9. Factoring integers

CS-E4500 Advanced Course on Algorithms

Spring 2019

Petteri Kaski
Department of Computer Science
Aalto University

Motivation for this week

- A tantalizing case where the connection between polynomials and integers apparently breaks down occurs with factoring
- Namely, it is known how to efficiently factor a given univariate polynomial over a finite field into its irreducible components, whereas no such algorithms are known for factoring a given integer into its prime factors
- Last week we saw how to factor efficiently univariate polynomials over a finite field
- The best known algorithms for factoring integers run in time that scales moderately exponentially in the number of digits in the input; this week we study one such algorithm

Factoring integers

(von zur Gathen and Gerhard [11], Sections 19.1-3, 19.5)

Modern Computer Algebra
Third Edition
Joachim von zur Gathen and Jürgen Gerhard

Factoring integers

(Wagstaff [28])

Factoring integers

(Crandall and Pomerance [7])

Prime Numbers

A Computational Perspective
Second Edition

Key content for Lecture 9

- Prime numbers, factorization, and smooth numbers
- The prime number theorem
- Factoring by trial division
- Difference of two squares and factoring
- Quadratic congruences, square roots (exercise), and factoring
- Dixon's random squares algorithm [8]

Prime numbers

- An integer $p \in \mathbb{Z}_{\geq 2}$ is prime if the only positive integers that divide p are 1 and p
- The set $\mathbb{P}=\{2,3,5,7,11, \ldots\}$ of prime numbers is infinite
- Indeed, suppose that $p_{1}, p_{2}, \ldots, p_{h}$ are the h least distinct primes
- Then, $p_{1} p_{2} \cdots p_{h}+1$ is not divisible by any of the $p_{1}, p_{2}, \ldots, p_{h}$ and thus must have a prime divisor p with $p>p_{1}, p_{2}, \ldots, p_{h}$

The prime number theorem

- For $x \geq 1$, let us write $\pi(x)$ for the number of prime numbers at most x

Theorem 19 (Prime number theorem)
For all $x \geq 59$ it holds that

$$
\frac{x}{\ln x}\left(1+\frac{1}{2 \ln x}\right)<\pi(x)<\frac{x}{\ln x}\left(1+\frac{3}{2 \ln x}\right)
$$

Proof.
See e.g. Rosser and Schoenfeld [22, Theorem 1]

Factorization of an integer

- Let $N \in \mathbb{Z}_{\geq 2}$
- The factorization of N consists of distinct primes $p_{1}, p_{2}, \ldots, p_{r}$ and positive integers $a_{1}, a_{2}, \ldots, a_{r}$ such that

$$
N=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}
$$

- The primes $p_{1}, p_{2}, \ldots, p_{r}$ are the prime factors of N
- The factorization of N is unique up to ordering of the prime factors
- We say that N is a prime power if $r=1$
- We say that N is squarefree if $a_{1}=a_{2}=\cdots a_{r}=1$

Example: Factorization

- The factorization of 2027651281 is

$$
2027651281=44021 \cdot 46061
$$

Smooth integer

- Let $B \geq 2$
- Let $N \in \mathbb{Z}_{\geq 2}$ have factorization

$$
N=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}
$$

- We say that $N \in \mathbb{Z}_{\geq 1}$ is B-smooth if $N=1$ or $p_{1}, p_{2}, \ldots, p_{r} \leq B$

Example: Smooth integer

- The integer 1218719480020992 is 3 -smooth
- Indeed, the factorization of 1218719480020992 is

$$
1218719480020992=2^{20} \cdot 3^{19}
$$

Factoring an integer

- The factoring problem asks us to compute the factorization

$$
N=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}
$$

for an integer $N \in \mathbb{Z}_{\geq 2}$ given as input

- To solve the factoring problem it suffices to either (i) present a proper divisor d of N with $2 \leq d \leq N-1$, or (ii) assert that N is prime
- Indeed, in case (i) we obtain the factorization of N by merging the recursive factorizations of d and N / d
- We have that d is a proper divisor of N if and only if N / d is a proper divisor of N; thus, without loss of generality we can assume that a proper divisor satisfies $2 \leq d \leq \sqrt{N}$

Trial division

- Let $N \in \mathbb{Z}_{\geq 2}$ be given as input

1. For all $d=2,3, \ldots,\lfloor\sqrt{N}\rfloor$
a. If d divides N, then output d and stop
2. Assert that N is prime and stop

- This algorithm runs in time $O\left(N^{1 / 2}(\log N)^{c}\right)$ for a constant $c>0$
- We leave as an exercise the design of an algorithm that computes $\lfloor\sqrt{N}\rfloor$ in time $O\left((\log N)^{c}\right)$ given N as input

Detecting and factoring prime powers

- Let $N \in \mathbb{Z}_{\geq 2}$ be given as input
- In time $O\left((\log N)^{c}\right)$ for a constant $c>0$ we can either output a prime p and a positive integer a such that $N=p^{a}$ or assert that N is not a prime power (exercise)
- This design makes use that we can test primality in time polynomial in $\log N$ [1]

Difference of two squares and factoring

- Suppose that $N \in \mathbb{Z}_{\geq 2}$ is odd and not a prime power
- Thus, there exist distinct odd $a, b \in \mathbb{Z}_{\geq 3}$ with

$$
N=a b=\left(\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2}
$$

- Similarly, for integers $s, t \in \mathbb{Z}_{\geq 1}$ we have that

$$
N=s^{2}-t^{2}
$$

implies the factorization

$$
N=(s+t)(s-t)
$$

Example: Difference of two squares and factoring

- We have

$$
2027651281=45041^{2}-1020^{2}
$$

- Thus,

$$
2027651281=(45041-1020)(45041+1020)=44021 \cdot 46061
$$

Quadratic congruences and square roots

- Suppose that $N \in \mathbb{Z}_{\geq 15}$ is odd and has $r \geq 2$ distinct prime factors
- Let $s^{2} \equiv t^{2}(\bmod N)$ with $s, t \in\{1,2, \ldots, N-1\}$ and $\operatorname{gcd}(s, N)=\operatorname{gcd}(t, N)=1$
- Then, there are exactly 2^{r} choices for s such that $s^{2} \equiv t^{2}(\bmod N)$ (exercise)

Quadratic congruences and factoring

- Suppose that $N \in \mathbb{Z}_{\geq 2}$ is odd and has $r \geq 2$ distinct prime factors
- Let $s^{2} \equiv t^{2}(\bmod N)$ with $s, t \in\{1,2, \ldots, N-1\}$ and $\operatorname{gcd}(s, N)=\operatorname{gcd}(t, N)=1$
- That is, there exists an integer q with $s^{2}-t^{2}=(s-t)(s+t)=q N$
- We thus have that $\operatorname{gcd}(s+t, N)$ is a proper divisor of N unless N divides $s-t$ or N divides $s+t$
- That is, $\operatorname{gcd}(s+t, N)$ is a proper divisor of N unless $s \equiv \pm t(\bmod N)$
- Thus, there are $2^{r}-2$ choices for s such that $\operatorname{gcd}(s+t, N)$ is a proper divisor of N

Dixon's random squares algorithm

- Let us describe Dixon's [8] random squares method of factoring
- Suppose that $N \in \mathbb{Z}_{\geq 15}$ is odd and not a prime power (in particular, N has $r \geq 2$ distinct prime factors)
- We may furthermore assume that \sqrt{N} is not an integer (otherwise we would have a proper divisor of N; computing $\lfloor\sqrt{N}\rfloor$ is an exercise)
- Let B be a parameter whose value is fixed later
- The algorithm consists of three parts
i. Find the $h=\pi(B)$ least primes $p_{1}<p_{2}<\cdots<p_{h}$ with $p_{h} \leq B$; if p_{j} divides N for some $j=1,2, \ldots, h$, then output p_{j} and stop
ii. Find $h+1$ integers $2 \leq s \leq N-2$ coprime to N whose square s^{2} rem N is B-smooth
iii. Find a quadratic congruence modulo N using the $h+1$ discovered integers

