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Literature on dimensionality 
reduction for visualisation

• MDS: Borg, Kroenen, Modern multidimensional scaling: theory and 
applications. Springer, 1997.


• PCA: any book on matrix algebra.

• Jarkko Venna 2007, Academic Dissertation, http://lib.tkk.fi/Diss/

2007/isbn9789512287529/  

• Lee & Verleysen, 2007. Nonlinear dimensionality reduction. Springer.

• For a reasonably recent brief review see Verleysen & Lee, 2013 

(recommended reading before exam!). https://doi.org/
10.1007/978-3-642-42054-2_77 


• See the references in the slides! Notice that most doi.org links can 
be accessed from within Aalto network (but usually not from home).


• (Not to be confused with dimensionality reduction for machine 
learning where target dimensionality is often higher!)


• Go to http://www.iki.fi/kaip/p/dr2.nb.html 
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Municipal elections in 
Espoo in 2017

• Survey of candidates done by Helsingin Sanomat

• Here included only 10 parties with largest number of candidates nationally. 

• Each candidate rated each of the m=49 statements on a scale from 1 to 5, 

where 1=disagree and 5=agree:

1. Euthanasia should be allowed. 
2. I prefer public instead of the private sector to produce my local health 

services. 
3. Same gender couples should have the same marital and adoptation 

rights than the different genre couples. 
4. Good brother networks influence municipal decision-making. 
5. ... 

• n=515 candidates in total, i.e., we have a data 515x49 matrix.

• Distance pij between candidates i and j is the Euclidean distance of their 

respective 49-dimensional rating vectors. What is a 2-dimensional 
representation that preserves these distances faithfully?
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Municipal elections 
in Espoo in 2017
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Projection pursuit methods
• MDS (and variants) are based on distance matrix between points.

• If data is composed of vectors (such as Espoo municipal 

elections 2017 data) we can use projection pursuit methods.

• Projection pursuit methods try to find a linear subspace u that 

maximise some quantity

• E.g., for the election data let X be the 515x49 data matrix and f a 

function. Problem: find 49-dimensional unit vector u such that f(A 
u) is maximised.

• if f is variance we have principal component analysis (PCA)

• if f is a measure of non-gaussianity we have independent 

component analysis (ICA)

• We can find several directions u (possibly with orthogonality 

conditions).
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Precision and recall
• Precision: if the points are nearby in embedding they are nearby in the original 

space

• Recall: if the points are nearby in the original space they are nearby in the 

embedding

• Projection pursuit methods such as PCA:

• the distance between the points in projection is at most the distance in the 

original space

• if the points are nearby in the original space they are nearby in the 

embedding (good recall)

• if the points are nearby in the embedding they may be distant in the 

projection (possibly bad precision)

PC1projection

original space
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Performance of MDS
• MDS is tries to preserve the large distances at the expense of small ones, hence, it can 

“collapse” some small distances on the expense of preserving large distances

• A projection is trustworthy (precision) if k closest neighbours of a sample on the 
projection are also close by in the original space. A projection preserves the original 
neighbourhoods (recall) if all k closest neighbours of a sample in the original space are also 
close by in the projection.

!8
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mapping and non-metric MDS were selected to represent
MDS methods since they have beneficial properties; Sam-
mon's mapping emphasizes the preservation of short dis-
tances which are the focus of our trustworthiness measure
as well. Non-metric MDS tries to preserve rank orders of
distances, which is the error measure we use. For hierar-
chical clustering, there are lots of variants; we compared
all variants available in the Cluster program by Eisen [16]:
centroid linkage, complete linkage, and single linkage.
Complete linkage gave clearly better results than the other
variants and is the only one included in the results below.

All methods used the same inner product (correlation)
metric, which is the most commonly used metric for gene
expression data sets. Additional justification for the choice
is that correlation metric works well for classification of
the specific yeast dataset (preliminary studies). It is imper-
ative to use the same metric for all methods to keep the
results comparable. In principle, the whole study could be
repeated for different metrics. However, it is unlikely that
the conclusions would change; in an earlier experiment
[17] on Euclidean metrics for non-biological data sets, the
conclusions were the same.

Tru stworthiness
The results are shown in Figure 2. We focus on trustwor-
thiness of relatively small neighborhoods, of the order of

some tens of genes, which are perceived to be most sali-
ently proximate in displays such as Figure 8. In this range,
hierarchical clustering is the best for the smallest neigh-
borhoods (k < 10), and SOM after that. The excellent per-
formance of hierarchical clustering at very small
neighborhood sizes was to be expected as it explicitly con-
nects the closest points first.

Preservation of the original neighborhoods
As discussed in the Background Section, all methods make
a compromise between trustworthiness and preservation
of the original proximities. The latter kinds of errors result
from discontinuities in the projection; we measured them
by how well neighborhoods of data points in the original
data space were preserved. Non-parametric measures were
again used to avoid biases. The neighborhood of size k of
an expression profile is defined as those k profiles that
have the smallest distance (here, strongest correlation)
from the profile. If a profile becomes projected away from
the neighborhood, the error is quantified by rank dis-
tances on the display. The measure M2 (Eq. 4; for details,
see the Methods Section) summarizes the errors for all
expression profiles. For these data sets, the SOM and mul-
tidimensional scaling (Sammon and non-metric MDS)
are the best for preserving small (k < 50) original
neighborhoods (Fig. 3). Hierarchical clustering is by far
the worst.

