
May 1, 2012

Six Myths of Product Development
hbr.org/2012/05/six-myths-of-product-development

Artwork: Ricky Allman, Undertable, 2011, acrylic on canvas, 72″ x 48″

Most product-development managers are always struggling to bring in
projects on time and on budget. They never have enough resources to
get the job done, and their bosses demand predictable schedules and
deliverables. So the managers push their teams to be more
parsimonious, to write more-detailed plans, and to minimize schedule
variations and waste. But that
approach, which may work well in
turning around underperforming
factories, can actually hurt
product-development efforts.

Although many companies treat
product development as if it were
similar to manufacturing, the two
are profoundly different. In the
world of manufacturing physical
objects, tasks are repetitive,
activities are reasonably
predictable, and the items being
created can be in only one place
at a time. In product development
many tasks are unique, project
requirements constantly change,
and the output—thanks, in part,
to the widespread use of
advanced computer-aided design
and simulation and the
incorporation of software in
physical products—is information,
which can reside in multiple
places at the same time.

The failure to appreciate those critical differences has given rise to several fallacies that
undermine the planning, execution, and evaluation of product development projects.
Together, we have spent more than 50 years studying and advising companies on product-
development efforts, and we have encountered these misconceptions—as well as others
that arise for different reasons—in a wide range of industries, including semiconductors,
autos, consumer electronics, medical devices, software, and financial services. In this
article we’ll expose them and offer ways to overcome the problems they create.

1/10

https://hbr.org/2012/05/six-myths-of-product-development


Fallacy 1: High utilization of resources will improve
performance.
In both our research and our consulting work, we’ve seen that the vast majority of
companies strive to fully employ their product-development resources. (One of us, Donald,
through surveys conducted in executive courses at the California Institute of Technology,
has found that the average product-development manager keeps capacity utilization above
98%.) The logic seems obvious: Projects take longer when people are not working 100% of
the time—and therefore, a busy development organization will be faster and more efficient
than one that is not as good at utilizing its people.

But in practice that logic doesn’t hold up. We have seen that projects’ speed, efficiency,
and output quality inevitably decrease when managers completely fill the plates of their
product-development employees—no matter how skilled those managers may be. High
utilization has serious negative side effects, which managers underestimate for three
reasons:

They don’t take into full account the intrinsic variability of development work.

Many aspects of product development are unpredictable: when projects will arrive, what
individual tasks they’ll require, and how long it will take workers who’ve never tackled such
tasks before to do them. Companies, however, are most familiar with repetitive processes
like manufacturing and transaction processing, where the work doesn’t change much and
surprises are few and far between. Such processes behave in an orderly manner as the
utilization of resources increases. Add 5% more work, and it will take 5% more time to
complete.

Processes with high variability behave very differently. As utilization increases, delays
lengthen dramatically. (See the exhibit “High Utilization Leads to Delays.”) Add 5% more
work, and completing it may take 100% longer. But few people understand this effect. In
our experience with hundreds of product-development teams, we have found that most
were significantly overcommitted. To complete all projects on time and on budget, some
organizations we worked with would have needed at least 50% more resources than they
had.

Read more

It is true that some variability is the result of a lack of discipline, and that some product-
development tasks (like designing components for an airplane prototype or performing
clinical trials) include more-repetitive work. But even if some of the work is predictable,
when it’s combined with other unpredictable work, you will see queuing problems.

They don’t understand how queues affect economic performance.

High utilization of resources inevitably creates queues of projects. When partially
completed work sits idle, waiting for capacity to become available, the duration of the
overall project will grow. Queues also delay feedback, causing developers to follow
unproductive paths longer. They make it hard for companies to adjust to evolving market
needs and to detect weaknesses in their product before it’s too late. Ironically, these

2/10



problems are precisely the ones that managers think high utilization will allow their teams to
avoid.

Even when managers know that they’re creating queues, they rarely realize the economic
cost. Although that cost can be quantified, we’ve found that the vast majority of companies
don’t calculate it. Managers need to weigh queue costs against the costs of underutilized
capacity in order to strike the right balance.

In product development, work-in-process inventory is predominantly
invisible.

Manufacturing queues consist of physical things, and when inventory in a factory doubles,
it’s obvious. That’s not the case in product development, where inventory largely consists of
information, such as design documentation, test procedures and results, and instructions
for building prototypes. When inventory doubles in an engineering process, there are no
physical signs. Moreover, because accounting standards require most R&D inventory to be
carried at zero value, financial statements give no indication of serious inventory excesses
in product development.