Finding smooth random squares

1. Set $j \leftarrow 1$
2. While $j \leq h+1$ do
a. Select a uniform random $s_{j} \in\{2,3, \ldots, N-2\}$
b. If $\operatorname{gcd}\left(s_{j}, N\right) \neq 1$ then output $\operatorname{gcd}\left(s_{j}, N\right)$ and stop
c. Set $u \leftarrow s_{j}^{2} \operatorname{rem} N$
d. For $i=1,2, \ldots, h$
i. Set $a_{i j} \leftarrow 0$
ii. While p_{i} divides u, set $a_{i j} \leftarrow a_{i j}+1$ and $u \leftarrow u / p_{i}$
e. If $u=1$ then set $j \leftarrow j+1$

Example: Finding smooth random squares (1/3)

- Let $N=2028455971$; we observe that N is odd and not a prime power
- Let us work with $B=50$ and $h=15$ with $p_{1}=2, p_{2}=3, p_{3}=5, p_{4}=7, p_{5}=11, p_{6}=13$, $p_{7}=17, p_{8}=19, p_{9}=23, p_{10}=29, p_{11}=31, p_{12}=37, p_{13}=41, p_{14}=43, p_{15}=47$

Example: Finding smooth random squares (2/3)

- Suppose we obtain the $h+1=16$ smooth squares

$$
\begin{aligned}
& 145085^{2} \mathrm{rem} N=3^{3} \cdot 5 \cdot 7^{3} \cdot 13 \cdot 31 \cdot 41 \\
& 149391^{2} \mathrm{rem} N=2^{5} \cdot 5^{2} \cdot 11 \cdot 23^{2} \\
& 154209^{2} \mathrm{rem} N=2^{6} \cdot 5^{5} \cdot 11 \cdot 23 \cdot 29 \\
& 159846^{2} \mathrm{rem} N=2^{8} \cdot 3 \cdot 7 \cdot 11^{3} \cdot 13^{2} \\
& 160474^{2} \mathrm{rem} N=2^{15} \cdot 7 \cdot 11 \cdot 13 \cdot 43 \\
& 170440^{2} \mathrm{rem} N=2 \cdot 13 \cdot 29^{2} \cdot 31^{3} \\
& 171122^{2} \mathrm{rem} N=2 \cdot 5 \cdot 7 \cdot 13 \cdot 23 \cdot 29 \cdot 31 \cdot 47 \\
& 180169^{2} \mathrm{rem} N=3^{2} \cdot 5^{2} \cdot 17 \cdot 31 \cdot 47 \\
& 180200^{2} \mathrm{rem} N=2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 31^{2} \\
& 180244^{2} \mathrm{rem} N=2^{5} \cdot 3 \cdot 5^{3} \cdot 11 \cdot 13 \cdot 19 \\
& 180376^{2} \mathrm{rem} N=2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \cdot 19 \cdot 41 \\
& 180556^{2} \mathrm{rem} N=2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 11 \cdot 13 \cdot 47 \\
& 181136^{2} \mathrm{rem} N=2^{4} \cdot 3^{5} \cdot 5 \cdot 19 \cdot 31^{2} \\
& 181156^{2} \mathrm{rem} N=2^{5} \cdot 3 \cdot 5^{2} \cdot 13^{2} \cdot 19 \cdot 47 \\
& 181663^{2} \mathrm{rem} N=3^{6} \cdot 11 \cdot 13^{3} \cdot 31 \\
& 181744^{2} \mathrm{rem} N=2^{4} \cdot 3^{4} \cdot 5^{3} \cdot 11 \cdot 17 \cdot 19
\end{aligned}
$$

Example: Finding smooth random squares (3/3)

- We thus have the $h \times(h+1)=15 \times 16$ matrix

$$
A=\left[\begin{array}{llllllllllllllll}
0 & 5 & 6 & 8 & 15 & 1 & 1 & 0 & 4 & 5 & 4 & 5 & 4 & 5 & 0 & 4 \\
3 & 0 & 0 & 1 & 0 & 0 & 0 & 2 & 2 & 1 & 2 & 3 & 5 & 1 & 6 & 4 \\
1 & 2 & 5 & 0 & 0 & 0 & 1 & 2 & 0 & 3 & 1 & 2 & 1 & 2 & 0 & 3 \\
3 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 3 & 1 & 0 & 0 & 0 & 2 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 2 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 2 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 3 & 1 & 1 & 2 & 0 & 0 & 0 & 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}\right]
$$

