School of Electrical
Engineering

A’, Aalto University gitrse' \E/iiEOC-CMZO 1(9)

ELEC-C7420 - Basic principles in networking

Laboratory exercise SSL/TLS

Introduction

The main target of this experience is for you to get familiar with the implementation of the
encryption in the network in the transport layer, to this end we will observe the SSL/TLS
(Secure Sockets Layer / Transport Layer Security) in action. In this sense we will use
SSL/TLS to encrypt and make secure the TCP connections in one widely used protocol
as is HTTP by implementing HTTPS: HTTP over SSL.

The main motivation to implement HTTPS over the webpages we access daily is to
provide a secure means to access the information by employing authentication techniques
of the accessed website, protecting the integrity and the privacy of the data we share with
the web browsers, among other benefits. The implementation of HTTPS or SSL/TLS to

secure the TCP connections during the HTTP connection, helps us to prevent:

e Man-in-the-middle attacks.
e Eavesdropping.

e Tampering the communication

The bi-directional encryption of communications between the client and the servers
enables a secure way for us to ensure that we are on a secure communication channel
with the website we are accessing without any means of interference from attackers or for
being attacked by an impostor of the original website. This is why, historically the HTTPS
implementation was primarily intended to be used for payment transactions over the World
Wide Web, securing e-mail messages or to exchange sensitive information between
corporations. However, in the recent years the HTTPS protocol has been extended to
practically all the websites in the network that were not originally intended to use
encryption like entertainment webpages, protecting the page authenticity on all type of

websites, securing user accounts and keeping communications safe and private.

, , Aalto University
School of Electrical

Engineering

Step 1: open atrace

SSL V1.0 2(9)
Course ELEC-C7420
Date

1) Download the trace from MyCourses and open it in your wireshark, in there you

will be able to see the SSL messages as shown in the following figure:

M 53| trace final pcap - e
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Am 7@ RERe==F LS EQaaH
(M Tpply 2 display filter ... <Cirl-/> | Expression +
No. Time Source Destination Protocol Length Info @
7 3.019286 127.0.0.1 127.0.0.1 TLSvi.2 192 Application Data
2 4824368 127.8.8.1 127.6.8.1 TLSv1.2 132 Application Data
9 5.030339 127.0.0.1 127.0.0.1 TLSVL.2 192 Application Data
18 &.837687 127.0.0.1 127.0.0.1 TLSV1.2 ata
11 7.841383 127.0.9.1 127.8.9.1 TLSVL.2 —
12 7.945761 127.0.0.1 127.0.0.1 TLSV1.2
12 2.952060 127.0.0.1 127.0.0.1 TLSvL.2 —
14 5.956522 127.0.0.1 127.0.0.1 TLSv1.2 cation
15 18.963625 127.8.0.1 127.0.0.1 TLSvL.2 192 Application Data —
16 11.851435 127.8.0.1 127.0.0.1 TLSV1.2 174 application Data
17 11.851854 127.8.0.1 127.0.0.1 TLSvL.2 174 Application Data
18 11.968949 127.0.9.1 127.0.0.1 TLSVL.2Z 192 Application pata
13 12.575487 127.8.8.1 127.6.8.1 TLSv1.2 132 Application Data
20 13.981381 127.0.0.1 127.0.0.1 TLSV1.2 192 Application pData
21 14.233838 BT BT TLSv1.2 533 Client Hello
22 14.234168)) TLSVL.2 538 Client Hello
23 14.286725 EET EET TLSv1.2 2748 Server kello, Certificate, Server Key Exchange, Server Hello Done
24 12.298908 1 1 TLSvi.2 2748 Server hello, Certificate, Server Key Exchange, Server Hello Done v
~ [SEQ/ACK analysis] ~
[eytes in flight: 125)
[Bytes sent since last PSH flag: 38]
[Timestamps]
TCP payload (38 bytes)
v Secure Sockets Layer
w TLsvl.2 Recerd Layer: application Data Protocol: httpz
content Type: Application Data (23)
wersion: TLS 1.2 (exeses)
Length: 33
Encrypted Application Data: bc7bg2bs79b6den v
20 o2 0 0o 68 b 90 @0 B0 0O B0 20 86 Od 68 o4
Cc @G 02 3a 96 50 80 @0 02 00 B0 @0 00 00 02 00
80 @0 BB 68 BB 61 B0 G0 B8 0O BO 69 B8 6O B8 0O
0 @2 @ 0@ 8¢ 81 dc 5c 28 fb al 3c 43 f6 Sb db Vo
bl 39 52 13 @3 fa co 29 22 @0 17 @3 03 @2 21 @0 9P ..) !
86 @0 B8 88 B8 80 B2 cc 5b 7 b% 2b 57 9b &d ea +-m
3abe 66 3d 28 83 @6 3b 93 cE b2 e 24 @9 casd if- g H
(O ¥ sdl_trace_final.pcap Packets: 81 * Displayed: 81 (100.0%) Profile: Default