It is very difficult to fight a problem that you can’t see or measure. Consider the situation at
a major pharmaceutical firm. Several years ago its newly appointed head of drug discovery
faced a managerial dilemma. Like other senior executives who run large R&D
organizations, he was trying to find ways to make his scientists more innovative. He wanted
them to experiment more with new chemical compounds that could generate promising
new drugs and, at the same time, to eliminate unpromising candidates as early as possible.
Experiments with living organisms, however, were the responsibility of animal testing, a
department that was not under his control and was run as a cost center. It was evaluated
by how efficiently it used testing resources, which naturally led to high utilization.
Consequently, the scientists in drug discovery had to wait three to four months for the
results of tests that took a little more than a week to perform. The “well-managed” testing
organization impeded the discovery unit’s progress.

The obvious solution to such problems is to provide a capacity buffer in processes that are
highly variable. Some companies have long understood this. For decades, 3M has
scheduled product developers at 85% of their capacity. And Google is famous for its “20%
time” (allowing engineers to work one day a week on anything they want—a practice that
means extra capacity is available if a project falls behind schedule). However, in our
experience this kind of solution is quite hard to implement. As we will discuss, few
organizations can resist the temptation to use every last bit of available capacity. Managers
reflexively start more work whenever they see idle time.

But there are other viable solutions:

Change the management-control systems.

For the pharmaceutical company, this might involve taking steps to align the objectives of
the animal-testing unit with those of the discovery unit. The company could, for example,
reward animal testing for prompt responses (measuring time from request to completion of
test) rather than resource utilization.

3/10



Selectively increase capacity.

Adding extra resources to the areas where the utilization rates are 70% or higher can
significantly reduce waiting time. If the pharmaceutical company did this in animal testing, it
would obtain feedback on new chemical compounds far faster. In settings where testing is
conducted with computer modeling and simulation, increasing capacity is often relatively
inexpensive, since it just involves buying additional computer equipment and software
licenses.

Limit the number of active projects.

If the pharmaceutical firm couldn’t increase animal testing’s capacity, it could still lower the
utilization rate by reducing the number of active projects exploring new chemical
compounds. The discipline of putting a hard limit on what goes into a product-development
pipeline often results in sharper focus and clearer priorities.

Make the work-in-process inventory easier to see.

One method is to use visual control boards. These can take a number of forms, but the key
is to have some sort of physical token, such as a Post-it note, represent the development
work (see the exhibit “Typical Work-in-Process Control Board”). A control board should
display all active work and show what state each part of the project is in. It should be at the
center of the team’s management process. Teams can hold 15-minute daily stand-up
meetings around such boards to coordinate efforts and keep work moving.

Read more

Fallacy 2: Processing work in large batches improves the
economics of the development process.
A second cause of queues in product development is batch size. Let’s say a new product is
composed of 200 components. You could choose to design and build all 200 parts before
you test any of them. If you instead designed and built only 20 components before you
began testing, the batch size would be 90% smaller. That would have a profound effect on
queue time, because the average queue in a process is directly proportional to batch size.

The reduction of batch sizes is a critical principle of lean manufacturing. Small batches
allow manufacturers to slash work in process and accelerate feedback, which, in turn,
improves cycle times, quality, and efficiency. Small batches have even greater utility in
product development, but few developers realize the power of this method.

One reason is the nature of their work flow. Again, because the information they’re
producing is mostly invisible to them, the batch sizes are too. Second, developers seem to
have an inherent bias to use large batches—possibly because they incorrectly believe that
large batches produce economies of scale.

In a well-managed process, the batch size will balance transaction and holding costs (see
the exhibit “How to Determine Optimal Batch Size”). It’s similar to buying eggs at the
grocery store. If you buy a 12-month supply on a single trip, your transaction cost is low, but

4/10



most of the eggs will spoil, increasing your holding cost. If you buy a one-day supply at a
time, your spoilage will be low, but your transaction costs will be high. Intuitively, you try to
strike a balance between the two.

Read more

The companies that understand how this works have exploited IT advances to reduce
batch sizes, often with astonishing results. Some software companies that used to test
large batches of code every 90 days are now testing much smaller batches several times a
day. A manufacturer of computer peripherals that used a similar approach with its software
group reduced cycle time in software testing by 95% (from 48 months to 2.5 months),
improved efficiency by 220%, and decreased defects by 33%. The cost savings were twice
as high as the company had expected. Although those results were exceptional, we have
found that reducing batch size improves most development projects significantly. Similarly,
computerized modeling and simulation tools have dramatically lowered the optimal batch
size of experimentation and testing in companies that develop physical products.

By shrinking batch sizes, one company improved the efficiency of its product testing by
220% and decreased defects by 33%.