Trustworthiness of the visualized similarities (neighborhoods of k nearest samples)Figure 2
Trustworthiness of the visualized similarities (neighborhoods of k nearest samples). Sammon: Sammon's mapping, NMDS: non-
metric multidimensional scaling, SOM: self-organizing map, HC: hierarchical clustering, with the ultrametric distance measure 
and with the linear distance measure. RP: Random linear projection is the approximate worst possible practical result (the 
small standard deviation over different projections, approximately 0.01, is not shown). The theoretical worst case, estimated 
with random neighborhoods, is approximately M1 = 0.5 . a) Yeast data. b) Mouse data.
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Precision and recall as a function of the neighbourhood size k for a yeast 
data set. Non-metric (ordinal) MDS (NMDS) is shown in blue. Larger 

precision and recall is better.

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/48

Page 5 of 13

(page number not for citation purposes)

Improving the tru stworthiness
Trustworthiness can be improved by discarding the least
trustworthy data samples and analyzing them separately.
Figure 4 shows the increase of trustworthiness as the
number of discarded samples is increased. It is striking
that although the performance of most of the other meth-
ods increases rapidly, they do not reach even the starting
point of the SOM before nearly one third of the data set
has been discarded. The ultrametric measure (see the
Methods Section) of similarity for hierarchical clustering
has the smallest improvement rate.

Visu alization of fu nctional similarity by learning metrics
A main problem in comparing gene expression profiles is
to choose which properties to compare, that is, how to
define the similarity measure or, equivalently, the metric.
When comparing knock-out mutation profiles of genes,
the relevant mutations need to be selected and scaled suit-
ably for each gene.

There is not enough prior knowledge to do this manually,
and our goal is to learn automatically the proper metric
from interrelationships between the expression data set
and another data set that is known to be relevant to gene
function: the functional classification of the genes. In an
additional study, the primary data are the gene expression
profiles of human genes measured in different tissues, and

the auxiliary data used to guide the learning are the activ-
ities of the homologous mouse genes in a set of tissues
[13].

Details on how to learn the metrics are described in the
Methods Section [14,15]. In summary, the metric is such
that functional classes change uniformly in the new met-
ric. If some of the knock-out mutations have only a weak
correlation with the functional classes, they contribute
only weakly in the measured similarity among expression
profiles. The similarity measure focuses on those differ-
ences that are relevant for the functional classes.

The metric is defined as a local scaling of the expression
space, which makes it very general; the contributions of
the knock-out profiles to the similarities may be different
for different genes.

We applied the new metric to one of the visualization
methods, the SOM, and compared the results with the
same method in the standard correlation metric. For tech-
nical details of combining of the SOM and the learning
metrics, see the Methods Section.

We began by measuring quantitatively whether SOMs in
learning metrics represented the functional classes better
than those in the standard inner product metric. In short,

Capability of the visualizations to preserve the similarities (the neighborhoods of size k) of the original data spaceFigure 3
Capability of the visualizations to preserve the similarities (the neighborhoods of size k) of the original data space. Sammon: 
Sammon's mapping, NMDS: non-metric multidimensional scaling, SOM: self-organizing map, HC: hierarchical clustering, with 
the ultrametric distance measure and with the linear distance measure. RP: Random linear projection is the approximate worst 
possible practical result (the small standard deviation over different projections, about 0.01, is not shown). The theoretical 
worst case, estimated with random neighborhoods, is approximately M2  = 0.5 . a) Yeast data. b) Mouse data.
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Performance of MDS
• Relatively better recall, worse precision

• MDS algorithms typically have running times of the order 

O(N2), where N is the number of data items.

• This is not very good: N=1,000 data items are ok, but 

N=1,000,000 is getting slow.

• Some solutions: use landmark points (i.e., use MDS only on a 

subset of data points and place the remaining points 
according to those, use MDS on cluster centroids etc.), use 
some other algorithm or modification of MDS.


• MDS is not guaranteed to find the global optimum of the 
stress (cost) function, nor it is guaranteed to converge to the 
same solution at each run (many of the MDS algorithms are 
quite good and reliable, though)
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Principal component 
analysis

Principal components analysis

Does the data mostly lie in a subspace?

If so, what is its dimensionality?
� 

D = 2

d =1

� 

D = 3

d = 2
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Principal component analysis (PCA)
• The principal component analysis (PCA) finds the 

eigenvalues and -vectors of a matrix

• PCA is an example of the projection pursuit methods. It tries 
to find a linear subspaces that have maximal variance.

• Thus, the interesting quality in PCA is variance (distance). I.e., 
you could think PCA as a linearised version of MDS (actually 
PCA is equivalent to one modification of MDS).

• PCA (unlike MDS) assumes that the data points are vectors in 
a high-dimensional Euclidean space, 

• The data points are projected to d-dimensional Euclidean 
subspace (d≪D) of the original space.

• The projection to d-dimensional subspace is linear,
yi=Axi, and where eα are orthogonal unit vectors.

• Goal: nearby points remain nearby, distant points remain 
distant.

A =
d�

�=1

e�eT
�

!11



Principal component analysis (PCA)

• Goal, more formally: find such projection to d dimensional 
subspace that the average error in the squared Euclidean 
distances between data points is minimised.

where || || is the Euclidean distance and yi=A xi.

• Denote the mean vector by,

• The covariance matrix reads then, 

• The covariance matrix can be decomposed (spectral 
decomposition) as 

where λα are the eigenvalues (λ1≥λ2≥...≥0) and eα are the 
corresponding orthogonal unit eigenvectors. 

