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Go to http://www.iki.fi/kaip/p/dr2.nb.html
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Literature on dimensionality
reduction for visualisation

MDS: Borg, Kroenen, Modern multidimensional scaling: theory and
applications. Springer, 1997.

PCA: any book on matrix algebra.

Jarkko Venna 2007, Academic Dissertation, http://lib.tkk.fi/Diss/
2007/isbn9789512287529/

Lee & Verleysen, 2007. Nonlinear dimensionality reduction. Springer.
For a reasonably recent brief review see Verleysen & Lee, 2013
(recommended reading before exam!). https://doi.org/
10.1007/978-3-642-42054-2 77

See the references in the slides! Notice that most doi.org links can
be accessed from within Aalto network (but usually not from home).
(Not to be confused with dimensionality reduction for machine
learning where target dimensionality is often higher!)

Go to http://www.iki.fi/kaip/p/dr2.nb.html
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Municipal elections In
Espoo in 2017

Survey of candidates done by Helsingin Sanomat
Here included only 10 parties with largest number of candidates nationally.
Each candidate rated each of the m=49 statements on a scale from 1 to 5,
where 1=disagree and 5=agree:
1. Euthanasia should be allowed.
2. | prefer public instead of the private sector to produce my local health
services.
3. Same gender couples should have the same marital and adoptation
rights than the different genre couples.
4. Good brother networks influence municipal decision-making.
5 ..
n=515 candidates in total, i.e., we have a data 515x49 matrix.
Distance pij between candidates i and j is the Euclidean distance of their
respective 49-dimensional rating vectors. What is a 2-dimensional

representation that preserves these distances faithfully?
3
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Espoo 2017 (metric MDS)
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Projection pursuit methods

MDS (and variants) are based on distance matrix between points.

If data is composed of vectors (such as Espoo municipal

elections 2017 data) we can use projection pursuit methods.

Projection pursuit methods try to find a linear subspace u that

maximise some quantity

E.g., for the election data let X be the 515x49 data matrix and f a

function. Problem: find 49-dimensional unit vector u such that f(A

u) is maximised.

e if fis variance we have principal component analysis (PCA)

e if fis a measure of non-gaussianity we have independent
component analysis (ICA)

We can find several directions u (possibly with orthogonality

conditions).



Precision and recall

* Precision: if the points are nearby in embedding they are nearby in the original
space
* Recall: if the points are nearby in the original space they are nearby in the
embedding
* Projection pursuit methods such as PCA:
* the distance between the points in projection is at most the distance in the
original space
* if the points are nearby in the original space they are nearby in the
embedding (good recall)
* if the points are nearby in the embedding they may be distant in the
projection (possibly bad precision)

original space .

projecton = —@@ @0 rC




Performance of MDS

e MDS is tries to preserve the large distances at the expense of small ones, hence, it can
“collapse” some small distances on the expense of preserving large distances

® A projection is trustworthy (precision) if k closest neighbours of a sample on the
projection are also close by in the original space.A projection preserves the original
neighbourhoods (recall) if all k closest neighbours of a sample in the original space are also
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Precision and recall as a function of the neighbourhood size k for a yeast
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Performance of MDS

Relatively better recall, worse precision

MDS algorithms typically have running times of the order
O(N2), where N is the number of data items.

This is not very good: N=1,000 data items are ok, but
N=1,000,000 is getting slow.

Some solutions: use landmark points (i.e., use MDS only on a
subset of data points and place the remaining points
according to those, use MDS on cluster centroids etc.), use
some other algorithm or modification of MDS.

MDS is not guaranteed to find the global optimum of the
stress (cost) function, nor it is guaranteed to converge to the
same solution at each run (many of the MDS algorithms are
quite good and reliable, though)
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Principal component
analysis
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Principal component analysis (PCA)

e The principal component analysis (PCA) finds the
eigenvalues and -vectors of a matrix

e PCA is an example of the projection pursuit methods. It tries
to find a linear subspaces that have maximal variance.

® Thus, the interesting quality in PCA is variance (distance). l.e.,
you could think PCA as a linearised version of MDS (actually
PCA is equivalent to one modification of MDS).

® PCA (unlike MDS) assumes that the data points are vectors in
a high-dimensional Euclidean space,

® The data points are projected to d-dimensional Euclidean
subspace (d«<D) of the original space.

d
® The projection to d-dimensional subspace is linear, A=) "e.el
yi=Ax;, and where eq are orthogonal unit vectors.  “~"

® Goal: nearby points remain nearby, distant points remain
distant.
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Principal component analysis (PCA)

® Goal, more formally: find such projection to d dimensional
subspace that the average error in the squared Euclidean
distances between data points is minimised.

DO
where || || is the Euclidean dlstance and yi=A xi.
® Denote the mean vector by, 7=+ sz N
® The covariance matrix reads then, o - %Z (i — @) (z; — T)".
® The covariance matrix can be decomposiéld (spectral
decomposition) as
C = Z)\ e el

where Aq are the elgenvalues (}\/>}\z> .=>0) and eq are the
corresponding orthogonal unit eigenvectors. ;

® The maximum variance projection is then given by A=) e.e

a=1
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Gaussian data

gaussian PC1 gaussian (PCA)
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Diamond shaped data

diamond diamond (PCA)
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Two clusters

clusters clusters (PCA)
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Principal component analysis (PCA)

® PCA can be computed easily with (almost) any software that
is capable of doing linear algebra.

® PCA is stable, there are no additional parameters, and it is
guaranteed always to converge to the same optima.

® Hence, PCA is usually the first dimension reduction method
to try (if it doesn’t work, then try something more fancy)

d <- 2
X <- scale (X, center=TRUE, scale=FALSE)
X %$*% svd(t (X) $*% X)Sul,1:d]

® |[f you find PCA difficult, this may help :-)
https://stats.stackexchange.com/questions/269 | /making-sense-of-
principal-component-analysis-eigenvectors-eigenvalues
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Independent component
analysis (ICA)

Goal: function f is a measure of non-Gaussianity. Non-
Gaussian directions are usually most independent.
Hence, ICA finds separate processes. Directions are not
necessarily orthogonal.

ICA is unstable and may end up to a local minimum.
There are robust libraries to compute ICA: use the
libraries!

17



Gaussian data

gaussian gaussian (ICA)
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Diamond shaped data

diamond diamond (ICA)
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Two clusters

clusters
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Municipal elections In
Espoo in 2017

Espoo 2017 (PCA) Espoo 2017 (fastiCA)
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Glass
data

e 9D glass identification

database

PCA always projects
close-by points close
to each other, resulting
to reasonable recall
However, PCA (and
MDS) may also
“collapse” far away
data points into the
same location (unless
the data lies within
low-dimensional linear
subspace of the
original space), this
may lead to not so
good precision
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Next: visualising manifolds

e The first principal component is given by the red line. The green
line on the right gives the “correct” non-linear dimension (which
PCA is of course unable to find).
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Isometric mappi ng Of Original data.The graph-distance between

two items is shown by solid line, a

data manifolds (ISOMAJP) oo fedonsdine

e Tenenbaum et al. 2000, https://doi.org/10.1126/
science.290.5500.2319 See http://web.mit.edu/
cocosci/isomap/datasets.html (fig) .

e ISOMAP is an example of graph-based methods. B

* |[SOMAP is a variant of MDS. The difference to MDS
is in how the distances (or proximities) are defined.

* |[SOMARP first finds k nearest neighbours for each
data point and constructs a k-nearest-neighbours
graph. The distance between two data points (that
are not nearest neighbours) is defined as the
topological a.k.a. graph-theoretical distance
(shortest path, i.e. minimum number of links)
between the points.

* The resulting distances are fed to the standard linear
(metric, because triangle inequality is satisfied) 7
MDS, which finds the actual embedding.

|

|

k-nearest neighbours graph
used to find the graph-
theoretical distances.
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Isometric mapping | g o oy
of data manifolds i Rl
V2 . L P
(ISOMAP) ,; e
2o’ ety
o e o
Assumptions: a SR
e graph is connected -
e neighbourhood on graph i GRS B
reflects neighbourhoods on T o V% £
manifolds (no “shortcuts”) ) O R R e
Weakness (Balasubramian et al. ‘g, IR A
2002, https://doi.org/10.1126/ L i bl R b
science.295.5552.74, fig): o L TR A A
sensitive to shortcuts (making the / ' e

algorithm topologically unstable,

see the figure r|ght) (A) The “Swiss roll” data used by Tenenbaum et al. (1) to illustrate their
. . o algorithm (n = 1000). (B) The two-dimensional (2D) representation

Time CompIeX|ty ~O(N ) computed by the €-Isomap variant of the Isomap algorithm, with € = 5.

Extension: landmark ISOMAP Nearby points in the 2D embedding are also nearby points in the 3D

manifold, as desired. (C) Data shown in A, with zero-mean normally

(Identlfy subsets of InpUtS as distributed noise added to the coordinates of each point, where the

landmarks, makes the a|gorithm standard deviation of the noise was chosen to be 2% of smallest
faster) dimension of the bounding box enclosing the data. (D) The Isomap (€ =
5) solution for the noisy data.There are gross “folds” in the embedding,
and neither the metric nor the topological structure of the solution in
o6 (B) is preserved.



Fingers extension
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Wrist rotation

>

ISOMAP (k=6) applied to
2,000 images of a hand in
different configurations.
The 1mages were
generated by making a
series of opening and
closing movements of the
hand at different wrist
orientations, designed to
give rise to a two-
dimensional manifold.
The images were treated
as 4,096-dimensional
(= 64x64 pixels) vectors,
with input-space distances
defined in the Euclidean
metric.



Locally linear embedding (LLE)

e LLE tries to maintain the relationships of nearby points

e Roweis et al. 2000, https://doi.org/10.1126/science.
290.5500.2323

e Recipe:
1. find the set N(i), k closest data points to jth data point x;

2. try to express x; as a linear combination of its neighbours: find
weights minimising

2
2 (m )3 wm%) st ) wy =1
) .

v JEN (7

3. fix the weights, and find points in plane minimising (y; are the
coordinates in embedding)

2
Z (?Jz Z wz’jyj)

i JEN (3)
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Espoo 2017 (nonmetric MDS)

Municipal elections
iIn Espoo in 2017
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Laplacian eigenmap

Eigenmap is a spectral method, like PCA.

As in ISOMAP, construct k-nearest neighbors graph. Assign
Wi=1,if i and j are neighbours, otherwise assign W;=0.
Define diagonal matrix D, Di=2jWj, and graph Laplacian,
L=D-W.

The embedding of data points is given by the eigenvectors
of L, corresponding to the d smallest non-zero eigenvalues.
Physical intuition: find lowest frequency vibrational modes
of a mass-spring system (mass=nodes, springs=links of the
graph).

Very straightforward to implement, e.g., with R
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Laplacian eigenmap

> L

[1]1[.2] [,3] [,4] [,5] [.6]
[1,] -2 1
2,] 1 -2
3] O
[4,] O
5] O
[6,] 1
> s <-svd(L)
> s$u

0 00
1.0 0
2 10
1 -2 1
0 1 -2
0 0 1

N2 000 =

1
0
0
0

[’1] [’2] [’3] [’4] [" i)

eigenvectors

1 [6]

[1,] -0.4082483 -1.934666e-16 -0.5773503
[2,] 0.4082483 5.000000e-01 0.2886751
[3,] -0.4082483 -5.000000e-01 0.2886751
[4,] 0.4082483 4.163336e-16 -0.5773503
[5,] -0.4082483 5.000000e-01 0.2886751

-0.5773503 -3.951502e-16
-0.2886751 -5.000000e-01
0.2886751 -5.000000e-01
0.5773503 2.081668e-16
0.2886751 5.000000e-01

0.4082483
0.4082483
0.4082483
0.4082483
0.4082483

[6,] 0.4082483 -5.000000e-01 0.2886751
> s$d

-0.2886751 5.000000e-01

0.4082483

[1] 4.000000e+00 3.000000e+00 3.000000e+00 1.000000e+00 1.000000e+00 1.155603e-16

32
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Laplacian eigenmap

> L
[11.2] [[3] [4] [.3] [.6]
[1 !] -

11 00 0
2] 1 2 1 0 0
0 2 1 0
[4] O 2 0
0 1
0 1

11 [21  [3] [4] [5] [6]

[1,] -0.1494292 -0.2886751 -0.4082483 5.000000e-01
[2,] 0.4082483 0.5773503 0.4082483 2.775558e-16
[3,] -0.5576775 -0.2886751 0.4082483 -5.000000e-01
[4,] 0.5576775 -0.2886751 -0.4082483 -5.000000e-01
[5,] -0.4082483 0.5773503 -0.4082483 8.326673e-17
[6,] 0.1494292 -0.2886751 0.4082483 5.000000e-01
> s$d

[1] 3.732051e+00 3.000000e+00 2.000000e+00 1.000000e+00 2.679492e-01 7.510881e-17

33
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Laplacian eigenmap

e Eigenmap can be viewed as trying to preserve the expected time a
random walk on the neighbourhood graph takes to travel from one
point to the other and back. This leads to tendency to magnify some
distances (and shrink others), leading to relatively bad precision.

Eigenmap

9o

od)@
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Laplacian eigenmap
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Principal Cormponent 1

Eigenmap (unlike PCA) shows clusters of

similar chemical compounds (A&B).The input

data is a network of small molecules encoded
as molecular descriptors and connected by

i

imilarity.

Forman et al. 2005, https://doi.org/10.1186/1471-2105-6-260



Curvilinear component
analysis (CCA)

® Demartines et al. 1997, https://doi.org/10.1109/72.554199

® Curvilinear component analysis (CCA) is like (absolute) MDS,
except that only short distances are taken into account.

® More formally, the cost function reads

Op = Z (d(xivxj) - d(yiayj))2 F(d(yiayj)ﬁky)

1<J

where F(d,\)) equals unity, if d<A\,, and zero otherwise; and d
denotes the Euclidean distance of points in the original space
(x) and in the projection (y), respectively. (F(d,A\,), could be
any monotonically decreasing function in d.)
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Curvilinear component
analysis (CCA)

® CCA performs generally well in terms of precision; it appears
to be quite robust.

® Notice outliers at right: they are result of small neighbourhood.
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Local multidimensional scaling

J. Venna, S. Kaski / Neural Networks 19 (2006) 8§89-899
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Fig. 6. Three projections of a three-dimensional spherical cell with local MDS. On the left, trustworthiness of the projection is maximized by selecting A = 0. In
the middle and right, discontinuity of the projection is penalized as well, by setting A = 0.1 and A = 0.9, respectively.

® Extension of curvilinear
component analysis (CCA E=- ZZ[(I — M (xi, X;)

obtained when A=0) i
® Parameter A controls the —d(y;. ¥)) Fd(y;.¥;). 01)
tradeoff between precision and +)»(d(xi, Xj) — d(y;, ¥;)F(d(Xi, X)), 07)]

recall
= = dx;,x;) —d(y;,y:))*
® Venna et al. 2006, https:// Zl:; ! !

doi.org/10.1016/j.neunet. x [(1 = MFA(y;,y,), 0i) + AF(d(xi, X)), 07)].
2006.05.014

trustworthiness = precision, continuity = recall
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Which is the right world map?

https://en.wikipedia.org/wiki/List of ma rojections

important to retain
in projection?




Recap

PCA and MDS variants will struggle with non-linear manifolds
PCA/Torgerson scaling is a linear projection
large distances dominate the cost function in MDS methods

techniques specifically designed to flatten manifolds

e [SOMAP

e LLE

e |Laplacian eigenmap

e |ocal multidimensional scaling

e many more exist...

either redefine the distance or look only at the vicinity of
individual points

practical issues: distortions, may be computationally expensive
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Problem with lack of
guidance

The previous methods have one major problem: they produce an
embedding given some (technical criteria). The result may or
may not be what user wants.

One way to tune the embedding is to add guidance: find
embedding such that it maximises dependency with respect to
some other variable

Assume that in the original (high-dimensional) data consists of
pairs of variables (x,y), where X is data variable and y is response
variable (e.g., class).

Problem: Find embedding X such that y depends mainly on X.
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Supervised PCA

e At simplest,
let X be n x m data matrix (with zero mean columns) and Y be n x m'
matrix of response variables.

* Use largest eigenvectors of XTYY7X to project into lower dimensions
e If YYT=1 this reduces to PCA

e For details and fancier variants see Barshan et al. 2011, https://doi.org/
10.1016/j.patcog.2010.12.015
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PC2

-2

Supervised PCA

Same 2-cluster data as before

Yisn x 1 matrix and Yir=-7T or 7 ifiis in red
or blue cluster, respectively

(i.,e. Y gives a classification of the data)

PCA

SPC2
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-10

Supervised PCA

* Supervise PCA to separate the following parties: vihr, rkp, sdp, vas
* Yis 515 x 4 matrix where

Yi» = 1 if candidate i is in virh, Yo =
Yis = 1 if candidate i is in sdp, Yis

otherwise Yj = 0.

Espoo 2017 (PCA)
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1 if candidate 7 is in rkp,
1 if candidate / is in vas,

Espoo 2017 (supervised PCA)
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Guided Locally

Linear Embedding .

e |tis possible to guide also
other methods

* The principles in guided LLE
(GLLE) are similar as for
supervised PCA

e For details see Alipanahi et
al. 2011, https://doi.org/
10.1016/j.patrec.2011.02.002
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Fig. 2. Comparison of visualizations acquired by LLE and 0.5-GLLE (k = 50). There
are two groups: persons with and without glasses.



Problem with lack of
Interaction

"Controllability and interaction are two concepts that are mostly
absent from dimensionality reduction.” (Verleysen et al. 2013)

The previous methods have one major problem: they produce an
embedding given some (technical) criteria. The result may or may
not be what user wants.

New problem: How to create efficient interactions such that the
user can in an understandable way modify the embedding?

(e.g., by noticing cluster structures or outliers and asking to show
something different, by must-link or cannot-link constraints etc.)
Visually controllable data mining. Extension of Furnas' effective
view navigation to the context of having automated analysis.
Puolamaki et al. 2010, https://doi.org/10.1109/ICDMW.2010.141
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Interactive knowledge-

Paurat et al. 2013 based kernel PCA

L

e
nmn

A

ety
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%

Fig.3. A dataset of facial images embedded in different ways. The left figure shows a
plain PCA embedding, while the other two figures use LSP to group the control points
by person and by pose (looking-straight, -up, -left and -right), respectively.

* Variant of kernel PCA where user can add, e.g. must-link constraints
to modify the embedding in a computationally efficient way (so that it
IS usable in interactive systems!)

e Paurat et al. 2013, https://doi.org/10.1007/978-3-642-40994-3 52
Oglic et al. 2014, https://doi.org/10.1007/978-3-662-44851-9 32
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Tell the me something | don't know

C Subjectively interesting
(a) Background distribution (C) projection of data (e) Observed pattern

wick | s REx
Rn . - iz L I o =
Belief state —_— . e B . /\ Cag e . e
of the user * Ciagie B - "t . i
-l R (b)Agerithm o d), Jser Ak
oo e . Aadiniad: ; ; et
o computes G T interaction PRTED

(f) Az

e \We model user's knowledge of the data (background model)

* We show the user the view in which the data and the background
model differs most

e Each time the user observes something marks it (e.g., cluster,
outlier) the background model is updated accordingly

e Uses dimensionality reduction to produce views (tuned to show
maximal difference between data distributions)

e Demo (implemented by R Shiny) http://www.iki.fi/kaip/sider.html

e Puolamaki et al. 2017, https://arxiv.org/abs/1710.08167
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sideR

bnc.rds (n=1335 d=100 c=1)

current selection = 151 subsets = 5 constraints = 200

tol1 = 0.01 tol2 = 0.01 timeout = 10s

matches = (Cconversation,0.928) (all-column,0.113) (Cfiction,0.016)
add to current selection:

none v

delete selection chosen obove delete all saved selections
clear current selection reverse current selection

save current selection

apply 2d constraint to current selection and save

apply cluster constraint to current selection and save

recompute background
plot:
® pca

) ica

' selection

PCA2(2.9] = 0.23 (was) 0.22 (had) +0.22 (is) +0.22 (can) +0.22 (are)

compute pca projection | compute ica projection

compute selection projection refresh all
dataset

bnc.rds v

log10 of lambda tolerance

5 -2] 1

-5 4.4 a3 32 285 = 14 -0.8 0.2 Ga 1

log10 of sigma tolerance

5 B8 1

-5 44 -38 32 -26 2 14 -0.8 0.2 o4 !

timeout (s)

http://www.iki.fi/kaip/sider.html 51




Give feedback!



This and following lectures

* Joday: dimensionality reduction

e Thu 28 March: guest lecture on "Visualisation of
Networked Information” by Tomi Kauppinen

* Mon 29 March: presentation of selected student
assignments, more on dimensionality reduction(?)
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