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Motivation for this week

I A tantalizing case where the connection between polynomials and integers apparently
breaks down occurs with factoring

I Namely, it is known how to e�iciently factor a given univariate polynomial over a
finite field into its irreducible components, whereas no such algorithms are known for
factoring a given integer into its prime factors

I Last week we saw how to factor e�iciently univariate polynomials over a finite field

I The best known algorithms for factoring integers run in time that scales moderately
exponentially in the number of digits in the input; this week we study one such
algorithm



Factoring integers

(von zur Gathen and Gerhard [11],
Sections 19.1–3, 19.5)



Factoring integers

(Wagsta� [28])



Factoring integers

(Crandall and Pomerance [7])



Key content for Lecture 9

I Prime numbers, factorization, and smooth numbers

I The prime number theorem

I Factoring by trial division

I Di�erence of two squares and factoring

I �adratic congruences, square roots (exercise), and factoring

I Dixon’s random squares algorithm [8]



Prime numbers

I An integer p ∈ Z≥2 is prime if the only positive integers that divide p are 1 and p

I The set P = {2, 3, 5, 7, 11, . . .} of prime numbers is infinite

I Indeed, suppose that p1, p2, . . . , ph are the h least distinct primes

I Then, p1p2 · · · ph + 1 is not divisible by any of the p1, p2, . . . , ph and thus must have a
prime divisor p with p > p1, p2, . . . , ph



The prime number theorem

I For x ≥ 1, let us write π (x ) for the number of prime numbers at most x

Theorem 19 (Prime number theorem)
For all x ≥ 59 it holds that

x
ln x

(
1 +

1
2 ln x

)
< π (x ) <

x
ln x

(
1 +

3
2 ln x

)

Proof.

See e.g. Rosser and Schoenfeld [22, Theorem 1] �



Factorization of an integer

I Let N ∈ Z≥2

I The factorization of N consists of distinct primes p1, p2, . . . , pr and positive integers
a1, a2, . . . , ar such that

N = pa1
1 pa2

2 · · · p
ar
r

I The primes p1, p2, . . . , pr are the prime factors of N

I The factorization of N is unique up to ordering of the prime factors

I We say that N is a prime power if r = 1

I We say that N is squarefree if a1 = a2 = · · · ar = 1



Example: Factorization

I The factorization of 2027651281 is

2027651281 = 44021 · 46061



Smooth integer

I Let B ≥ 2

I Let N ∈ Z≥2 have factorization

N = pa1
1 pa2

2 · · · p
ar
r

I We say that N ∈ Z≥1 is B-smooth if N = 1 or p1, p2, . . . , pr ≤ B



Example: Smooth integer

I The integer 1218719480020992 is 3-smooth

I Indeed, the factorization of 1218719480020992 is

1218719480020992 = 220 · 319



Factoring an integer

I The factoring problem asks us to compute the factorization

N = pa1
1 pa2

2 · · · p
ar
r

for an integer N ∈ Z≥2 given as input

I To solve the factoring problem it su�ices to either (i) present a proper divisor d of N
with 2 ≤ d ≤ N − 1, or (ii) assert that N is prime

I Indeed, in case (i) we obtain the factorization of N by merging the recursive
factorizations of d and N/d

I We have that d is a proper divisor of N if and only if N/d is a proper divisor of N ; thus,
without loss of generality we can assume that a proper divisor satisfies 2 ≤ d ≤

√
N



Trial division

I Let N ∈ Z≥2 be given as input

1. For all d = 2, 3, . . . , b
√

Nc
a. If d divides N , then output d and stop

2. Assert that N is prime and stop

I This algorithm runs in time O(N1/2 (log N )c ) for a constant c > 0

I We leave as an exercise the design of an algorithm that computes b
√

Nc in time
O((log N )c ) given N as input



Detecting and factoring prime powers

I Let N ∈ Z≥2 be given as input

I In time O((log N )c ) for a constant c > 0 we can either output a prime p and a positive
integer a such that N = pa or assert that N is not a prime power (exercise)

I This design makes use that we can test primality in time polynomial in log N [1]



