 we thus have that a uniform random $s_j \in \{2, 3, ..., N-2\}$ satisfies that s_j^2 rem N is B-smooth and $\gcd(s_j, N) = 1$ with probability at least

$$\frac{|S|-2}{N-3} \ge \frac{\frac{h^{2d}}{(2d)!}-2}{N} \ge \frac{h^{2d}}{2(2d)!N}$$
 where in the last inequality we have assumed that $\frac{h^{2d}}{(2d)!} \ge 4$; here $h = \pi(B)$ and d is a positive integer with $p_h^{2d} \le N$

- ► Thus, in expectation we need at most $2(h+1)\frac{(2d)!N}{h^{2d}}$ iterations of the while loop to find h+1 smooth random squares
- ► Let $B = N^{\frac{1}{2d}}$ and recall from Theorem 19 that for all large enough B we have both $h = \pi(B) > \frac{B}{\ln B}$ and $2(h + 1) \le B$
- ► Since $(2d)! \le (2d)^{2d}$, in expectation the number of iterations is at most

$$(h+1)\frac{(2d)!N}{h^{2d}} < B\frac{(2d\ln B)^{2d}N}{B^{2d}} = N^{1/2d}(\ln N)^{2d}$$

Finding a quadratic congruence modulo N(1/2)

- ► Let us now turn to the last part of the algorithm that finds a quadratic congruence modulo *N*
- ► The coefficients a_{ij} for i = 1, 2, ..., h and j = 1, 2, ..., h + 1 from an $h \times (h + 1)$ integer matrix
- ► The h + 1 columns of this matrix are linearly dependent modulo 2
- 1. Find $\epsilon_j \in \{0, 1\}$ for j = 0, 1, ..., h + 1 such that $\epsilon_j = 1$ for at least one j and, for all i = 1, 2, ..., h, we have

$$\sum_{i=1}^{h+1} a_{ij} \epsilon_j \equiv 0 \pmod{2} \tag{36}$$

- ► Since $h \le B$, this can be done in time $O(B^3)$ using, for example, Gaussian elimination
- ▶ Let $\ell = 1, 2, ..., h + 1$ with $\epsilon_{\ell} = 1$ and $\epsilon_{j} = 0$ for all $j = \ell + 1, \ell + 2, ..., h + 1$

Finding a quadratic congruence modulo N(2/2)

2. Next, set

$$s \leftarrow s_1^{\epsilon_1} s_2^{\epsilon_2} \cdots s_{\ell}^{\epsilon_{\ell}} \text{ rem } N$$

3. For all i = 1, 2, ..., h, set

$$d_i = \frac{1}{2} \sum_{j=1}^{\ell} a_{ij} \epsilon_j$$

and observe from (36) that d_i is a nonnegative integer

4. Set

$$t \leftarrow p_1^{d_1} p_2^{d_2} \cdots p_h^{d_h} \operatorname{rem} N$$

▶ By construction we now have $s^2 \equiv t^2 \pmod{N}$

Example: Finding a quadratic congruence modulo N (1/2)

- Let us continue working with N = 2028455971; recall the smooth squares and the $h \times (h + 1)$ matrix A from the earlier example
- ▶ We have $A\epsilon \equiv 0 \pmod{2}$ for the vector $\epsilon \in \{0, 1\}^{h+1}$ with

▶ We also have $d = (A\epsilon)/2$ with

$$d = \begin{bmatrix} 12 & 4 & 7 & 1 & 3 & 2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$$

► Accordingly,

$$s = (154209 \cdot 159846 \cdot 171122 \cdot 180169 \cdot 180244 \cdot 181744) \text{ rem } \mathcal{N} = 1840185960$$
 and

$$t = (2^{12} \cdot 3^4 \cdot 5^7 \cdot 7 \cdot 11^3 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 47) \text{ rem } N = 1325950600$$

Example: Finding a quadratic congruence modulo N(2/2)

▶ We have

$$N = 2028455971$$
$$s = 1840185960$$
$$t = 1325950600$$

- We readily check that $s^2 \equiv t^2 \pmod{N}$
- ► Furthermore, we have

$$gcd(s + t, N) = 46073$$

 $gcd(s - t, N) = 44027$

which splits $N = 46073 \cdot 44027 = 2028455971$ into two proper divisors (which are in fact prime)