• The maximum variance projection is then given by

C =
D�

�=1

�ae�eT
�

A =
d�

�=1

e�eT
�

N�

i,j=1

��� xi � xj �2 � � yi � yj �2
��

C =
1
N

N�

i=1

(xi � x)(xi � x)T .

x =
1
N

N�

i=1

xi

!12



Gaussian data

!13

PC1 finds the direction of largest variance.
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Diamond shaped data

!14

PC1 misses the square structure.
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Two clusters

!15

PC1 misses the cluster structure.
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Principal component analysis (PCA)

• PCA can be computed easily with (almost) any software that 
is capable of doing linear algebra.

• PCA is stable, there are no additional parameters, and it is 
guaranteed always to converge to the same optima.

• Hence, PCA is usually the first dimension reduction method 
to try (if it doesn’t work, then try something more fancy)

• If you find PCA difficult, this may help  :-) 
https://stats.stackexchange.com/questions/2691/making-sense-of-
principal-component-analysis-eigenvectors-eigenvalues

!16

d <- 2 
X <- scale(X,center=TRUE,scale=FALSE) 
X %*% svd(t(X) %*% X)$u[,1:d]



Independent component 
analysis (ICA)

• Goal: function f is a measure of non-Gaussianity. Non-
Gaussian directions are usually most independent.


• Hence, ICA finds separate processes. Directions are not 
necessarily orthogonal.


• ICA is unstable and may end up to a local minimum.

• There are robust libraries to compute ICA: use the 

libraries!

!17



Gaussian data

!18

ICA ignores total variance (but finds the maximal variance direction here by co-incidence).
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Diamond shaped data

!19

IC1 finds the box in the diamond.
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Two clusters

!20

IC1 finds the two clusters.

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

clusters

x

y

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

clusters (ICA)

IC1

IC
2 ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

IC1



Municipal elections in 
Espoo in 2017
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Glass 
data

• 9D glass identification 
database 


• PCA always projects 
close-by points close 
to each other, resulting 
to reasonable recall


• However, PCA (and 
MDS) may also 
“collapse” far away 
data points into the 
same location (unless 
the data lies within 
low-dimensional linear 
subspace of the 
original space), this 
may lead to not so 
good precision
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Next: visualising manifolds

• The first principal component is given by the red line. The green 
line on the right gives the “correct” non-linear dimension (which 
PCA is of course unable to find).

Properties of PCA

• Strengths
–Eigenvector method

–No tuning parameters

–Non-iterative

–No local optima

• Weaknesses

–Limited to second order statistics

–Limited to linear projections
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Isometric mapping of 
data manifolds (ISOMAP)

• Tenenbaum et al. 2000, https://doi.org/10.1126/
science.290.5500.2319 See http://web.mit.edu/
cocosci/isomap/datasets.html (fig)


• ISOMAP is an example of graph-based methods. 

• ISOMAP is a variant of MDS. The difference to MDS 

is in how the distances (or proximities) are defined.

• ISOMAP first finds k nearest neighbours for each 

data point and constructs a k-nearest-neighbours 
graph. The distance between two data points (that 
are not nearest neighbours) is defined as the 
topological a.k.a. graph-theoretical distance 
(shortest path, i.e. minimum number of links) 
between the points.


• The resulting distances are fed to the standard linear 
(metric, because triangle inequality is satisfied) 
MDS, which finds the actual embedding.

Original data. The graph-distance between 
two items is shown by solid line, a 

shortcut is shown by the dotted line.

k-nearest neighbours graph 
used to find the graph-
theoretical distances.

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21– 23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24– 30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3 ). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21– 23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24– 30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3 ). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2321



Isometric mapping 
of data manifolds 

(ISOMAP)

• Assumptions:

• graph is connected

• neighbourhood on graph 

reflects neighbourhoods on 
manifolds (no “shortcuts”)


• Weakness (Balasubramian et al.
2002, https://doi.org/10.1126/
science.295.5552.7a, fig): 
sensitive to shortcuts (making the 
algorithm topologically unstable, 
see the figure right)


• Time complexity ~O(N2)

• Extension: landmark ISOMAP 

(identify subsets of inputs as 
landmarks, makes the algorithm 
faster)

(A) The “Swiss roll” data used by Tenenbaum et al. (1) to illustrate their 
algorithm (n = 1000). (B) The two-dimensional (2D) representation 

computed by the ɛ−Isomap variant of the Isomap algorithm, with ɛ = 5. 
Nearby points in the 2D embedding are also nearby points in the 3D 
manifold, as desired. (C) Data shown in A, with zero-mean normally 
distributed noise added to the coordinates of each point, where the 

standard deviation of the noise was chosen to be 2% of smallest 
dimension of the bounding box enclosing the data. (D) The Isomap (ɛ = 
5) solution for the noisy data. There are gross “folds” in the embedding, 
and neither the metric nor the topological structure of the solution in 

(B) is preserved.!26



Isometric mapping of data manifolds 
(ISOMAP)

Wrist rotation 
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n
 ISOMAP (k=6) applied to 

2,000 images of a hand in 
different configurations. 

The images were 
generated by making a 
series of opening and 

closing movements of the 
hand at different wrist 

orientations, designed to 
give rise to a two-

dimensional manifold. 
The images were treated 

as 4,096-dimensional  
(= 64x64 pixels) vectors, 

with input-space distances 
defined in the Euclidean 

metric. 
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Locally linear embedding (LLE)
• LLE tries to maintain the relationships of nearby points

• Roweis et al. 2000, https://doi.org/10.1126/science.