A lower bound for the number of smooth squares

Lemma 20 (A lower bound for the number of smooth squares)
Let $S=\left\{s \in \mathbb{Z}_{N}^{\times}: s^{2}\right.$ rem N is p_{h}-smooth $\}$ and let d be a positive integer with $p_{h}^{2 d} \leq N$. Furthermore, suppose that none of $p_{1}, p_{2}, \ldots, p_{h}$ divides N.
Then,

$$
|S| \geq \frac{h^{2 d}}{(2 d)!}
$$

Proof I

- Let us recall that we write \mathbb{Z}_{N}^{\times}for the set of integers $1 \leq a \leq N-1$ coprime to N
- Let $Q=\left\{a \in \mathbb{Z}_{N}^{\times}: \exists b \in \mathbb{Z}_{N}^{\times} b^{2} \equiv a(\bmod N)\right\}$
- For $x \geq 1$ and an integer $k \in \mathbb{Z}_{\geq 0}$ let us write $T_{d}(x)$ for the set of all integers $a \in \mathbb{Z}_{\geq 1}$ such that $a \leq x$ and there exist integers $k_{1}, k_{2}, \ldots, k_{h} \in \mathbb{Z}_{\geq 0}$ with $k_{1}+k_{2}+\ldots+k_{h}=k$ and $a=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{h}^{k_{h}}$
- Since none of $p_{1}, p_{2}, \ldots, p_{h}$ divides N, for all $a \in T_{k}(x)$ we have that a and N are coprime
- Let $N=q_{1}^{e_{1}} q_{2}^{e_{2}} \cdots q_{r}^{e_{r}}$ be the factorization of N

Proof II

- By the Chinese Remainder Theorem, we have the isomorphism

$$
\mathbb{Z}_{N}^{\times} \rightarrow \mathbb{Z}_{q_{1}}^{\times} \times \mathbb{Z}_{q_{2}}^{\times} \times \cdots \times \mathbb{Z}_{q_{r}}^{\times}
$$

given by

$$
a \mapsto\left(a \operatorname{rem} q_{1}^{e_{1}}, a \operatorname{rem} q_{2}^{e_{2}}, \ldots, a \operatorname{rem} q_{r}^{e_{r}}\right)
$$

- For $i=1,2, \ldots, r$ and $a \in \mathbb{Z}_{N}^{\times}$, let us define

$$
\chi_{i}(a)= \begin{cases}1 & \text { if there exists } b \in \mathbb{Z}_{q_{i}^{e_{i}}} \text { with } b^{2} \equiv a\left(\bmod q_{i}^{e_{i}}\right) \\ -1 & \text { otherwise }\end{cases}
$$

- The map $\chi(a)=\left(\chi_{1}(a), \chi_{2}(a), \ldots, \chi_{r}(a)\right) \in\{-1,1\}^{r}$ is a homomorphism from \mathbb{Z}_{N}^{\times}to $\{-1,1\}^{r}$
- In particular, for all $a \in \mathbb{Z}_{N}^{\times}$we have $a \in Q$ if and only if $\chi(a)=(1,1, \ldots, 1)$

Proof III

- For each $s \in\{-1,1\}^{r}$, let

$$
U_{s}=\left\{a \in T_{d}(\sqrt{N}): \chi(a)=s\right\}
$$

- Since \sqrt{N} is not an integer, for $b, c \in U_{s}$ we observe that $1 \leq b c \leq N-1$ and $\chi(b c)=(1,1, \ldots, 1)$; in particular, $b c \in Q \cap T_{2 d}(N)$
- Let $m: \cup_{s \in\{-1,1\}^{r}} U_{s} \times U_{s} \rightarrow V$ be a surjective map given by $(b, c) \mapsto m(b, c)=b c$
- We have $V \subseteq Q \cap T_{2 d}(N)$ and $\left.|V| \begin{array}{c}2 d \\ d\end{array}\right) \geq \sum_{s \in\{-1,1\}^{r}}\left|U_{s}\right|^{2}$
- Since every $a \in Q$ has exactly 2^{r} square roots in \mathbb{Z}_{N}^{\times}(exercise), from $V \subseteq Q \cap T_{2 d}(N)$ we have that $|S| \geq 2^{r}|V|$