Fallacy 3: Our development plan is great; we just need to stick
to it.
In all our consulting work and research, we’ve never come across a single product-
development project whose requirements remained stable throughout the design process.
Yet many organizations place inordinate faith in their plans. They attribute any deviations to
poor management and execution and, to minimize them, carefully track every step against
intermediate targets and milestones. Such thinking is fine for highly repetitive activities in
established manufacturing processes. But it can lead to poor results in product innovation,
where new insights are generated daily and conditions are constantly changing.

A classic study of technical problem solving done by Thomas Allen of MIT highlights the
fluid nature of development work. He found that engineers who were developing an
aerospace subsystem conceived of and evaluated a number of design alternatives before
selecting one that they judged to be the best. Along the way their preferences changed
frequently, as they tested and refined competing technical solutions. This is typical in
innovation projects: Testing and experimentation reveal what does and doesn’t work, and
initial assumptions about costs and value may be disproved.

Defining customers’ needs can also be hard to do at the outset of a product-development
project. When you think about it, that’s not surprising: It isn’t easy for customers to
accurately specify their needs for solutions that don’t yet exist. In fact, familiarity with
existing product attributes can interfere with an individual’s ability to express his or her need
for a novel product. Customers’ preferences can also shift abruptly during the course of a
development project, as competitors introduce new offerings and new trends emerge.

5/10

http://www.mendeley.com/research/studies-problemsolving-process-engineering-design/


For all those reasons, sticking to the original plan—no matter how excellent its conception
and how skillful its execution—can be a recipe for disaster. This is not to suggest that we
don’t believe in planning. Product development is a set of complex activities that require
careful coordination and attention to the smallest detail. However, the plan should be
treated as an initial hypothesis that is constantly revised as the evidence unfolds, economic
assumptions change, and the opportunity is reassessed. (See “The Value Captor’s
Process,” by Rita Gunther McGrath and Thomas Keil, HBR May 2007.)

Fallacy 4: The sooner the project is started, the sooner it will
be finished.
As we discussed earlier, idle time is anathema to managers. They tend to exploit any
downtime by starting a new project. Even if the task cannot be completed because people
have to return to another project, managers reason that anything accomplished on the new
project is work that won’t have to be done later. Such thinking leads companies to start
more projects than they can vigorously pursue, diluting resources.

This dilution is dangerous. If a company embarks on a project before it has the resources to
move ahead, it will stumble slowly through the development process. That’s problematic
because product-development work is highly perishable: Assumptions about technologies
and the market can quickly become obsolete. The slower a project progresses, the greater
the likelihood it will have to be redirected. Indeed, one branch of the military discovered
that its cost and schedule overruns were exponentially proportional (to the fourth power) to
a project’s duration. In other words, when the original schedule of a project doubled, the
cost and schedule overruns increased by a factor of 16.

The importance of reducing the amount of work in process is evident when we look at one
of the classic formulas of queuing theory: Little’s Law. It simply states that, on average,
cycle time is proportional to the size of the queue divided by the processing rate. Thus, if
20 people are ahead of you in line at Starbucks and the barista is serving five people a
minute, you will be served in four minutes. You can shorten the cycle time by raising the
processing rate or by reducing the number of jobs under way. In most settings the latter is
the only practical choice.

â€©For some product developers the solution has been to rigorously control the rate at
which they start work. They match it to the rate at which work is actually completed;
carefully manage the number of projects in process; make sure that once a project is
launched, it is adequately staffed until it is completed; and resist the temptation to steal
resources from an ongoing project to squeeze in new ones.

Fallacy 5: The more features we put into a product, the more
customers will like it.
Product-development teams seem to believe that adding features creates value for
customers and subtracting them destroys value. This attitude explains why products are so
complicated: Remote controls seem impossible to use, computers take hours to set up,

6/10

https://hbr.org/2007/05/the-value-captors-process-getting-the-most-out-of-your-new-business-ventures/ar/1


cars have so many switches and knobs that they resemble airplane cockpits, and even the
humble toaster now comes with a manual and LCD displays.

Companies that challenge the belief that more is better create products that are elegant in
their simplicity. Bang & Olufsen, the Danish manufacturer of audio products, televisions,
and telephones, understands that customers don’t necessarily want to fiddle with the
equalizer, balance, and other controls to find the optimum combination of settings for
listening to music. Its high-end speakers automatically make the adjustments needed to
reproduce a song with as much fidelity to the original as possible. All that’s left for users to
select is the volume.

Getting companies to buy into and implement the principle that less can be more is hard
because it requires extra effort in two areas of product development:

Defining the problem.