The probability to obtain a proper divisor of N

- ► We claim that with probability at least 1/2 it holds that $s \not\equiv \pm t \pmod{N}$ and thus $\gcd(s+t,N)$ is a proper divisor of N
- ► Indeed, observe that the coefficients a_{ij} depend only on the values s_j^2 rem N; thus, t depends only on the values s_i^2 rem N
- ► Condition on the values $s_1, s_2, \ldots, s_{\ell-1}$ and study the distribution of the value s_ℓ conditioned on the value s_ℓ^2 rem N
- ▶ We have that s_{ℓ} has 2^r possible values (the 2^r possible square roots of s_{ℓ}^2 rem N), exactly 2 of which lead to the outcome $s \equiv t \pmod{N}$ or $s \equiv -t \pmod{N}$ since $\epsilon_{\ell} = 1$
- ▶ Because each possible value of s_ℓ occurs with probability 2^{-r} , in aggregate (over all conditionings) we have that $s \equiv t \pmod{N}$ or $s \equiv -t \pmod{N}$ with probability at most $2^{1-r} \leq 1/2$ since $r \geq 2$

Expected running time (1/2)

- ► Recall that we let $B = N^{\frac{1}{2d}}$ for a positive integer d = d(N) such that $B \to \infty$ and $(B/(2d \ln B))^{2d} \ge 4$ as $N \to \infty$
- ► Recall that we obtain h + 1 smooth squares in expectation in at most $N^{1/2d}(\ln N)^{2d}$ iterations of the while loop
- ► Since $h \le B$, each iteration runs in time $O(B(\log N)^c)$ for a constant c > 0
- ► The time to find a quadratic congruence modulo N is at most $O(B^3 + B(\log N)^c)$ for a constant c > 0
- ► Thus, the entire algorithm runs in at most $O(N^{\frac{3}{2d}}(\ln N)^{2d}(\log N)^c)$ expected time and outputs a proper divisor of N with probability at least 1/2

Expected running time (2/2)

- ► Recall that the expected running time is at most $O(N^{\frac{3}{2d}}(\ln N)^{2d}(\log N)^c)$
- ► Observe that $N^{\frac{3}{2d}}(\ln N)^{2d} = \exp(\frac{3 \ln N}{2d} + 2d \ln \ln N)$
- ► Solve $\frac{\ln N}{d} = d \ln \ln N$ and round up to obtain

$$d = \left\lceil \sqrt{\frac{\ln N}{\ln \ln N}} \right\rceil$$

and thus, for all large enough N,

$$N^{\frac{3}{2d}}(\ln N)^{2d}(\log N)^c = \exp(O(\sqrt{\ln N \ln \ln N}))$$

► Since $B = N^{1/(2d)} \ge \exp(\sqrt{\ln N})$ for all large enough N, we obtain expected running time at most $\exp(O(\sqrt{\ln N \ln \ln N}))$ for Dixon's algorithm

Remarks

- ► We have here barely scratched the surface of moderately-exponential-time randomized algorithms for factoring integers
- ► To obtain a *practical* algorithm design that runs in moderately exponential time (based on a heuristic analysis), more work is needed—the aforementioned exposition and analysis of Dixon's algorithm merely illustrates some of the key theoretical ideas
- ► Cf. Crandall and Pomerance [7] and Wagstaff [28] for a more comprehensive introduction to integer factoring algorithms

Key content for Lecture 9

- ► Prime numbers, factorization, and smooth numbers
- ► The prime number theorem
- ► De Bruijn's lower bound for smooth numbers (exercise)
- ► Factoring by **trial division**
- ► The factorial function and factoring—fast polynomial evaluation and the **Pollard–Strassen algorithm** [21, 26]
- Difference of two squares and factoring
- Quadratic congruences, square roots (exercise), and factoring
- ► Dixon's random squares algorithm [8]

Lecture schedule

Tue 15 Jan: 1. Polynomials and integers

Tue 22 Jan: 2. The fast Fourier transform and fast multiplication

Tue 29 Jan: 3. Quotient and remainder

Tue 5 Feb: 4. Batch evaluation and interpolation

Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data

Tue 19 Feb: Exam week — no lecture

Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs

Tue 5 Mar: Break — no lecture

Tue 12 Mar: 7. Finite fields

Tue 19 Mar: 8. Factoring polynomials over finite fields

Tue 26 Mar: 9. Factoring integers

Learning objectives (1/2)

- ► Terminology and objectives of modern algorithmics, including elements of algebraic, online, and randomised algorithms
- Ways of coping with uncertainty in computation, including error-correction and proofs of correctness
- ► The art of solving a large problem by reduction to one or more smaller instances of the same or a related problem
- ► (Linear) independence, dependence, and their abstractions as enablers of efficient algorithms

Learning objectives (2/2)