290.5500.2323 


• Recipe:

1. find the set N(i), k closest data points to ith data point xi

2. try to express xi as a linear combination of its neighbours: find 

weights minimising


3. fix the weights, and find points in plane minimising (yi are the 
coordinates in embedding)


X

i

0

@xi �
X

j2N(i)

wijxj

1

A
X

j2N(i)

wij = 1s.t.
2

X

i

0

@yi �
X
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wijyj
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A
2
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Municipal elections 
in Espoo in 2017

−20 −10 0 10 20

−1
5

−1
0

−5
0

5
10

15

Espoo 2017 (ISOMAP)

x

y

rkp
vihr kesk
sdp kdvas

kok

ps

pir

skp

rkp

vihr
kesk

sdp kdvas

kok

ps

pir

skp

−12 −10 −8 −6 −4 −2 0 2

−3
−2

−1
0

1

Espoo 2017 (LLE)

x

y

rkp

vihr

kesk

sdp

kd

vas

kokps
pir

skp

rkp

vihr

kesk

sdp

kd

vas

kokps

pir

skp

−10 −5 0 5 10

−1
0

−5
0

5
10

Espoo 2017 (nonmetric MDS)

x

y

rkpvihr kesksdp kdvas

kok

ps

pir

skp

rkpvihr
kesk

sdp kdvas

kok

ps

pir

skp

!30

why not so good? 
(works well for swiss roll)



Laplacian eigenmap
• Eigenmap is a spectral method, like PCA.

• As in ISOMAP, construct k-nearest neighbors graph. Assign 
Wij=1, if i and j are neighbours, otherwise assign Wij=0. 
Define diagonal matrix D, Dii=∑jWij, and graph Laplacian, 
L=D-W.

• The embedding of data points is given by the eigenvectors 
of L, corresponding to the d smallest non-zero eigenvalues.

• Physical intuition: find lowest frequency vibrational modes 
of a mass-spring system (mass=nodes, springs=links of the 
graph).

• Very straightforward to implement, e.g., with R 

!31



Laplacian eigenmap
N=6
k=2

6

5 4

3

21

> L

     [,1] [,2] [,3] [,4] [,5] [,6]

[1,]   -2    1    0    0    0    1

[2,]    1   -2    1    0    0    0

[3,]    0    1   -2    1    0    0

[4,]    0    0    1   -2    1    0

[5,]    0    0    0    1   -2    1

[6,]    1    0    0    0    1   -2

> s <- svd(L)

> s$u

           [,1]          [,2]       [,3]       [,4]          [,5]      [,6]

[1,] -0.4082483 -1.934666e-16 -0.5773503 -0.5773503 -3.951502e-16 0.4082483

[2,]  0.4082483  5.000000e-01  0.2886751 -0.2886751 -5.000000e-01 0.4082483

[3,] -0.4082483 -5.000000e-01  0.2886751  0.2886751 -5.000000e-01 0.4082483

[4,]  0.4082483  4.163336e-16 -0.5773503  0.5773503  2.081668e-16 0.4082483

[5,] -0.4082483  5.000000e-01  0.2886751  0.2886751  5.000000e-01 0.4082483

[6,]  0.4082483 -5.000000e-01  0.2886751 -0.2886751  5.000000e-01 0.4082483

> s$d

[1] 4.000000e+00 3.000000e+00 3.000000e+00 1.000000e+00 1.000000e+00 1.155603e-16
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Laplacian eigenmap
N=6
k=1

> L

     [,1] [,2] [,3] [,4] [,5] [,6]

[1,]   -1    1    0    0    0    0

[2,]    1   -2    1    0    0    0

[3,]    0    1   -2    1    0    0

[4,]    0    0    1   -2    1    0

[5,]    0    0    0    1   -2    1

[6,]    0    0    0    0    1   -1

> s <- svd(L)

> s$u

           [,1]       [,2]       [,3]          [,4]       [,5]      [,6]

[1,] -0.1494292 -0.2886751 -0.4082483  5.000000e-01  0.5576775 0.4082483

[2,]  0.4082483  0.5773503  0.4082483  2.775558e-16  0.4082483 0.4082483

[3,] -0.5576775 -0.2886751  0.4082483 -5.000000e-01  0.1494292 0.4082483

[4,]  0.5576775 -0.2886751 -0.4082483 -5.000000e-01 -0.1494292 0.4082483

[5,] -0.4082483  0.5773503 -0.4082483  8.326673e-17 -0.4082483 0.4082483

[6,]  0.1494292 -0.2886751  0.4082483  5.000000e-01 -0.5576775 0.4082483

> s$d

[1] 3.732051e+00 3.000000e+00 2.000000e+00 1.000000e+00 2.679492e-01 7.510881e-17

6

5 4

3

21
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Laplacian eigenmap
• Eigenmap can be viewed as trying to preserve the expected time a 

random walk on the neighbourhood graph takes to travel from one 
point to the other and back. This leads to tendency to magnify some 
distances (and shrink others), leading to relatively bad precision.

!34
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Laplacian eigenmapBMC Bioinformatics 2005, 6:260 http://www.biomedcentral.com/1471-2105/6/260
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Laplacian Eigenmap result for a molecular descriptor datasetFigure 6
Laplacian Eigenmap result for a molecular descriptor dataset. A network of small molecules encoded as molecular 
descriptors, connected by similarity and displayed using the Laplacian Eigenmap algorithm, which plots each small molecule 
according to its corresponding Laplacian eigenvector components. Small molecules are colored according to the value of their 
minimized energy, one of the molecular descriptors of the original dataset.