Figure. Trace of HTTPS traffic

Step 2: inspect the trace

2) Inthis case the trace is already filtered to show only the SSL packets, however, if

you capture your own trace you may apply the “ss1” filter protocol in wireshark,

this filter will help you to simplify the display by showing only SSL and TLS

messages. It will exclude other TCP segments that are part of the trace, such as

Acks and connection open/close.

3) Select a TLS message somewhere in the middle of your trace for which the Info

reads “Application Data” & expand its Secure Sockets Layer block (by using the

“+” expander or icon). For instance, we select the packet #17 and we expand

this packet as shown in the figure below:

SSL V1.0 3(9)

u ,, Aalto University Course ELEC-C7420

School of Electrical
Engineering Date

A
Am 1 ® RE Rex=fF o SEaaan
[apply 2 display fiter __<Ctrl-/: - Expression... | +
Mo. Source Destination Protocol Length Info ~
4 2.811393 127.0.8.1 127.8.8.1 TLSV1.2 192 Application Data
5 2.654248 127.e.0.1 127.e.0.1 TLSV1.2 174 Application Data
6 2.654697 127.0.8.1 127.8.8.1 TLSV1.2 174 Application Data
7 3.e19286 127.8.8.1 127.8.8.1 TLSv1.2 192 application Data
2 4.824868 127.0.8.1 127.8.8.1 TLSV1.2 11 ion pata —
9 5.830349 127.8.8.1 127.8.8.1 TLSv1.2 i on Data
12 £.937e87 127.e.e.1 127.e.e.1 TLsvi.2 [—
11 7.841383 127.8.8.1 127.e.8.1 TLSv1.2
12 7.945761 127.e.e.1 127.e.e.1 TLsvi.2
13 8.952860 127.8.8.1 127.e.8.1 TLSv1.2
14 9.956922 127.e.e.1 127.8.e.1 TLsvi.2
15 18.963525 127.8.8.1 127.e.8.1 TLSv1.2 192 Application Data
16 11.851435 127.e.e.1 127.8.e.1 TLsvi.2 174 application pata
17 11.851854 127.e.0.1 127.e.e.1 TLSV1.2 174 application pata
18 11.968349 127.e.e.1 127.8.e.1 TLsvi.2 192 application pata
159 12.975487 127.8.8.1 127.8.8.1 TLSv1.2 192 Application Data
2@ 13.981381 127.e.e.1 127.e.e.1 TLsvl.2 192 application pata
21 14.233898 il il TLSv1.2 538 Client Hello A

Frame 17: 174 bytes on wire (1392 bits), 94 bytes captured (752 bits)
Ethernet IT, Src: 60:68:98_B6:80:68 (B0:80:00:66:08:68), Dst: BB:B0:60_00:09:00 (86:60:08:0:80:00)
Internet Protocol version 4, src: 127.€.e.1, Dst: 127.e.@.1
Transmission Control Protocol, Src Port: 26887, Dst Port: 54904, Seq: 699, Ack: 41, Len: 4
[Secure sockets Layer
~ TLSv1.2 Record Layer: Application Data Protocol: Applicstion Data

Content Type: Application Data (23)
version: TLS 1.2 (exe3es) SSL block expanded

Length: 35

encrypted Application Data: 1252 asbe1abbe72defaez. . .