- Making use of duality
 - ► Often a problem has a corresponding **dual** problem that is obtainable from the original (the **primal**) problem by means of an easy transformation
 - ► The primal and dual control each other, enabling an algorithm designer to use the interplay between the two representations
- ► Relaxation and tradeoffs between objectives and resources as design tools
 - ► Instead of computing the exact optimum solution at considerable cost, often a less costly but principled approximation suffices
 - ► Instead of the complete dual, often only a randomly chosen partial dual or other relaxation suffices to arrive at a solution with high probability

CS-E4500 Advanced Course in Algorithms (5 ECTS, III-IV, Spring 2019)

2019 KALENTERI 2019				
Tammikuu	Helmikuu Maaliskuu	Huhtikuu	Toukokuu	Kesäkuu
1 Ti Uudenvuodenpäivä	1 Pe 1 Pe	1 Ma Vk 14 7	1 Ke Vappu	1 La
2 Ke	2 La 2 La	2 Ti	2 To	2 Su
3 To	3 Su D3 3 Su	3 Ke	3 Pe	3 Ma Vk 23
4 Pe	4 Ma Vk 06 6 4 M Vk	4 To	4 La	4 Ti
5 La	5 Ti L4 5 Ti askiainen	5 Pe •	5 Su	5 Ke
6 Su Loppiainen	6 Ke Break	6 La	6 Ma Vk 19	6 To
7 Ma Vk 02	7 To Q4 7 Td	7 Su	7 Ti	7 Pe
8 Ti	8 Pc 8 Pc	8 Ma Vk 15	8 Ke	8 La
9 Ke	9 La 9 La	9 Ti	9 то	9 Su Helluntaipāivā
10 To	10 Su D4 10 Su D6	10 Ke	10 Pe	10 Ma Vk 24 🕕
11 Pe	11 Ma Vk 07 T4 11 Ma Vk		11 La	11 Ti
12 La	12 Ti L5 12 Ti L7	12 Pe D	12 Su Ältienpäivä	12 Ke
13 Su	13 Ke ① 13 Ke	13 La	13 Ma Vk 20	13 To
14 Ma Vk 03 🕻		Su Palmusunnuntai	14 Ti	14 Pe
15 Ti	15 Pe 15 Pe	15 Ma Vk 16	15 Ke	15 La
16 Ke	16 La 16 La	16 Ti	16 To	16 Su
17 To OI	17 Su 17 Su D7	17 Ke	17 Pe	17 Ma Vk 25 🔾
18 Pe	18 Ma VKUB 18 Ma Vk		18 La	18 Ti
19 La	19 T Exam D 19 T L8	19 Pe Piškāperjantai	19 Su Kaatuneiden muistopäivä	19 Ke
20 Su	20 Ke 20 Ke Kevātpāivā sasaus	20 La	20 Ma Vk 21	20 To
21 Ma Vk 04 (O 21 Su Pääsiäispäivä	21 Ti	21 Pe Kesäpäivänseisaus
22 TI L2	22 Pe 22 Pe	22 Ma 2. pääsiäispäivä	22 Ke	22 La Juhannus
23 Ke	23 La 23 La	23 Ti	23 To	23 Su
24 To Q2	24 Su D5 24 Su D8	24 Ke	24 Pe	24 Ma Vk 26
25 Pe	25 Ma Vk 09 T 5 25 Ma Vk		25 La	25 Ti
26 La	26 Ti L6	26 Pe	26 Su)	26 Ke
27 Su D2 0	27 Ke 27 Ke	27 La ①	27 Ma Vk 22	27 To
28 Ma Vk 05 7	28 To Q6 28 To Q9	28 Su	28 Ti	28 Pe
29 Ti L3	29 Pe	29 Ma Vk 18	29 Ke	29 La
30 Ke	30 La	30 Ti	30 To Helatorstai	30 Su
31 To Q3	31 Su Kesäaika alkaa 9		31 Pe	

L = Lecture; hall T5, Tue 12–14
Q = Q & A session; hall T5, Thu 12–14
D = Problem set deadline; Sun 20:00
T = Tutorial (model solutions); hall T6, Mon 16–18

References I

- [1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. (2) 160 (2004), 781–793.
 [doi:10.4007/annals.2004.160.781].
- [2] R. C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes. II, *Proc. London Math. Soc. (3)* 83 (2001), 532–562. [doi:10.1112/plms/83.3.532].
- [3] A. Björklund and P. Kaski, How proofs are prepared at Camelot: extended abstract, in *Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016* (G. Giakkoupis, Ed.). ACM, 2016, pp. 391–400. [doi:10.1145/2933057.2933101].