BMC Bioinformatics 2005, 6:260 http://www.biomedcentral.com/1471-2105/6/260

Page 11 of 13
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whole (Figure 7), and the two outlier groups visible in the
original image are also chemically similar (data not
shown). The same dataset plotted on its first two principal
components (via PCA) yields no significant clustering
comparable to that of Laplacian Eigenmaps with instead
one large and a second smaller diffuse cluster visible (Fig-
ure 8). Additional support for nonlinear QSAR methods
comes from Douali et al. [3 0 ], which found that a nonlin-

ear QSAR approach using neural networks predicted activ-
ities very well, outperforming other methods found in the
literature. A more rigorous comparison of these algo-
rithms in the context of molecular descriptor data is
ongoing.

Principal Components Analysis result for a molecular descriptor datasetFigure 8
Principal Components Analysis result for a molecular descriptor dataset. The network of small molecules depicted 
in Figure 5, displayed using the first two principal components of the data as derived from PCA. Small molecules are colored 
according to the values of their minimized energies.

Forman et al. 2005, https://doi.org/10.1186/1471-2105-6-260 

PCAEigenmap

BMC Bioinformatics 2005, 6:260 http://www.biomedcentral.com/1471-2105/6/260
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Comparison of chemical structures from Laplacian Eigenmap clustersFigure 7
Comparison of chemical structures from Laplacian Eigenmap clusters. Comparison of chemical structures from the 
example real-world dataset of molecular descriptors depicted in Figure 5, taken either (A) from the group labeled "A", (B) 
from the group labeled "B", or (C) at random from the entire set.

Eigenmap (unlike PCA) shows clusters of 
similar chemical compounds (A&B). The input 
data is a network of small molecules encoded 
as molecular descriptors and connected by 

similarity.
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Curvilinear component 
analysis (CCA)

• Demartines et al. 1997, https://doi.org/10.1109/72.554199 

• Curvilinear component analysis (CCA) is like (absolute) MDS, 
except that only short distances are taken into account.

• More formally, the cost function reads

where F(d,λy) equals unity, if d<λy, and zero otherwise; and d 
denotes the Euclidean distance of points in the original space 
(x) and in the projection (y), respectively. (F(d,λy), could be 
any monotonically decreasing function in d.)

�r =
�

i<j

(d(xi, xj)� d(yi, yj))
2 F (d(yi, yj),�y)

!36



Curvilinear component 
analysis (CCA)

• CCA performs generally well in terms of precision; it appears 
to be quite robust.

• Notice outliers at right: they are result of small neighbourhood.
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Local multidimensional scaling

• Extension of curvilinear 
component analysis (CCA 
obtained when λ=0)

• Parameter λ controls the 
tradeoff between precision and 
recall

• Venna et al. 2006, https://
doi.org/10.1016/j.neunet.
2006.05.014 
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Fig. 6. Three projections of a three-dimensional spherical cell with local MDS. On the left, trustworthiness of the projection is maximized by selecting � = 0. In
the middle and right, discontinuity of the projection is penalized as well, by setting � = 0.1 and � = 0.9, respectively.

in Fig. 4 where on the mouse gene expression data continuity
first increases sharply and then starts to decline. Thus, based
on empirical findings, we recommend that � should be kept
within the range [0, 0.5] when Euclidean distances are used.
Geodesic distances seem to alleviate the problem. Overall,
geodesic distances seem to allow higher values of continuity
to be reached.

Second, in Fig. 4 on the mouse gene expression data set both
versions of local MDS increase in trustworthiness when � is
changed from 0 to 0.1. This behavior is easy to understand if
we look at the full trustworthiness curves in Fig. 5b (curves
for the Euclidean case are similar). On this data set, when the
parameter � is zero, trustworthiness is at first high at very small
neighborhoods but then drops relatively fast. On the other hand,
when � = 0.1 trustworthiness is slightly lower at the very
small neighborhoods but the curve has a gentler slope. At a
neighborhood of size 10 the trustworthiness of local MDS with
� = 0 has already dropped below that produced when � = 0.1.

5. Discussion

In this paper we have utilized geodesic distances as a way
to help unfold the data for better visualization. The end goal
has been to visualize the Euclidean proximities. It can also
alternatively be argued that the geodesic distance, instead of
the Euclidean distance, is the true metric of the data. This line
of thought can be followed by replicating the experiments of
this paper, but this time calculating the trustworthiness and
continuity values using geodesic distances. To be consistent,
we would not then talk about isomap, for instance, but of linear
MDS in the geodesic distance measure instead.

Utilizing geodesic distances can lead to better visualization
results. The downside is that the size of the neighborhood in
the graph approximation should be selected correctly for best
results. Thus far there is no simple way of doing the selection,
and the methods have to be run several times with different
neighborhood sizes. This can be slow especially if the method
has to be run several times from different starting positions to
avoid local minima.

6. Conclusions

We tested several different nonlinear dimensionality
reduction methods. Of these, isomap, Laplacian eigenmap, and

LLE are designed to extract manifolds while SNE, CCA, and
SOM are more generally targeted for dimensionality reduction.
One of the main tasks that these methods are used for is
visualization. Thus it is important to understand how they
perform in typical visualization situations, and what kinds
of tradeoffs they make. Of the methods tested here only
SOM and CCA can be recommended for general visualization
tasks where high trustworthiness is required. If preservation of
original neighborhoods is required the linear method PCA is a
good first choice followed by SNE which can produce better
results but is computationally heavy, and prone to problems
caused by local minima.