Proof IV

- Combining inequalities, we have

$$
|S| \geq\binom{ 2 d}{d}^{-1} 2^{r} \sum_{s \in\{-1,1\}^{r}}\left|U_{s}\right|^{2}
$$

- By the Cauchy-Schwartz inequality and the definition of the sets U_{s}, we have

$$
2^{r} \sum_{s \in\{-1,1\}^{r}}\left|U_{s}\right|^{2} \geq\left(\sum_{s \in\{-1,1\}^{r}}\left|U_{s}\right|\right)^{2}=\left|T_{d}(\sqrt{N})\right|^{2}
$$

- Since $p_{h}^{d} \leq \sqrt{N}$, an element of $T_{d}(\sqrt{N})$ chooses exactly d primes up to p_{h}, possibly with repetition; thus,

$$
\left|T_{d}(\sqrt{N})\right|=\binom{d+h-1}{h-1}=\binom{d+h-1}{d} \geq \frac{h^{d}}{d!}
$$

Proof V

- Combining inequalities, we obtain

$$
|S| \geq\binom{ 2 d}{d}^{-1}\left(\frac{h^{d}}{d!}\right)^{2}=\frac{h^{2 d}}{(2 d)!}
$$

- This completes the proof

Expected number of iterations

- From Lemma 20 we thus have that a uniform random $s_{j} \in\{2,3, \ldots, N-2\}$ satisfies that s_{j}^{2} rem N is B-smooth and $\operatorname{gcd}\left(s_{j}, N\right)=1$ with probability at least $\frac{|S|-2}{N-3} \geq \frac{\frac{h^{2 d}}{2 d)!}-2}{N} \geq \frac{h^{2 d}}{2(2 d)!N}$ where in the last inequality we have assumed that $\frac{h^{2 d}}{(2 d)!} \geq 4$; here $h=\pi(B)$ and d is a positive integer with $p_{h}^{2 d} \leq N$
- Thus, in expectation we need at most $2(h+1) \frac{(2 d)!N}{h^{2 d}}$ iterations of the while loop to find $h+1$ smooth random squares
- Let $B=N^{\frac{1}{2 d}}$ and recall from Theorem 19 that for all large enough B we have both $h=\pi(B)>\frac{B}{\ln B}$ and $2(h+1) \leq B$
- Since $(2 d)!\leq(2 d)^{2 d}$, in expectation the number of iterations is at most

$$
(h+1) \frac{(2 d)!N}{h^{2 d}}<B \frac{(2 d \ln B)^{2 d} N}{B^{2 d}}=N^{1 / 2 d}(\ln N)^{2 d}
$$

Finding a quadratic congruence modulo $N(1 / 2)$

- Let us now turn to the last part of the algorithm that finds a quadratic congruence modulo N
- The coefficients $a_{i j}$ for $i=1,2, \ldots, h$ and $j=1,2, \ldots, h+1$ from an $h \times(h+1)$ integer matrix
- The $h+1$ columns of this matrix are linearly dependent modulo 2

1. Find $\epsilon_{j} \in\{0,1\}$ for $j=0,1, \ldots, h+1$ such that $\epsilon_{j}=1$ for at least one j and, for all $i=1,2, \ldots, h$, we have

$$
\begin{equation*}
\sum_{j=1}^{h+1} a_{i j} \epsilon_{j} \equiv 0 \quad(\bmod 2) \tag{36}
\end{equation*}
$$

- Since $h \leq B$, this can be done in time $O\left(B^{3}\right)$ using, for example, Gaussian elimination
- Let $\ell=1,2, \ldots, h+1$ with $\epsilon_{\ell}=1$ and $\epsilon_{j}=0$ for all $j=\ell+1, \ell+2, \ldots, h+1$

Finding a quadratic congruence modulo $N(2 / 2)$

2. Next, set

$$
s \leftarrow s_{1}^{\epsilon_{1}} s_{2}^{\epsilon_{2}} \cdots s_{\ell}^{\epsilon_{\ell}} \text { rem } N
$$

3. For all $i=1,2, \ldots, h$, set

$$
d_{i}=\frac{1}{2} \sum_{j=1}^{\ell} a_{i j} \epsilon_{j}
$$

and observe from (36) that d_{i} is a nonnegative integer
4. Set

$$
t \leftarrow p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{h}^{d_{h}} \text { rem } N
$$

- By construction we now have $s^{2} \equiv t^{2}(\bmod N)$

Example: Finding a quadratic congruence modulo $N(1 / 2)$

- Let us continue working with $N=2028455971$; recall the smooth squares and the $h \times(h+1)$ matrix A from the earlier example
- We have $A \epsilon \equiv 0(\bmod 2)$ for the vector $\epsilon \in\{0,1\}^{h+1}$ with

$$
\epsilon=\left[\begin{array}{llllllllllllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]^{\top}
$$

- We also have $d=(A \epsilon) / 2$ with

$$
d=\left[\begin{array}{lllllllllllllll}
12 & 4 & 7 & 1 & 3 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]^{\top}
$$

- Accordingly,

$$
s=(154209 \cdot 159846 \cdot 171122 \cdot 180169 \cdot 180244 \cdot 181744) \text { rem } N=1840185960
$$

and

$$
t=\left(2^{12} \cdot 3^{4} \cdot 5^{7} \cdot 7 \cdot 11^{3} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 47\right) \text { rem } N=1325950600
$$

Example: Finding a quadratic congruence modulo $N(2 / 2)$

- We have

$$
\begin{aligned}
N & =2028455971 \\
s & =1840185960 \\
t & =1325950600
\end{aligned}
$$

- We readily check that $s^{2} \equiv t^{2}(\bmod N)$
- Furthermore, we have

$$
\begin{aligned}
& \operatorname{gcd}(s+t, N)=46073 \\
& \operatorname{gcd}(s-t, N)=44027
\end{aligned}
$$

which splits $N=46073 \cdot 44027=2028455971$ into two proper divisors (which are in fact prime)

The probability to obtain a proper divisor of N

- We claim that with probability at least $1 / 2$ it holds that $s \not \equiv \pm t(\bmod N)$ and thus $\operatorname{gcd}(s+t, N)$ is a proper divisor of N
- Indeed, observe that the coefficients $a_{i j}$ depend only on the values s_{j}^{2} rem N; thus, t depends only on the values s_{j}^{2} rem N
- Condition on the values $s_{1}, s_{2}, \ldots, s_{\ell-1}$ and study the distribution of the value s_{ℓ} conditioned on the value s_{ℓ}^{2} rem N
- We have that s_{ℓ} has 2^{r} possible values (the 2^{r} possible square roots of s_{ℓ}^{2} rem N), exactly 2 of which lead to the outcome $s \equiv t(\bmod N)$ or $s \equiv-t(\bmod N)$ since $\epsilon_{\ell}=1$
- Because each possible value of s_{ℓ} occurs with probability 2^{-r}, in aggregate (over all conditionings) we have that $s \equiv t(\bmod N)$ or $s \equiv-t(\bmod N)$ with probability at most $2^{1-r} \leq 1 / 2$ since $r \geq 2$

Expected running time (1/2)

- Recall that we let $B=N^{\frac{1}{2 d}}$ for a positive integer $d=d(N)$ such that $B \rightarrow \infty$ and $(B /(2 d \ln B))^{2 d} \geq 4$ as $N \rightarrow \infty$
- Recall that we obtain $h+1$ smooth squares in expectation in at most $N^{1 / 2 d}(\ln N)^{2 d}$ iterations of the while loop
- Since $h \leq B$, each iteration runs in time $O\left(B(\log N)^{c}\right)$ for a constant $c>0$
- The time to find a quadratic congruence modulo N is at most $O\left(B^{3}+B(\log N)^{c}\right)$ for a constant $c>0$
- Thus, the entire algorithm runs in at most $O\left(N^{\frac{3}{2 d}}(\ln N)^{2 d}(\log N)^{c}\right)$ expected time and outputs a proper divisor of N with probability at least $1 / 2$

Expected running time (2/2)