Di�erence of two squares and factoring

I Suppose that N ∈ Z≥2 is odd and not a prime power

I Thus, there exist distinct odd a, b ∈ Z≥3 with

N = ab =
(

a + b
2

)2

−

(
a − b

2

)2

I Similarly, for integers s, t ∈ Z≥1 we have that

N = s2 − t2

implies the factorization

N = (s + t ) (s − t )



Example: Di�erence of two squares and factoring

I We have

2027651281 = 450412 − 10202

I Thus,

2027651281 = (45041 − 1020) (45041 + 1020) = 44021 · 46061



�adratic congruences and square roots

I Suppose that N ∈ Z≥15 is odd and has r ≥ 2 distinct prime factors

I Let s2 ≡ t2 (mod N ) with s, t ∈ {1, 2, . . . ,N − 1} and gcd(s,N ) = gcd(t,N ) = 1

I Then, there are exactly 2r choices for s such that s2 ≡ t2 (mod N ) (exercise)



�adratic congruences and factoring

I Suppose that N ∈ Z≥2 is odd and has r ≥ 2 distinct prime factors

I Let s2 ≡ t2 (mod N ) with s, t ∈ {1, 2, . . . ,N − 1} and gcd(s,N ) = gcd(t,N ) = 1

I That is, there exists an integer q with s2 − t2 = (s − t ) (s + t ) = qN

I We thus have that gcd(s + t,N ) is a proper divisor of N unless N divides s − t or N
divides s + t

I That is, gcd(s + t,N ) is a proper divisor of N unless s ≡ ±t (mod N )

I Thus, there are 2r − 2 choices for s such that gcd(s + t,N ) is a proper divisor of N



Dixon’s random squares algorithm

I Let us describe Dixon’s [8] random squares method of factoring

I Suppose that N ∈ Z≥15 is odd and not a prime power
(in particular, N has r ≥ 2 distinct prime factors)

I We may furthermore assume that
√

N is not an integer
(otherwise we would have a proper divisor of N ; computing b

√
Nc is an exercise)

I Let B be a parameter whose value is fixed later

I The algorithm consists of three parts
i. Find the h = π (B) least primes p1 < p2 < · · · < ph with ph ≤ B;

if pj divides N for some j = 1, 2, . . . , h, then output pj and stop

ii. Find h + 1 integers 2 ≤ s ≤ N − 2 coprime to N whose square s2 rem N is B-smooth

iii. Find a quadratic congruence modulo N using the h + 1 discovered integers



Finding smooth random squares

1. Set j ← 1

2. While j ≤ h + 1 do
a. Select a uniform random sj ∈ {2, 3, . . . ,N − 2}

b. If gcd(sj,N ) , 1 then output gcd(sj,N ) and stop

c. Set u ← s2
j rem N

d. For i = 1, 2, . . . , h
i. Set aij ← 0

ii. While pi divides u, set aij ← aij + 1 and u ← u/pi

e. If u = 1 then set j ← j + 1



Example: Finding smooth random squares (1/3)

I Let N = 2028455971; we observe that N is odd and not a prime power

I Let us work with B = 50 and h = 15 with p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, p6 = 13,
p7 = 17, p8 = 19, p9 = 23, p10 = 29, p11 = 31, p12 = 37, p13 = 41, p14 = 43, p15 = 47



Example: Finding smooth random squares (2/3)
I Suppose we obtain the h + 1 = 16 smooth squares

1450852 rem N = 33 · 5 · 73 · 13 · 31 · 41

1493912 rem N = 25 · 52 · 11 · 232

1542092 rem N = 26 · 55 · 11 · 23 · 29

1598462 rem N = 28 · 3 · 7 · 113 · 132

1604742 rem N = 215 · 7 · 11 · 13 · 43

1704402 rem N = 2 · 13 · 292 · 313

1711222 rem N = 2 · 5 · 7 · 13 · 23 · 29 · 31 · 47

1801692 rem N = 32 · 52 · 17 · 31 · 47

1802002 rem N = 24 · 32 · 112 · 312

1802442 rem N = 25 · 3 · 53 · 11 · 13 · 19

1803762 rem N = 24 · 32 · 5 · 11 · 13 · 19 · 41

1805562 rem N = 25 · 33 · 52 · 11 · 13 · 47

1811362 rem N = 24 · 35 · 5 · 19 · 312

1811562 rem N = 25 · 3 · 52 · 132 · 19 · 47

1816632 rem N = 36 · 11 · 133 · 31

1817442 rem N = 24 · 34 · 53 · 11 · 17 · 19



Example: Finding smooth random squares (3/3)