We introduced an extension of CCA called local MDS, that
according to the experimental results is capable of controlling
the tradeoff between trustworthiness and continuity of the
projection.
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Fig. 4. The relationship between trustworthiness and continuity of the mapping as a function of �, for a neighborhood of size 10. Line with open circles: local MDS,
line with ⇥s: local MDS with geodesic distances. Other methods are included (black dots with a name attached) for reference. Methods not shown are too far down
or to the left to fit in the image.

the ability to control the tradeoff between trustworthiness and
continuity of the mapping.

The CCA cost function (7) penalizes errors in preserving
distances for points that are neighbors in the output space.
This tends to produce solutions with a high trustworthiness.
The basic idea of the extension is to add a similar term that
penalizes errors for points that are proximate in the input space.
The tradeoff between these two terms, tunable by a parameter
�, governs the tradeoff between trustworthiness and continuity.
The cost function of local MDS is

E = 1
2

�

i

�

j ⇤=i

[(1 � �)(d(xi , x j )

� d(yi , y j ))
2 F(d(yi , y j ), ⇥i )

+ �(d(xi , x j ) � d(yi , y j ))
2 F(d(xi , x j ), ⇥i )]

= 1
2

�

i

�

j ⇤=i

(d(xi , x j ) � d(yi , y j ))
2

⇥ [(1 � �)F(d(yi , y j ), ⇥i ) + �F(d(xi , x j ), ⇥i )]. (16)

We optimize the cost function with the stochastic gradient
descent introduced for CCA in Demartines and Hérault (1997).
During the optimization the radius of the area of influence
around data point i , ⇥i , is slowly brought down. The final
radius is set equal to the distance of the K th nearest neighbor
of the data point i in the original space. A small value of K
will usually produce better values of trustworthiness on small
neighborhoods but at the same time the effectivity of � in
controlling the tradeoff is reduced. The results shown here were
produced with K = 20. Setting � = 0 results in a normal CCA
projection (with the difference that the end radius of the area
of influence ⇥i is larger than zero and different for each data
point; for CCA the end radius of each data point is customarily
reduced to zero).

We additionally tested a radius of influence which was the
same for each data point and was brought down to zero at
the end of optimization. The behavior was quite similar but a
nonzero end neighborhood makes controlling of the compro-
mise more robust (reduces fluctuations as a function of �).

trustworthiness = precision, continuity = recall
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line with ⇥s: local MDS with geodesic distances. Other methods are included (black dots with a name attached) for reference. Methods not shown are too far down
or to the left to fit in the image.
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We optimize the cost function with the stochastic gradient
descent introduced for CCA in Demartines and Hérault (1997).
During the optimization the radius of the area of influence
around data point i , ⇥i , is slowly brought down. The final
radius is set equal to the distance of the K th nearest neighbor
of the data point i in the original space. A small value of K
will usually produce better values of trustworthiness on small
neighborhoods but at the same time the effectivity of � in
controlling the tradeoff is reduced. The results shown here were
produced with K = 20. Setting � = 0 results in a normal CCA
projection (with the difference that the end radius of the area
of influence ⇥i is larger than zero and different for each data
point; for CCA the end radius of each data point is customarily
reduced to zero).

We additionally tested a radius of influence which was the
same for each data point and was brought down to zero at
the end of optimization. The behavior was quite similar but a
nonzero end neighborhood makes controlling of the compro-
mise more robust (reduces fluctuations as a function of �).

trustworthiness = precision, continuity = recall
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Fig. 3. Sample visualizations produced with different methods on the cluster data set. Key for the methods: see Fig. 1.

graph approximation of the geodesic distances. Which distance
measure produces better results depends highly on the data
set in question. Of the data sets used here the mouse gene
expression data sets a clear case for the use of geodesic
distances. On this data set the methods using geodesic distances
outperformed their Euclidean counterparts with a clear margin
in both trustworthiness and continuity. On the other hand, on
the gene expression compendium the use of geodesic distances
seems to give slightly worse results than Euclidean distances.
The exception here is SNE which failed to produce any
meaningful results with the Euclidean distance.
Quality of the visualizations. While the trustworthiness and
continuity measures give a good idea on how well the methods
preserve the local similarity structure in the data, they do not
give the whole picture on the quality of the visualizations.
Examples of the visualizations produced by the different
methods on the cluster data set are shown in Fig. 3. What
one would expect to see in these visualizations is a set of
six separate clusters, and hopefully the two-dimensional (S-
shaped manifold) structure of one of the clusters would also
be evident. By looking at the results of LLE and Laplacian
eigenmaps, it is clear that the visualizations do not perform as
well as expected. It is very hard to identify the separate clusters
from the LLE visualization. Moreover, all clusters have been

stretched to form mostly linear structures. On the visualization
produced by Laplacian eigenmaps the differences in the scales
of distances are so large that it is not possible to discern any
structure within the clusters. Only small blobs are visible.

The visualizations produced by SNEG illustrate an artifact
that is typical for methods that utilize nearest neighbor
information. The graph distances overestimate distances within
the manifold and produce clear “holes”. These are very clear
on the SNEG visualization of the S-curve cluster. This effect
can be lessened in two ways. The first is to select a method like
CCA that relies mostly on local distances and the second is to
increase the number of neighbors. The latter means has fixed the
problem for isomaps, where we had already used a very large
number (k = 67 in comparison to k = 7 (CDA) and k = 4
(SNEG)) of neighbors to make the graph connected.