20 00 02 92 22 20 @0 00 20 @0 00 92 8B 2@ 45 29 E

88 58 22 33 48 B8 20 06 89 88 7f 20 ee 81 7 ee P73g

@@ @1 69 @7 d6 78 @8 43 7f 5 3b ab ¢3 57 5@ 18 i-xC HEL
@232 @7 ff 3e 61 @2 90 17 ©3 @3 @0 23 b7 @a d4 48 ed >3 #---H-
242 4@ 74 20 1% 53 @7 24 56 od b7 ca 4b €1 ab b8 72 @t -Z-$V --:Kaeer
ece d5 3 e3 92 04 ae a8 42 fC 12 18 03 6 b3 eeeeees @ e
() ¥ TheTCP payload of this packet {tcp.payload), 40 bytes Packets: 81 - Displayed: 81 (100.0%) Profile: Default

Figure. Example of SSL/TLS packet

If we observe the “Application Data” packet we can see that it is a generic TLS message
carrying the encrypted information from the application it is encrypting for, in our case the

contents of the webpage in HTTP.

As we know form the lectures, the lower layer protocol stack are TCP and IP because
SSL/TLS runs on top of TCP/IP. The SSL layer contains a “TLS Record Layer”. This is the
foundational sublayer for TLS. All messages contain records. Expand this block to see its

content details:

e Content Type field: this indicates what is in the content of the corresponding record.

e Version identifier: It will be a constant value for the SSL connection, in our case we
are working in the TLSv1.2.

e Length field: giving the length of the record.

e Application Data records are sent after SSL has secured the connection, so the

contents will show up as encrypted data.

, , Aalto University SSL V1.0 4(9)
School of Electrical Course ELEC-C7420

Engineering Date

Step 3: SSL handshake

An important part of SSL is the initial handshake that establishes a secure connection.
The handshake proceeds in several phases. There are slight differences for different
versions of TLS and depending on the encryption scheme that is in use. The usual outline

for a brand-new connection is:

a. Client (the browser) and Server (the web server) both send their Hellos.

b. Server sends its certificate to Client to authenticate (and optionally asks

for Client Certificate).

c. Client sends keying information and signals a switch to encrypted data.
d. Server signals a switch to encrypted data.

e. Both Client and Server send encrypted data.

f. An Alert is used to tell the other party that the connection is closing.

Note that there is also a mechanism to resume sessions for repeat connections between

the same client and server to skip most of steps b and c.

4) The client sends a “Hello” packet to the server with a group of information that the
server will use to establish the session. We can see several important fields here
worth mentioning. First, the time (GMT seconds since midnight Jan 1, 1970) and
random bytes (size 28) are included. This will be used later in the protocol to
generate our symmetric encryption key. The client can send an optional session
ID to quickly resume a previous TLS connection and skip portions of the TLS
handshake. Arguably the most important part of the Client Hello message is the
list of cipher suites, which dictate the key exchange algorithm, bulk encryption
algorithm (with key length), MAC, and a pseudo-random function. The list should
be ordered by client preference. The collection of these choices is a “cipher suite”,
and the server is responsible for choosing a secure one it supports or return an
error if it doesn’t support any. The final field specified in the specification is for
compression methods. However, secure clients will advertise that they do not

support compression (by passing “null” as the only algorithm) to avoid the CRIME

, , Aalto University SSL V1.0 5 (9)
School of Electrical Course ELEC-C7420

M Wireshark - Packet 35 . ssl_trace_final pcap

Engineering Date

attack. Finally, the Client Hello can have a number of different extensions. A
common one is server name, which specifies the host-name the connection is

meant for, so webservers hosting multiple sites can present the correct
certificate[1].