I We thus have the h × (h + 1) = 15 × 16 matrix

A =



0 5 6 8 15 1 1 0 4 5 4 5 4 5 0 4
3 0 0 1 0 0 0 2 2 1 2 3 5 1 6 4
1 2 5 0 0 0 1 2 0 3 1 2 1 2 0 3
3 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 1 1 3 1 0 0 0 2 1 1 1 0 0 1 1
1 0 0 2 1 1 1 0 0 1 1 1 0 2 3 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1
0 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 2 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 3 1 1 2 0 0 0 2 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0





A lower bound for the number of smooth squares

Lemma 20 (A lower bound for the number of smooth squares)

Let S = {s ∈ Z×N : s2 rem N is ph-smooth} and let d be a positive integer with p2d
h ≤ N.

Furthermore, suppose that none of p1, p2, . . . , ph divides N.
Then,

|S | ≥
h2d

(2d )!



Proof I

I Let us recall that we write Z×N for the set of integers 1 ≤ a ≤ N − 1 coprime to N

I Let Q = {a ∈ Z×N : ∃b ∈ Z×N b2 ≡ a (mod N )}

I For x ≥ 1 and an integer k ∈ Z≥0 let us write Td (x ) for the set of all integers a ∈ Z≥1

such that a ≤ x and there exist integers k1, k2, . . . , kh ∈ Z≥0 with k1 + k2 + . . . + kh = k
and a = pk1

1 pk2
2 · · · p

kh
h

I Since none of p1, p2, . . . , ph divides N , for all a ∈ Tk (x ) we have that a and N are
coprime

I Let N = qe1
1 qe2

2 · · · q
er
r be the factorization of N



Proof II

I By the Chinese Remainder Theorem, we have the isomorphism

Z×N → Z
×

qe1
1
× Z×

qe2
2
× · · · × Z×qer

r

given by

a 7→ (a rem qe1
1 , a rem qe2

2 , . . . , a rem qer
r )

I For i = 1, 2, . . . , r and a ∈ Z×N , let us define

χi (a) =



1 if there exists b ∈ Zq
ei
i

with b2 ≡ a (mod qei
i ),

−1 otherwise

I The map χ (a) = (χ1 (a), χ2 (a), . . . , χr (a)) ∈ {−1, 1}r is a homomorphism from Z×N to
{−1, 1}r

I In particular, for all a ∈ Z×N we have a ∈ Q if and only if χ (a) = (1, 1, . . . , 1)



Proof III

I For each s ∈ {−1, 1}r , let

Us = {a ∈ Td (
√

N ) : χ (a) = s}

I Since
√

N is not an integer, for b, c ∈ Us we observe that 1 ≤ bc ≤ N − 1 and
χ (bc) = (1, 1, . . . , 1); in particular, bc ∈ Q ∩ T2d (N )

I Let m : ∪s∈{−1,1}r Us × Us → V be a surjective map given by (b, c) 7→ m(b, c) = bc

I We have V ⊆ Q ∩ T2d (N ) and |V |
(

2d
d

)
≥

∑
s∈{−1,1}r |Us |

2

I Since every a ∈ Q has exactly 2r square roots in Z×N (exercise), from V ⊆ Q ∩ T2d (N )
we have that |S | ≥ 2r |V |



Proof IV

I Combining inequalities, we have

|S | ≥
(
2d
d

)−1

2r
∑

s∈{−1,1}r
|Us |

2

I By the Cauchy–Schwartz inequality and the definition of the sets Us, we have

2r
∑

s∈{−1,1}r
|Us |

2 ≥

( ∑
s∈{−1,1}r

|Us |

)2

= |Td (
√

N ) |2

I Since pd
h ≤
√

N , an element of Td (
√

N ) chooses exactly d primes up to ph, possibly
with repetition; thus,

|Td (
√

N ) | =

(
d + h − 1

h − 1

)
=

(
d + h − 1

d

)
≥

hd

d!



Proof V

I Combining inequalities, we obtain

|S | ≥
(
2d
d

)−1 (hd

d!

)2

=
h2d

(2d )!

I This completes the proof



Expected number of iterations

I From Lemma 20 we thus have that a uniform random sj ∈ {2, 3, . . . ,N − 2} satisfies
that s2

j rem N is B-smooth and gcd(sj,N ) = 1 with probability at least

|S |−2
N−3 ≥

h2d
(2d )!−2

N ≥ h2d

2(2d )!N where in the last inequality we have assumed that h2d

(2d )! ≥ 4;

here h = π (B) and d is a positive integer with p2d
h ≤ N

I Thus, in expectation we need at most 2(h + 1) (2d )!N
h2d iterations of the while loop to find

h + 1 smooth random squares

I Let B = N
1

2d and recall from Theorem 19 that for all large enough B we have both
h = π (B) > B

ln B and 2(h + 1) ≤ B

I Since (2d )! ≤ (2d )2d , in expectation the number of iterations is at most

(h + 1)
(2d )!N

h2d
< B

(2d ln B)2dN
B2d

= N1/2d (ln N )2d



Finding a quadratic congruence modulo N (1/2)

I Let us now turn to the last part of the algorithm that finds a quadratic congruence
modulo N

I The coe�icients aij for i = 1, 2, . . . , h and j = 1, 2, . . . , h + 1 from an h × (h + 1) integer
matrix

I The h + 1 columns of this matrix are linearly dependent modulo 2

1. Find ϵj ∈ {0, 1} for j = 0, 1, . . . , h + 1 such that ϵj = 1 for at least one j and, for all
i = 1, 2, . . . , h, we have

h+1∑
j=1

aijϵj ≡ 0 (mod 2) (36)

I Since h ≤ B, this can be done in time O(B3) using, for example, Gaussian elimination

I Let ` = 1, 2, . . . , h + 1 with ϵ` = 1 and ϵj = 0 for all j = ` + 1, ` + 2, . . . , h + 1



Finding a quadratic congruence modulo N (2/2)

2. Next, set

s ← sϵ1
1 sϵ2

2 · · · s
ϵ`
`

rem N

3. For all i = 1, 2, . . . , h, set

di =
1
2

∑̀
j=1

aijϵj

and observe from (36) that di is a nonnegative integer

4. Set

t ← pd1
1 pd2

2 · · · p
dh
h rem N

I By construction we now have s2 ≡ t2 (mod N )



Example: Finding a quadratic congruence modulo N (1/2)

I Let us continue working with N = 2028455971;
recall the smooth squares and the h × (h + 1) matrix A from the earlier example

I We have Aϵ ≡ 0 (mod 2) for the vector ϵ ∈ {0, 1}h+1 with

ϵ =
[

0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1
]>

I We also have d = (Aϵ )/2 with

d =
[

12 4 7 1 3 2 1 1 1 1 1 0 0 0 1
]>

I Accordingly,

s = (154209 · 159846 · 171122 · 180169 · 180244 · 181744) rem N = 1840185960

and

t = (212 · 34 · 57 · 7 · 113 · 132 · 17 · 19 · 23 · 29 · 31 · 47) rem N = 1325950600



Example: Finding a quadratic congruence modulo N (2/2)

I We have

N = 2028455971

s = 1840185960

t = 1325950600

I We readily check that s2 ≡ t2 (mod N )

I Furthermore, we have

gcd(s + t,N ) = 46073

gcd(s − t,N ) = 44027

which splits N = 46073 · 44027 = 2028455971 into two proper divisors
(which are in fact prime)



The probability to obtain a proper divisor of N

I We claim that with probability at least 1/2 it holds that s . ±t (mod N ) and thus
gcd(s + t,N ) is a proper divisor of N