4. Controlling the tradeoff: Local MDS

Every visualization method has to make a tradeoff between
gaining good trustworthiness and preserving the continuity of
the mapping. Some methods like SOM and CCA are typically
good at finding solutions with a high trustworthiness, and others
like SNE are very good at preserving the continuity. We propose
a new method, local MDS, which is a derivative of CCA with

Venna et al. 2006, 
https://doi.org/

10.1016/j.neunet.
2006.05.014!40



Which is the right world map?
https://en.wikipedia.org/wiki/List_of_map_projections 

Which properties are  
important to retain 

in projection?



Recap
• PCA and MDS variants will struggle with non-linear manifolds

• PCA/Torgerson scaling is a linear projection

• large distances dominate the cost function in MDS methods


• techniques specifically designed to flatten manifolds

• ISOMAP

• LLE

• Laplacian eigenmap

• local multidimensional scaling

• many more exist...


• either redefine the distance or look only at the vicinity of 
individual points


• practical issues: distortions, may be computationally expensive

!42



Problem with lack of 
guidance

• The previous methods have one major problem: they produce an 
embedding given some (technical criteria). The result may or 
may not be what user wants.


• One way to tune the embedding is to add guidance: find 
embedding such that it maximises dependency with respect to 
some other variable


• Assume that in the original (high-dimensional) data consists of 
pairs of variables (x,y), where x is data variable and y is response 
variable (e.g., class).


• Problem: Find embedding X such that y depends mainly on X.

!43



Supervised PCA

• At simplest,  
let X be n × m data matrix (with zero mean columns) and Y be n × m' 
matrix of response variables.

• Use largest eigenvectors of XTYYTX to project into lower dimensions

• If YYT=1 this reduces to PCA


• For details and fancier variants see Barshan et al. 2011, https://doi.org/
10.1016/j.patcog.2010.12.015 
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Supervised PCA
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• Same 2-cluster data as before

• Y is n × 1 matrix and Yi1=-1 or 1 if i is in red 

or blue cluster, respectively 
(i.e. Y gives a classification of the data)
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Supervised PCA
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• Supervise PCA to separate the following parties: vihr, rkp, sdp, vas 
• Y is 515 x 4 matrix where  

Yi1 = 1 if candidate i is in virh,  Yi2 = 1 if candidate i is in rkp,  
Yi3 = 1 if candidate i is in sdp,  Yi4 = 1 if candidate i is in vas,  
otherwise Yij = 0.
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Guided Locally 
Linear Embedding
• It is possible to guide also 

other methods

• The principles in guided LLE 

(GLLE) are similar as for 
supervised PCA


• For details see Alipanahi et 
al. 2011, https://doi.org/
10.1016/j.patrec.2011.02.002 

We chose the linear SVM classifier to highlight the linear sepa-
rability of the different groups in the low-dimensional embed-
dings. The accuracy results are listed in Table 1.

It is interesting that by using only two dimensions, the perfor-
mance figures are appealing, except for the Protein dataset which
has six classes and 20 dimensions. Furthermore, the optimal num-
ber of nearest neighbors k is usually smaller for GLLE, which results
in faster computation times. An interesting dataset is Balance, for
which applying the SVM on the original data results in 20% better

accuracy compared to LLE. As can be seen in Fig. 1(a), LLE’s embed-
ded points of different classes severely overlap, while for GLLE the
samples are clearly separated (see Fig. 1(b)).

5.3. Visualization

In this section, we compare the embeddings that are generated
by LLE and GLLE for data visualization. GLLE uses target variables

Table 1
Classification results of GLLE, a-SLLE, and LLE on a number of datasets; algorithm accuracy is given as a percentile. ‘‘num.’’ is the number of points in the dataset, and ‘‘dim.’’ is the
dimensionality. A SVM classifier with a linear kernel is used for classification. The optimal parameter(s) of different algorithms are shown, as determined by 5-fold cross-
validation.

Dataset num. dim. Classes GLLE k c a-SLLE k a LLE k

Protein 116 20 6 64.5 5 0.75 56.2 5 0.1 47.6 90
Housing 506 13 2 93.1 5 0.0 93.1 5 0.0 93.1 5
Wine 178 13 3 99.1 30 0.1 96.6 100 0.01 96.6 100
Balance 625 5 3 94.4 15 0.05 91.7 30 1.0 69.2 100
Ion 351 34 2 92.8 50 0.25 92.2 50 0.25 79.1 5
Soybean 47 35 4 100.0 30 0.05 98.3 35 0.01 98.3 35
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Fig. 1. Comparison of LLE (k = 100) with 0.05-GLLE (k = 15) for the UCI Balance
dataset. Data points of different classes are shown with different symbols. Training
data points are hollow and test data points are filled.
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Fig. 2. Comparison of visualizations acquired by LLE and 0.5-GLLE (k = 50). There
are two groups: persons with and without glasses.

B. Alipanahi, A. Ghodsi / Pattern Recognition Letters 32 (2011) 1029–1035 1033
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Problem with lack of 
interaction

• "Controllability and interaction are two concepts that are mostly 
absent from dimensionality reduction." (Verleysen et al. 2013)


• The previous methods have one major problem: they produce an 
embedding given some (technical) criteria. The result may or may 
not be what user wants.


• New problem: How to create efficient interactions such that the 
user can in an understandable way modify the embedding?  
(e.g., by noticing cluster structures or outliers and asking to show 
something different, by must-link or cannot-link constraints etc.)


• Visually controllable data mining. Extension of Furnas' effective 
view navigation to the context of having automated analysis. 
Puolamäki et al. 2010, https://doi.org/10.1109/ICDMW.2010.141 
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Interactive knowledge-
based kernel PCA

• Variant of kernel PCA where user can add, e.g. must-link constraints 
to modify the embedding in a computationally efficient way (so that it 
is usable in interactive systems!)


• Paurat et al. 2013, https://doi.org/10.1007/978-3-642-40994-3_52  
Oglic et al. 2014, https://doi.org/10.1007/978-3-662-44851-9_32 

InVis: A Tool for Interactive Visual Data Analysis 673

[11], Locally linear embedding [10], non-negative matrix factorization [6], archety-
pal analysis [3] and CUR decomposition [4].

Apart from these unsupervised embedding techniques, there are methods that
take supervision into account, like guided locally linear embedding [1] and super-
vised PCA [2]. Many of the classic embedding methods also have a semi super-
vised extensions [12]. One particularly interesting setting is utilizing must-link
and cannot-link constraints [13]. In this paper we employ the semi-supervised
least squares projections (LSP) [8, 9] method, which computes an embedding
based on a set of exemplary embedded data points.

In contrast to other authors applying semi-supervised embedding techniques,
our aim is not a fixed one-time-embedding. Our application rather exploits the
influence of the control points in order to enable the user to shape and steer a life-
updating embedding. This active layout approach ultimately empowers the user
to highlight aspects of the dataset that he considers interesting. This is illustrated
in Figure 3 on a selection of four persons from the CMU Face Images dataset.
While a regular PCA embedding does not directly convey insights, arranging
a few control points in different constellations, can highlight different semantic
aspects of the data.

Fig. 3. A dataset of facial images embedded in different ways. The left figure shows a
plain PCA embedding, while the other two figures use LSP to group the control points
by person and by pose (looking-straight, -up, -left and -right), respectively.

2 Method

Consider a dataset X with n data records x1, ..., xn from an instance space
X ⊆ Rd and the general task to map {x1, ..., xn} into an embedding space
Y ⊆ R2, yielding {y1, ...yn}. To determine this mapping, the user chooses a set
of k data records from X , denoted by X̂, and fixes their coordinates in the
embedding space, providing Ŷ . For the purpose of our application, we consider
the desired projection P : X → Y to be the linear projection matrix with the
least squared error in mapping X̂ to Ŷ . Regarding X̂ and Ŷ as data matrices of
shape d× k and 2× k we can formulate the system of linear equations PX̂ ≈ Ŷ ,
which can be solved for P with least squared error efficiently, especially since
the calculation only depends on k and not all n data points. The least squares
projection matrix P is then used to determine the final embedding Y of all
n data points X by matrix multiplication PX = Y . Note, that every time Ŷ

Paurat et al. 2013
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Fig. 1. Overview of the interaction process.
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(a) (b) (c)

Fig. 2. Synthetic data with 3 dimensions. (a) Projection of the data to the first two principal components together with a sample of background distribution;
(b) After the user’s knowledge is taken into account, the updated background distribution matches the data in this projection; (c) The user is then shown the
next most informative projection.

is the one that (for a certain statistic) is maximally different
with respect to the background distribution that represents the
user’s current understanding of the data.

In addition to showing the data in the scatterplot, we display
a sample from the background distribution as gray points (and
lines that connect the respective points, to give an indication
of the displacement in the background distribution, per data
point); see Fig. 2 for an example and Sec. III for details.
The data analyst’s interaction consists of informing the system
about sets of data points they perceive to form clusters within
this scatter plot. The system then takes the information about
the user’s knowledge of the data into account and updates the
background distribution accordingly (Fig. 2b).

When we have ascertained ourselves that the background
distribution matches the data in the projection as we think
it should, the system can be instructed to find another 2-
D subspace to project the data onto. The new projection
displayed is the one that is maximally insightful considering
the updated background distribution. The next projection is
shown in Fig. 2c and reveals that one of the three clusters
from the previous view can in fact be split into two. The user

can now add further knowledge to the background distribution
by selecting the two uppermost clusters and the process can be
repeated. For our 3-D dataset, after the background distribution
is updated upon addition of the new knowledge, the data and
the background distribution match, and in this case, further
projections will not reveal any additional structure.

A. Contributions and outline of the paper
The contributions of this paper are:
- We review how to formalize and efficiently find a back-

ground distribution accounting for a user’s knowledge, in
terms of a constrained Maximum Entropy distribution.

- A principled way to obtain projections showing the
maximal difference between the data and the background
distribution for the PCA and ICA objectives, by whitening
the data with respect to the background distribution.

- An interaction model by which the user can input what
she has learned from the data, in terms of constraints.

- An experimental evaluation of the computational perfor-
mance of the method and use cases on real data.

- A free open source application demonstrating the method.

Tell the me something I don't know

• We model user's knowledge of the data (background model)

• We show the user the view in which the data and the background 

model differs most

• Each time the user observes something marks it (e.g., cluster, 

outlier) the background model is updated accordingly

• Uses dimensionality reduction to produce views (tuned to show 

maximal difference between data distributions)

• Demo (implemented by R Shiny) http://www.iki.fi/kaip/sider.html

• Puolamäki et al. 2017, https://arxiv.org/abs/1710.08167 
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Give feedback!



This and following lectures

• Today: dimensionality reduction


• Thu 28 March: guest lecture on "Visualisation of 
Networked Information" by Tomi Kauppinen


• Mon 29 March: presentation of selected student 
assignments, more on dimensionality reduction(?)
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