- X
Frame 35: 53% bytes on wire (4384 bits), 276 bytes captured (2288 bits) ~
Ethernet II, Src: ee:ee:ee_oe:ee:ee (ee:ee:ee:ee:ee:ee), Dst: ee:ee:ee ee:ee:oe (90:e0:0e:e0:ee:ee)
v Internet Protocol Version &, Src: i:il, Dst: il
elle = version: &
Coel BEEE BBED ..ii aies ean aes aees = Traffic Class: exee (DSCP: (58, ECN: Not-ECT)
............ elee 1162 1100 0000 2110 = Flow Label: xdccos
Payload Length: 222
Next Header: TCP (8)
wop Limit: 128
Sour
Destination: ::1
Transmission Control Protocol, Src Port: 556412, Dst Port: 8443, Seq: 1, Ack: 1, Len: 202
v secure Sockets Layer
I~ TLSv1.2 Record Layer: Handshake Protocol: Client kello |
Content Type: Handshake (22}
version: TLS 1.2 (@x@3e3)
Length: 197
~ Handshake Protocol: client wello
Handshake Type: Client Hello (1)
Length: 153
version: TLs 1.2 (exe3es)
Random: Sc3a286edff231e88763dF25fB0fIBREECET33a827Ca38ab. .\
session ID Length: e
Cipher suites Length: 42
~ Cipher suites (21 suites)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA3E4 (BXCB2C)
Cipher Suite: TLS_ECDHE_ECDSA WITH_AES 128 GCM_SHA256 (@xce2b)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA3B4 (8XCP38)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHAJSE (@xCO2F)
Cipher Suite: TUS_DHE_RSA_WITH_AES_256_GCM_SHA3Z4 (8xeesf)
Cipher Suite: TLS_DHE_RSA WITH_AES_128 GCM_SHAIGG (2xe0ge)
Cipher Suite: TLS_ECOHE_ECDSA_WITH_AES_256_CBC_SHAZE4 (Exce2d)
Cipher Suite: TLS_ECDHE_ECDSA WITH_AES_128_CBC_SHAZSE (@xc@23)
Cipher Suite: TLS_ECOHE_RSA_WITH_AES_256_CBC_SHA3B4 (exco2e)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHAGG (8xcd27) v
20 20 0 0@ 02 02 B0 20 ©F 20 00 0D 86 dd 62 82 -
<C 86 09 de ©6 59 80 @0 90 0O 0 90 OF 0O 98 o0
83 20 02 0B B2 O1 B3 G0 O3 G0 B0 0D 02 02 83 80
80 80 9B 88 B8 81 dc SC 28 fb al 3c 42 57 b db VB
ab bf 50 15 84 9@ ds co 88 00 16 €3 03 0 5 el P
23 @0 1 83 83 5C 92 28 Be 4f £2 31 e8 87 63 df \-(0-1--c
25 fedf se eg 5c e9 33 a8 27 co3@abbasb2a X---\-3 -'ee[* ©

Figure. Client Hello packet

5) The server will send this message in response to a ClientHello message when it

was able to find an acceptable set of algorithms. If it cannot find such a match, it
will respond with a handshake failure alert. An important field in the ServerHello
packet is the “session_id” field, this is the identity of the session corresponding to
this connection. If the ClientHello.session_id was non-empty, the server will look
in its session cache for a match. If a match is found and the server is willing to
establish the new connection using the specified session state, the server will
respond with the same value as was supplied by the client. This indicates a
resumed session and dictates that the parties must proceed directly to the
Finished messages. Otherwise, this field will contain a different value identifying
the new session. The server may return an empty session_id to indicate that the

session will not be cached and therefore cannot be resumed. If a session is

,, Aalto University SSL V1.0 6 (9)
School of Electrical Course ELEC-C7420

Engineering Date

resumed, it must be resumed using the same cipher suite it was originally
negotiated with. Note that there is no requirement that the server resume any
session even if it had formerly provided a session_id. Clients MUST be prepared
to do a full negotiation (including negotiating new cipher suites) during any
handshake[2].

a
x

M Wireshark - Packet 36 - ssl_trace_final.pcap —

Frame 36: 2748 bytes on wire (21384 bits), 1381 bytes captured (11848 bits)
Ethernet II, Src: 80:89:08_BR:10A:00 (0B:99:90:00:80:69), Dst: 00:90:08_PA:00:00 (09:08:00:80:00:08)
Internet Protocel version 6, src: ::1, Dst: ::1
Transmission Control Protocol, Src Port: 8443, Dst Port: 58412, Seq: 1, Ack: 283, Len: 1387
v secure sockets Layer
~ TLSv1.2 Record Layer: Wsndshake Protocol: Multiple Wandshake Messages
Content Type: Handshake (22)
version: TLS 1.2 (@x@3e3)
Length: 1302
Handshake Protocol: Server Hello
Handshake Type: server kello (2)
Length: 98
version: TLS 1.2 (exezes)
Random: E633817e7536b814d0eCA6CRIB8b40091314322Fbb3BAdER . . .
session ID Length: 32
Session ID: f 82£73b3C 2110903816254, . .
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA3E4 (8xCB38)
Compression mMethed: null (e)
Extensions Length: 18
Extension: renegotiation_info (len=1)
Extension: extended_master_secret (len=a)
Extension: application_layer_protocol negotiation (len=s)
Handshake Protocol: Certificate
Handshake Protocol: server Key Exchange
Handshake Protocel: Server Hello Done

<

< >

eese 5@ be be fc f7 21 [CJER e o2 12 ff el ee el ee
22 17 @0 00 00 18 82 85 08 03 82 63 32 0b 08 03
63 80 €3 60 99 83 5d 39 52 B3 59 39 52 02 41 28
@3 @2 @1 02 02 84 32 59 U7 7b 30 ed @6 09 2a 86
48 86 £7 @d 81 @1 @b @5 08 38 5d 31 @b 38 09 85
£3 55 84 96 13 B2 45 49 31 11 30 Bf 86 03 55 B4
©8 13 @8 48 65 6C 73 69 6e Gb 69 31 @e 38 OC 96
83 55 @4 67 13 85 45 73 70 6f &6f 31 @e 38 Oc 05
©3 55 @4 03 13 85 41 61 & 74 & 31 @& 38 OC B8
@3 55 @4 eb 13 @5 41 61 6 74 Gf 31 @b 38 09 @5
8355 84 03 13 82 4c 79 3@ 1e 17 @d 31 39 3@ 32 y
31313137 35 32 34 33 53 17 ed 31 39 39 35 31 11175848
3231 37 35 38 34 38 52 30 5d 31 @b 30 €9 06 @3 21758481
55 84 @6 13 82 45 43 31 11 38 Bf 85 @3 55 84 B8 U----FI1 -8-
12 2 4% 65 6C 73 €9 6¢ Eb €9 31 @e 3@ oC 86 83 --Helsin
55 84 @7 13 5 45 73 78 6f 6f 31 @ 30 OC 96 83 U----Esp

e

Figure. ServerHello message

M Wireshark . Packet 37 . ssl_trace final.pcap - b

Frame 37: 385 bytes on wire (3088 bits), 200 bytes captured (168 bits)
Ethernet 11, Src: 9@:ee:9e_29:8e:88 (28: 82:88), Dst: ©9:99:90_0P:98:90 (29:09:08:09:98:80)
Internet Protocol Version &, Src: : st
Transmission Control Protocol, Src Port: 55412, Dst Port: 2443, Seq: 283, Ack: 1388, Len: 126
v secure sockets Layer