- Recall that the expected running time is at most $O\left(N^{\frac{3}{2 d}}(\ln N)^{2 d}(\log N)^{c}\right)$
- Observe that $N^{\frac{3}{2 d}}(\ln N)^{2 d}=\exp \left(\frac{3 \ln N}{2 d}+2 d \ln \ln N\right)$
- Solve $\frac{\ln N}{d}=d \ln \ln N$ and round up to obtain

$$
d=\left\lceil\sqrt{\frac{\ln N}{\ln \ln N}}\right\rceil
$$

and thus, for all large enough N,

$$
N^{\frac{3}{2 d}}(\ln N)^{2 d}(\log N)^{c}=\exp (O(\sqrt{\ln N \ln \ln N}))
$$

- Since $B=N^{1 /(2 d)} \geq \exp (\sqrt{\ln N})$ for all large enough N, we obtain expected running time at most $\exp (O(\sqrt{\ln N \ln \ln N}))$ for Dixon's algorithm

Remarks

- We have here barely scratched the surface of moderately-exponential-time randomized algorithms for factoring integers
- To obtain a practical algorithm design that runs in moderately exponential time (based on a heuristic analysis), more work is needed-the aforementioned exposition and analysis of Dixon's algorithm merely illustrates some of the key theoretical ideas
- Cf. Crandall and Pomerance [7] and Wagstaff [28] for a more comprehensive introduction to integer factoring algorithms

Key content for Lecture 9

- Prime numbers, factorization, and smooth numbers
- The prime number theorem
- De Bruijn's lower bound for smooth numbers (exercise)
- Factoring by trial division
- The factorial function and factoring-fast polynomial evaluation and the Pollard-Strassen algorithm [21, 26]
- Difference of two squares and factoring
- Quadratic congruences, square roots (exercise), and factoring
- Dixon's random squares algorithm [8]

Lecture schedule

Tue 15 Jan:	1. Polynomials and integers
Tue 22 Jan:	2. The fast Fourier transform and fast multiplication
Tue 29 Jan:	3. Quotient and remainder
Tue 5 Feb:	4. Batch evaluation and interpolation
Tue 12 Feb:	5. Extended Euclidean algorithm and interpolation from erroneous data
Tue 19 Feb:	Exam week - no lecture
Tue 27 Feb:	6. Identity testing and probabilistically checkable proofs
Tue 5 Mar:	Break - no lecture
Tue 12 Mar:	7. Finite fields
Tue 19 Mar:	8. Factoring polynomials over finite fields
Tue 26 Mar:	9. Factoring integers

Learning objectives (1/2)

- Terminology and objectives of modern algorithmics, including elements of algebraic, online, and randomised algorithms
- Ways of coping with uncertainty in computation, including error-correction and proofs of correctness
- The art of solving a large problem by reduction to one or more smaller instances of the same or a related problem
- (Linear) independence, dependence, and their abstractions as enablers of efficient algorithms

Learning objectives (2/2)

- Making use of duality
- Often a problem has a corresponding dual problem that is obtainable from the original (the primal) problem by means of an easy transformation
- The primal and dual control each other, enabling an algorithm designer to use the interplay between the two representations
- Relaxation and tradeoffs between objectives and resources as design tools
- Instead of computing the exact optimum solution at considerable cost, often a less costly but principled approximation suffices
- Instead of the complete dual, often only a randomly chosen partial dual or other relaxation suffices to arrive at a solution with high probability

CS-E4500 Advanced Course in Algorithms (5 ECTS, III-IV, Spring 2019)

L = Lecture;
$\mathrm{Q}=\mathrm{Q}$ \& A session
D = Problem set deadline;
hall T5, Tue 12-14
hall T5, Thu 12-14
T = Tutorial (model solutions); hall T6, Mon 16-18

References I

[1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. (2) 160 (2004), 781-793.
[doi:10.4007/annals.2004.160.781].
[2] R. C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes. II, Proc. London Math. Soc. (3) 83 (2001), 532-562.
[doi:10.1112/plms/83.3.532].
[3] A. Björklund and P. Kaski, How proofs are prepared at Camelot: extended abstract, in Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016 (G. Giakkoupis, Ed.). ACM, 2016, pp. 391-400.
[doi:10.1145/2933057.2933101].