Articulating the problem that developers will try to solve is the most underrated part of the
innovation process. Too many companies devote far too little time to it. But this phase is
important because it’s where teams develop a clear understanding of what their goals are
and generate hypotheses that can be tested and refined through experiments. The quality
of a problem statement makes all the difference in a team’s ability to focus on the few
features that really matter.

When Walt Disney was planning Disneyland, he didn’t rush to add more features (rides,
kinds of food, amount of parking) than other amusement parks had. Rather, he began by
asking a much larger question: How could Disneyland provide visitors with a magical
customer experience? Surely, the answer didn’t come overnight; it required painstakingly
detailed research, constant experimentation, and deep insights into what “magical” meant
to Disney and its customers. IDEO and other companies have dedicated phases in which
they completely immerse themselves in the context in which the envisioned product or
service will be used. Their developers read everything of interest about the markets,
observe and interview future users, research offerings that will compete with the new
product, and synthesize everything that they have learned into pictures, models, and
diagrams. The result is deep insights into customers that are tested, improved, or
abandoned throughout the iterative development process.

Determining what to hide or omit.

Teams are often tempted to show off by producing brilliant technical solutions that amaze
their peers and management. But often customers would prefer a product that just works
effortlessly. From a customer’s point of view, the best solutions solve a problem in the
simplest way and hide the work that developers are so proud of.

One company that has understood this is Apple. It is known for many things—innovative
products, stylish designs, and savvy marketing—but perhaps its greatest strength is its
ability to get to the heart of a problem. (See “The Real Leadership Lessons of Steve Jobs,”
by Walter Isaacson, in our April issue.) As the late Steve Jobs once explained, “When you
start looking at a problem and it seems really simple, you don’t really understand the
complexity of the problem. And your solutions are way too oversimplified. Then you get into

7/10

https://hbr.org/2012/04/the-real-leadership-lessons-of-steve-jobs/ar/1


the problem, and you see it’s really complicated. And you come up with all these
convoluted solutions….That’s where most people stop.” Not Apple. It keeps on plugging
away. “The really great person will keep on going,” said Jobs, “and find…the key underlying
principle of the problem and come up with a beautiful, elegant solution that works.”

Determining which features to omit is just as important as—and perhaps more important
than—figuring out which ones to include. Unfortunately, many companies, in an effort to be
innovative, throw in every possible bell and whistle without fully considering important
factors such as the value to customers and ease of use. When such companies do omit
some planned functionality, it’s typically because they need to cut costs or have fallen
behind schedule or because the team has failed in some other way.

Deciding what to omit from a product is as important as figuring out what to include.

Instead, managers should focus on figuring out whether the deletion of any proposed
feature might improve a particular product and allow the team to concentrate on things that
truly heighten the overall customer experience. This can be determined by treating each
alleged requirement as a hypothesis and testing it in small, quick experiments with
prospective customers.

Development teams often assume that their products are done when no more features can
be added. Perhaps their logic should be the reverse: Products get closer to perfection when
no more features can be eliminated. As Leonardo da Vinci once said, “Simplicity is the
ultimate sophistication.”

Fallacy 6: We will be more successful if we get it right the first
time.
Many product-development projects fail to meet their objectives for budgets, schedules,
and technical performance. Undoubtedly, poor planning, rigid processes, and weak
leadership all play a role. But another cause that’s often overlooked is managers’ demand
that their teams “get it right the first time.” Requiring success on the first pass biases teams
toward the least-risky solutions, even if customers don’t consider them much of an
improvement over what’s already available. Worse yet, teams have little incentive to pursue
innovative solutions to customers’ problems.

To avoid making mistakes, teams follow a linear process in which each stage (specify,
design, build, test, scale, launch) is carefully monitored at review “gates.” Work on the next
stage cannot begin until the project passes through the gate. As the project moves down
the line, significant commitments are made and the cost of responding to new insights
increases by orders of magnitude. Successful tests in late stages are celebrated, and
surprises, no matter how valuable they are, are considered setbacks. Unfortunately, such a
linear process flow can cause project overruns because test feedback is delayed, teams
cling to bad ideas longer than they should, and problems aren’t unearthed until it’s
expensive to solve them.

8/10



A tolerance for “getting it wrong the first time” can be the better strategy as long as people
iterate rapidly and frequently and learn quickly from their failures. Advances in simulation
and rapid-prototyping technologies have made operating in this fashion vastly easier and
less expensive.

Read more

Consider what we found in a study of 391 teams that designed custom integrated circuits.
Teams that followed an iterative approach and conducted early and frequent tests made
more errors along the way. But because they used low-cost prototyping technologies, they
outperformed (in terms of the time and effort required) teams that tried to get their design
right the first time. The teams that faced high prototyping costs invested more effort on
specification, development, and verification. And because they did their iterations later in
the process—and did far fewer of them—they delayed the discovery of critical problems.