References II

- [4] R. Brent and P. Zimmermann, Modern Computer Arithmetic, Cambrigde University Press, 2011. [WWW].
- [5] M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider, Nondeterministic extensions of the strong exponential time hypothesis and consequences for non-reducibility, in *Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016* (M. Sudan, Ed.). ACM, 2016, pp. 261–270. [doi:10.1145/2840728.2840746].
- [6] D. A. Cox, J. Little, and D. O'Shea, *Ideals, Varieties, and Algorithms*, fourth ed., Springer, Cham, 2015.
 [doi:10.1007/978-3-319-16721-3].

References III

- [7] R. Crandall and C. Pomerance, *Prime Numbers: A Computational Perspective*, second ed., Springer, New York, 2005. [doi:10.1007/0-387-28979-8].
- J. D. Dixon, Asymptotically fast factorization of integers, *Math. Comp.* 36 (1981), 255–260.
 [doi:10.2307/2007743].
- [9] M. Fürer, Faster integer multiplication, SIAM J. Comput. 39 (2009), 979–1005.[doi:10.1137/070711761].
- [10] S. Gao, A new algorithm for decoding Reed-Solomon codes, in *Communications, Information, and Network Security* (V. K. Bhargava, H. V. Poor, V. Tarokh, and S. Yoon, Eds.), Springer, 2003, pp. 55–68.

References IV

- [11] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, third ed., Cambridge University Press, Cambridge, 2013. [doi:10.1017/CBO9781139856065].
- [12] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, Delegating computation: Interactive proofs for muggles, *J. ACM* 62 (2015), 27:1–27:64. [doi:10.1145/2699436].
- [13] D. Harvey, J. van der Hoeven, and G. Lecerf, Even faster integer multiplication, J. Complexity 36 (2016), 1–30.
 [doi:10.1016/j.jco.2016.03.001].
- [14] D. Harvey, J. van der Hoeven, and G. Lecerf, Even faster integer multiplication, J. Complexity 36 (2016), 1–30.
 [doi:10.1016/j.jco.2016.03.001].

References V

- [15] P. Kaski, Engineering a delegatable and error-tolerant algorithm for counting small subgraphs, in *Proceedings of the Twentieth Workshop on Algorithm Engineering and Experiments, ALENEX 2018, New Orleans, LA, USA, January 7-8, 2018.* (R. Pagh and S. Venkatasubramanian, Eds.). SIAM, 2018, pp. 184–198. [doi:10.1137/1.9781611975055.16].
- [16] K. S. Kedlaya and C. Umans, Fast polynomial factorization and modular composition, SIAM J. Comput. 40 (2011), 1767–1802. [doi:10.1137/08073408X].
- [17] D. E. Knuth, *The Art of Computer Programming, Volume 2: Seminumerical Algorithms*, 3rd ed., Addison-Wesley, 1998.
- [18] S. Lang, *Algebra*, third ed., Springer-Verlag, New York, 2002. [doi:10.1007/978-1-4613-0041-0].

References VI

- [19] R. Lidl and H. Niederreiter, *Finite fields*, second ed., Cambridge University Press, Cambridge, 1997.
- [20] N. Möller, On Schönhage's algorithm and subquadratic integer GCD computation,
 Math. Comp. 77 (2008), 589-607.
 [doi:10.1090/S0025-5718-07-02017-0].
- [21] J. M. Pollard, Theorems on factorization and primality testing, *Proc. Cambridge Philos. Soc.* 76 (1974), 521–528.
- [22] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, *Ill. J. Math.* 6 (1962), 64–94. [WWW].
- [23] A. Schönhage, Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2, *Acta Informat.* 7 (1976/77), 395–398. [doi:10.1007/BF00289470].

References VII

- [24] A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, *Computing* (Arch. Elektron. Rechnen) 7 (1971), 281–292.
- [25] A. Shamir, How to share a secret, *Comm. ACM* 22 (1979), 612–613. [doi:10.1145/359168.359176].
- [26] V. Strassen, Einige Resultate über Berechnungskomplexität, *Jber. Deutsch. Math.-Verein.* 78 (1976/77), 1–8.
- [27] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, 1992. [doi:10.1137/1.9781611970999].
- [28] S. S. Wagstaff, Jr., The Joy of Factoring, American Mathematical Society, Providence, RI, 2013.
 [doi:10.1090/stml/068].

References VIII

- [29] M. Walfish and A. J. Blumberg, Verifying computations without reexecuting them, Commun. ACM 58 (2015), 74–84. [doi:10.1145/2641562].
- [30] R. R. Williams, Strong ETH breaks with Merlin and Arthur: Short non-interactive proofs of batch evaluation, in 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan (R. Raz, Ed.). Schloss Dagstuhl Leibniz-Zentrum fuer Informatik, 2016, pp. 2:1–2:17. [doi:10.4230/LIPlcs.CCC.2016.2].