References II

[4] R. Brent and P. Zimmermann, Modern Computer Arithmetic, Cambrigde University Press, 2011.
[WWW].
[5] M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider, Nondeterministic extensions of the strong exponential time hypothesis and consequences for non-reducibility, in Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016 (M. Sudan, Ed.). ACM, 2016, pp. 261-270. [doi:10.1145/2840728.2840746].
[6] D. A. Cox, J. Little, and D. O'Shea, Ideals, Varieties, and Algorithms, fourth ed., Springer, Cham, 2015.
[doi:10.1007/978-3-319-16721-3].

References III

[7] R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, second ed., Springer, New York, 2005.
[doi:10.1007/0-387-28979-8].
[8] J. D. Dixon, Asymptotically fast factorization of integers, Math. Comp. 36 (1981), 255-260.
[doi:10.2307/2007743].
[9] M. Fürer, Faster integer multiplication, SIAM J. Comput. 39 (2009), 979-1005. [doi:10.1137/070711761].
[10] S. Gao, A new algorithm for decoding Reed-Solomon codes, in Communications, Information, and Network Security (V. K. Bhargava, H. V. Poor, V. Tarokh, and S. Yoon, Eds.), Springer, 2003, pp. 55-68.

References IV

[11] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, third ed., Cambridge University Press, Cambridge, 2013. [doi:10.1017/CBO9781139856065].
[12] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, Delegating computation: Interactive proofs for muggles, J. ACM 62 (2015), 27:1-27:64. [doi:10.1145/2699436].
[13] D. Harvey, J. van der Hoeven, and G. Lecerf, Even faster integer multiplication, J. Complexity 36 (2016), 1-30. [doi:10.1016/j.jco.2016.03.001].
[14] D. Harvey, J. van der Hoeven, and G. Lecerf, Even faster integer multiplication, J. Complexity 36 (2016), 1-30.
[doi:10.1016/j.jco.2016.03.001].

References V

[15] P. Kaski, Engineering a delegatable and error-tolerant algorithm for counting small subgraphs, in Proceedings of the Twentieth Workshop on Algorithm Engineering and Experiments, ALENEX 2018, New Orleans, LA, USA, January 7-8, 2018. (R. Pagh and S. Venkatasubramanian, Eds.). SIAM, 2018, pp. 184-198. [doi:10.1137/1.9781611975055.16].
[16] K. S. Kedlaya and C. Umans, Fast polynomial factorization and modular composition, SIAM J. Comput. 40 (2011), 1767-1802.
[doi:10.1137/08073408X].
[17] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed., Addison-Wesley, 1998.
[18] S. Lang, Algebra, third ed., Springer-Verlag, New York, 2002. [doi:10.1007/978-1-4613-0041-0].

References VI

[19] R. Lidl and H. Niederreiter, Finite fields, second ed., Cambridge University Press, Cambridge, 1997.
[20] N. Möller, On Schönhage's algorithm and subquadratic integer GCD computation, Math. Comp. 77 (2008), 589-607. [doi:10.1090/S0025-5718-07-02017-0].
[21] J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos. Soc. 76 (1974), 521-528.
[22] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Ill. J. Math. 6 (1962), 64-94.
[WWW].
[23] A. Schönhage, Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2, Acta Informat. 7 (1976/77), 395-398.
[doi:10.1007/BF00289470].

References VII

[24] A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing (Arch. Elektron. Rechnen) 7 (1971), 281-292.
[25] A. Shamir, How to share a secret, Comm. ACM 22 (1979), 612-613. [doi:10.1145/359168.359176].
[26] V. Strassen, Einige Resultate über Berechnungskomplexität, Jber. Deutsch. Math.-Verein. 78 (1976/77), 1-8.
[27] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, 1992. [doi:10.1137/1.9781611970999].
[28] S. S. Wagstaff, Jr., The Joy of Factoring, American Mathematical Society, Providence, RI, 2013.
[doi:10.1090/stml/068].

References VIII

[29] M. Walfish and A. J. Blumberg, Verifying computations without reexecuting them, Commun. ACM 58 (2015), 74-84.
[doi:10.1145/2641562].
[30] R. R. Williams, Strong ETH breaks with Merlin and Arthur: Short non-interactive proofs of batch evaluation, in 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan (R. Raz, Ed.). Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, 2016, pp. 2:1-2:17. [doi:10.4230/LIPIcs.CCC.2016.2].