I Indeed, observe that the coe�icients aij depend only on the values s2
j rem N ; thus, t

depends only on the values s2
j rem N

I Condition on the values s1, s2, . . . , s`−1 and study the distribution of the value s`
conditioned on the value s2

`
rem N

I We have that s` has 2r possible values (the 2r possible square roots of s2
`

rem N),
exactly 2 of which lead to the outcome s ≡ t (mod N ) or s ≡ −t (mod N ) since ϵ` = 1

I Because each possible value of s` occurs with probability 2−r , in aggregate (over all
conditionings) we have that s ≡ t (mod N ) or s ≡ −t (mod N ) with probability at
most 21−r ≤ 1/2 since r ≥ 2



Expected running time (1/2)

I Recall that we let B = N
1

2d for a positive integer d = d (N ) such that B→ ∞ and
(B/(2d ln B))2d ≥ 4 as N → ∞

I Recall that we obtain h + 1 smooth squares in expectation in at most N1/2d (ln N )2d

iterations of the while loop

I Since h ≤ B, each iteration runs in time O(B(log N )c ) for a constant c > 0

I The time to find a quadratic congruence modulo N is at most O(B3 + B(log N )c ) for a
constant c > 0

I Thus, the entire algorithm runs in at most O(N
3

2d (ln N )2d (log N )c ) expected time and
outputs a proper divisor of N with probability at least 1/2



Expected running time (2/2)

I Recall that the expected running time is at most O(N
3

2d (ln N )2d (log N )c )

I Observe that N
3

2d (ln N )2d = exp( 3 ln N
2d + 2d ln ln N )

I Solve ln N
d = d ln ln N and round up to obtain

d =
⌈√

ln N
ln ln N

⌉

and thus, for all large enough N ,

N
3

2d (ln N )2d (log N )c = exp(O(
√

ln N ln ln N ))

I Since B = N1/(2d ) ≥ exp(
√

ln N ) for all large enough N , we obtain expected running
time at most exp(O(

√
ln N ln ln N )) for Dixon’s algorithm



Remarks

I We have here barely scratched the surface of moderately-exponential-time
randomized algorithms for factoring integers

I To obtain a practical algorithm design that runs in moderately exponential time (based
on a heuristic analysis), more work is needed—the aforementioned exposition and
analysis of Dixon’s algorithm merely illustrates some of the key theoretical ideas

I Cf. Crandall and Pomerance [7] and Wagsta� [28] for a more comprehensive
introduction to integer factoring algorithms



Key content for Lecture 9

I Prime numbers, factorization, and smooth numbers

I The prime number theorem

I De Bruijn’s lower bound for smooth numbers (exercise)

I Factoring by trial division

I The factorial function and factoring—fast polynomial evaluation and the
Pollard–Strassen algorithm [21, 26]

I Di�erence of two squares and factoring

I �adratic congruences, square roots (exercise), and factoring

I Dixon’s random squares algorithm [8]



Lecture schedule

Tue 15 Jan: 1. Polynomials and integers
Tue 22 Jan: 2. The fast Fourier transform and fast multiplication
Tue 29 Jan: 3. �otient and remainder
Tue 5 Feb: 4. Batch evaluation and interpolation
Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data

Tue 19 Feb: Exam week — no lecture

Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs

Tue 5 Mar: Break — no lecture

Tue 12 Mar: 7. Finite fields
Tue 19 Mar: 8. Factoring polynomials over finite fields
Tue 26 Mar: 9. Factoring integers



Learning objectives (1/2)

I Terminology and objectives of modern algorithmics, including elements of algebraic,
online, and randomised algorithms

I Ways of coping with uncertainty in computation, including error-correction and
proofs of correctness

I The art of solving a large problem by reduction to one or more smaller instances of the
same or a related problem

I (Linear) independence, dependence, and their abstractions as enablers of e�icient
algorithms



Learning objectives (2/2)

I Making use of duality
I O�en a problem has a corresponding dual problem that is obtainable from the original

(the primal) problem by means of an easy transformation

I The primal and dual control each other, enabling an algorithm designer to use the
interplay between the two representations

I Relaxation and tradeo�s between objectives and resources as design tools
I Instead of computing the exact optimum solution at considerable cost, o�en a less costly

but principled approximation su�ices

I Instead of the complete dual, o�en only a randomly chosen partial dual or other
relaxation su�ices to arrive at a solution with high probability



2019 K A L E N T E R I 2019

Tammikuu Helmikuu Maaliskuu Huhtikuu Toukokuu Kesäkuu

1 Ti Uudenvuodenpäivä 1 Pe 1 Pe 1 Ma                              Vk 14 1 Ke Vappu 1 La

2 Ke 2 La 2 La 2 Ti 2 To 2 Su

3 To 3 Su 3 Su 3 Ke 3 Pe 3 Ma                              Vk 23

4 Pe 4 Ma                              Vk 06 4 Ma                              Vk 10 4 To 4 La 4 Ti

5 La 5 Ti 5 Ti Laskiainen 5 Pe 5 Su 5 Ke

6 Su Loppiainen 6 Ke 6 Ke 6 La 6 Ma                              Vk 19 6 To

7 Ma                              Vk 02 7 To 7 To 7 Su 7 Ti 7 Pe

8 Ti 8 Pe 8 Pe 8 Ma                              Vk 15 8 Ke 8 La

9 Ke 9 La 9 La 9 Ti 9 To 9 Su Helluntaipäivä

10 To 10 Su 10 Su 10 Ke 10 Pe 10 Ma                              Vk 24

11 Pe 11 Ma                              Vk 07 11 Ma                              Vk 11 11 To 11 La 11 Ti

12 La 12 Ti 12 Ti 12 Pe 12 Su Äitienpäivä 12 Ke

13 Su 13 Ke 13 Ke 13 La 13 Ma                              Vk 20 13 To

14 Ma                              Vk 03 14 To 14 To 14 Su Palmusunnuntai 14 Ti 14 Pe

15 Ti 15 Pe 15 Pe 15 Ma                              Vk 16 15 Ke 15 La

16 Ke 16 La 16 La 16 Ti 16 To 16 Su

17 To 17 Su 17 Su 17 Ke 17 Pe 17 Ma                              Vk 25

18 Pe 18 Ma                              Vk 08 18 Ma                              Vk 12 18 To 18 La 18 Ti

19 La 19 Ti 19 Ti 19 Pe Pitkäperjantai 19 Su Kaatuneiden muistopäivä 19 Ke

20 Su 20 Ke 20 Ke Kevätpäiväntasaus 20 La 20 Ma                              Vk 21 20 To

21 Ma                              Vk 04 21 To 21 To 21 Su Pääsiäispäivä 21 Ti 21 Pe Kesäpäivänseisaus

22 Ti 22 Pe 22 Pe 22 Ma 2. pääsiäispäivä 22 Ke 22 La Juhannus

23 Ke 23 La 23 La 23 Ti 23 To 23 Su

24 To 24 Su 24 Su 24 Ke 24 Pe 24 Ma                              Vk 26

25 Pe 25 Ma                              Vk 09 25 Ma                              Vk 13 25 To 25 La 25 Ti

26 La 26 Ti 26 Ti 26 Pe 26 Su 26 Ke

27 Su 27 Ke 27 Ke 27 La 27 Ma                              Vk 22 27 To

28 Ma                              Vk 05 28 To 28 To 28 Su 28 Ti 28 Pe

29 Ti 29 Pe 29 Ma                              Vk 18 29 Ke 29 La

30 Ke 30 La 30 Ti 30 To Helatorstai 30 Su

31 To 31 Su Kesäaika alkaa 31 Pe

Vuotuinen kalenteri Marcel Steinger, luotu  9.11.2018 calendar-yearly.com
Käy meillä -> www.calendar-yearly.com L = Lecture;                             hall T5,   Tue 12–14

Q = Q & A session;                   hall T5,   Thu 12–14
D = Problem set deadline;                      Sun  20:00
 T = Tutorial (model solutions);   hall T6,  Mon 16–18
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D1
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Q2

D2
T2
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Q3

D3
T3

L4

Q4
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L5

Q5

D5
T5

Break

L6

Q6

D6
T6

L7

Q7

D7
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L8

Q8

D8
T8

L9

Q9

D9

T9
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