Experimenting with many diverse ideas is crucial to innovation projects. When people
experiment rapidly and frequently, many novel concepts will fail, of course. But such early
failures can be desirable because they allow teams to eliminate poor options quickly and
focus on more-promising alternatives. A crash test that shows that a car design is unsafe, a
drug candidate that proves to be toxic, or a software user interface that confuses customers
can all be desirable outcomes—provided that they occur early in a process, when few
resources have been committed, designs are still very flexible, and other solutions can be
tried.

Demanding that teams “get it right the first time” just biases them to focus on the least-risky
solutions.

A classic example of the advantages of the “fail early, fail often” approach is Team New
Zealand’s surprising victory in the 1995 America’s Cup. To test ideas for improving the keel
design, the team used two nearly identical boats: one boat that was modified during the
course of the project and a “control” boat that was not. On a daily basis, the team simulated
hypotheses on a local graphics workstation, applied those that looked promising to the one
boat, raced it against the control, and analyzed the results. In contrast, its competitor, Team
Dennis Conner, which had access to more-powerful computers (supercomputers at
Boeing), ran large batches of simulations every few weeks and then tested possible
solutions on one boat. The result: Team New Zealand completed many more learning
cycles, eliminated unpromising ideas more rapidly, and ended up beating Team Dennis
Conner’s boat Young America.

What we hope is becoming clear by now is that experiments resulting in failures are not
necessarily failed experiments. They generate new information that an innovator was
unable to foresee. The faster the experimentation cycle, the more feedback can be
gathered and incorporated into new rounds of experiments with novel and potentially risky
ideas. In such an environment employees tend to persevere when times get tough, engage
in more-challenging work, and outperform their risk-averse peers.

But creating this kind of environment isn’t easy—a topic that Amy C. Edmondson of
Harvard Business School explored in “Strategies for Learning from Failure” (HBR April
2011). Failure can lead to embarrassment and expose gaps in knowledge, which can

9/10

https://hbr.org/product/agile-product-development-managing-development-fle/an/CMR130-PDF-ENG
https://hbr.org/2011/04/strategies-for-learning-from-failure/ar/1


undermine individuals’ self-esteem and standing in an organization. After all, how often are
managers promoted and teams rewarded for the early exposure of failures that lead a
project to be killed—even though the early redeployment of precious resources benefits the
company? This is especially true in organizations that have built a “zero tolerance for
failure” or “error-free” (Six Sigma) environment.

This article also appears in:

Thomas Alva Edison understood all this. He organized his famous laboratories around the
concept of rapid experimentation, locating machine shops for building models close to the
rooms where experiments were conducted so that machinists could cooperate closely with
researchers. The labs had libraries containing a vast number of volumes so that information
could be found quickly; nearby storerooms with ample quantities of supplies; and a diverse
workforce of craftsmen, scientists, and engineers. Edison wanted to make sure that when
he or his people had an idea, it could be immediately turned into a working model or
prototype. “The real measure of success is the number of experiments that can be crowded
into 24 hours,” he said.

Advances in information technology, such as computer-aided design, modeling, and
simulation, have already allowed companies to make great strides in developing better
products in less time and at a lower cost. Many companies, however, have not tapped the
full potential of these tools, because their management thinking has not evolved as quickly
as the technology: They still approach the highly variable information-generating work of
product development as if it were like manufacturing. As advances in IT continue, the
opportunity to improve the product-development process will become even greater. But so
will the risks for companies that fail to recognize that product development is profoundly
different from manufacturing.

A version of this article appeared in the May 2012 issue of Harvard Business Review.

10/10

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3269
https://hbr.org/archive-toc/BR1205

	Six Myths of Product Development
	Fallacy 1: High utilization of resources will improve performance.
	They don’t take into full account the intrinsic variability of development work.
	They don’t understand how queues affect economic performance.
	In product development, work-in-process inventory is predominantly invisible.
	Change the management-control systems.
	Selectively increase capacity.
	Limit the number of active projects.
	Make the work-in-process inventory easier to see.

	Fallacy 2: Processing work in large batches improves the economics of the development process.
	Fallacy 3: Our development plan is great; we just need to stick to it.
	Fallacy 4: The sooner the project is started, the sooner it will be finished.
	Fallacy 5: The more features we put into a product, the more customers will like it.
	Defining the problem.
	Determining what to hide or omit.

	Fallacy 6: We will be more successful if we get it right the first time.
	This article also appears in:



