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SetCover – as an ILP
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• Ground set U
• Set Families S ⊆ 2U with

⋃
S = U

• Costs c : S → Q+

Find a cover
S ′ ⊆ S of U with
minimum cost.

min
∑
S∈S

cSxS

s.t.
∑
S3e

xS ≥ 1 e ∈ U

xS ∈ {0, 1} S ∈ S



SetCover – LP-Relaxation

min
∑
S∈S

cSxS

s.t.
∑
S3e

xS ≥ 1 e ∈ U

xS ≥ 0 S ∈ S



LP-Rounding



LP-Rounding: Approach I

LP-Rounding-I(U,S, c)
Find an optimal solution x for the LP-Relaxation
Round each xS with xS > 0 to 1

• generates a feasible solution :-)

• scaling factor is arbitrarily large :-(
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better rounding policy? . . .

. . .

. . .

min
∑
S∈S

cSxS

s.t.
∑
S3e

xS ≥ 1 e ∈ U

xS ≥ 0 S ∈ S



LP-Rounding: Approach II

LP-Rounding-II(U,S, c)
Find an optimal solution x for the LP-Relaxation
Round each xS with xS ≥ 1/f to 1; others to 0

Thm. LP-Rounding-II is a factor-f approximation algorithm
for SetCover.

min
∑
S∈S

cSxS

s.t.
∑
S3e

xS ≥ 1 e ∈ U

xS ≥ 0 S ∈ S
Let f be the frequency of (number of sets containing) the
most frequent element.

Proof. (discuss). even better rounding?



Randomized LP-Rounding

min
∑
S∈S

cSxS

s.t.
∑
S3e

xS ≥ 1 e ∈ U

xS ≥ 0 S ∈ S
xS ∈ [0, 1] in
opt. solution

interpret xS as a probability

Random-LP-Rounding(U,S, c)
Find an optimal solution x for the LP-Relaxation
Round each xS to 1 with probability xS (o.w. set xS to 0)

Lemma.

Let OPTf be the cost of an optimal solution for the above
LP-Relaxation and S ′ ⊆ S be a corresponding solution
generated by Random-LP-Rounding. Then E[c(S ′)] = OPTf.

S ′ is not necessarily feasible!



Randomized LP-Rounding

min
∑
S∈S

cSxS

s.t.
∑
S3e

xS ≥ 1 e ∈ U

xS ≥ 0 S ∈ S

Lemma.

Let S ′ ⊆ S be a result of Random-LP-Rounding. For each
u ∈ U , u is covered by S ′ with probability 1− 1/e ≈ 0.632 . . . .

Random-LP-Rounding(U,S, c)
Find an optimal solution x for the LP-Relaxation
Round each xS to 1 with probability xS (o.w. set xS to 0)



Randomized LP-Rounding

Algorithm SetCover-Random-Rounding(U,S, c)
S ′ ← ∅
for t iterations do
S ′ ← S ′∪ Random-LP-Rounding(U,S, c)

return S ′

Lemma.

For t := 2 + lnn, the above algorithm produces an infeasible
solution with probability ≤ 1

4 .

Lemma.

With probability ≤ 1
4 , the above algorithm produces an

“expensive” solution (i.e., with cost ≥ OPTf · 4t).



Randomized LP-Rounding

Corollary.

With probability ≥ 1
2 , our algorithm provides a feasible solution

whose cost is less than 4t · OPT = O(log n) · OPT.



Primal-Dual Schema



Recall Complementary Slackness

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be feasible
solutions for the primal and dual LPs respectively. The
solutions x and y are optimal if and only if the following
conditions are met:

Primal CS:
For each j = 1, . . . , n: either xj = 0 or

∑m
i=1 aijyi = cj

Dual CS:
For each i = 1, . . . ,m: either yi = 0 or

∑n
j=1 aijxj = bi

Thm.

min
∑n

j=1 cjxj
s.t

∑n
j=1 aijxj ≥ bi

xj ≥ 0

max.
∑m

i=1 biyi
s.t.

∑m
i=1 aijyi ≤ cj

yi ≥ 0



Relaxing Complementary Slackness

Primal CS:
For each j = 1, . . . , n: either xj = 0 or

∑m
i=1 aijyi = cj

Dual CS:
For each i = 1, . . . ,m: either yi = 0 or

∑n
j=1 aijxj = bi

min
∑n

j=1 cjxj
s.t

∑n
j=1 aijxj ≥ bi

xj ≥ 0

max.
∑m

i=1 biyi
s.t.

∑m
i=1 aijyi ≤ cj

yi ≥ 0

relaxed primal CS

cj/α ≤
∑m

i=1 aijyi ≤ cj

bi ≤
∑n

j=1 aijxj ≤ β · bi

⇔
n∑

j=1

cjxj =
m∑
i=1

biyi

relaxed dual CS

⇒
n∑

j=1

cjxj ≤ αβ
m∑
i=1

biyi ≤ αβ · OPTLP



Primal-Dual Schema

• Start with a feasible dual and infeasible primal solution
(often trivial).

• “Improve” the feasibility of the primal solution.

• simultaneously improve the obj. value of the dual solution.

• maintain that the primal solution is integer valued.

• The feasibility of the primal solution and relaxed CS
condition provide an approximation ratio.

• do so until the relaxed CS conditions are met.



Relaxed CS for SetCover

max
∑
e∈U

ye

s.t.
∑
e∈S

ye ≤ cS S ∈ S

ye ≥ 0 e ∈ U

min
∑
S∈S

cSxS

s.t.
∑
S3e

xS ≥ 1 e ∈ U

xS ≥ 0 S ∈ S

LP DLP

(non-relaxed) primal CS: xS 6= 0⇒
∑

e∈S ye = cS

Relaxed dual CS: ye 6= 0⇒
∑

S3e xS ≤ f

critical set

trivial for binary x

select only critical sets



Primal-Dual-Schema for SetCover

PrimalDualSetCover(U,S, c)
x← 0,y← 0
repeat

select an uncovered element e
increase ye until a set S is critical (

∑
e′∈S ye′ = cS)

select all critical sets and update x
mark all elements in these sets as covered

until all elements are covered
return x

The above is a factor-f approximation algorithm for
SetCover. The factor is also tight.

Thm.