¥ TLSv1.2 Record Layer: Handshake Protocol: Client Key Exchange

content Type: Handshake (22)

Version: TLS 1.2 (@x@383)

Length: 7@

Wandshake Protocol: Client key Exchange
v TLSv1.2 Record Layer: Change Cipher Spec Protocol: change Cipher Spec

Content Type: Change Cipher Spec (2@)

Version: TLS 1.2 (@x@383)

Length: 1

Change Cipher Spec Message
v TLSv1.2 Record Layer: Handshake Protocol: Encrypted Handshake Message

Content Type: Handshake (22)

version: TLS 1.2 (exe3e3)

Length: 28

wandshake Protocol: Encrypted sandshaks message

Figure. Client Key Exchange message

, , Aalto University SSL V1.0 7(9)
School of Electrical Course ELEC-C7420

Engineering Date

SSL/TLS trivia:

The SSL protocol ensures:

a) Confidentiality and data integrity

b) Authenticity

¢) Man in the middle attacks

d) Confidentiality, integrity and authenticity

The difference between SSL and TLS is:
a) The physical level in which each protocol is used

b) The volume of data they can protect
c) TLS is better than SSL in protecting against several attacks
d) They are exactly the same

The SSL Handshake Protocol enables:
a) The definition of how to encapsulate the data transmitted between client and server

b) The configuration of keys for a one time pad encryption

c) The negotiation of the security parameters required to establish a secure
communication between client and server

d) Web clients to use vulnerable encryption algorithms

The SSL/TLS Record Protocol enables:
a) The exchange of session keys for encrypting a communication

b) The definition of how to encapsulate the data transmitted between client and server
c) The storage of session keys used to ensure the integrity of the sent data
d) The SSL handshake protocol to use 1024-bit RSA keys

SSL/TLS protects against MITM attacks on online banking access:

a) Provided that a Web client has the guarantee that the digital certificate received from
the Web server is valid

b) Regardless of the nature of the certificate that identifies the server
c) SSL doesn't protect against MITM attacks

d) Whenever a user enters the URL of the bank in a web browser to confirm that it's the
correct URL

, , Aalto University SSL V1.0 8 (9)
School of Electrical Course ELEC-C7420

Engineering Date

Exercise
Choose one of the following options to encrypt in the transport layer:
1) Remote connection using SSH and Telnet.
2) Transfer files via FTP and SFTP.
3) Web server to create client/server requests.
4) Encrypt with SSL the python sockets applications implemented in the first part of
the course.
5) Create a sketch in Arduino to connect a WiFi network and make an HTTPS request.
6) Connect to an existing HTTP/HTTPS web server, in addition write an 1-2 pages
report about TLSv1.3.

For any of the implementations you choose, you should show the packets without
encryption and after encryption to see the difference and the protocol handshake. You

can refer to the following material for the implementations:

e https://www.arduino.cc/en/Tutorial/\WiFININAWIiFiISSLClient
e https://github.com/xliu59/SSL-TLS SOCKET

e https://tomcat.apache.org/tomcat-9.0-doc/ssl-howto.html

e https://websiteforstudents.com/create-ssl-tls-self-signed-certificates-on-ubuntu-
16-04-18-04-18-10/

The submission is in form of a report explaining your results, wireshark captures,

code and relevant information by 10.4.2019

References:

[1] https://kevincurran.org/com320/labs/wireshark/lab-ssl.pdf (Accessed on 26.3.2019)
[2] The Transport Layer Security (TLS) Protocol Version 1.2 RFC specification. T.
Dierks, E. Rescorla. Aug. 2008. https://tools.ietf.org/html/rfc5246#page-42

[3] http://www.cs.kent.edu/~mallouzi/ccn%20Spring%202014/lab-ssl.pdf (Accessed on
26.3.2019)

https://www.arduino.cc/en/Tutorial/WiFiNINAWiFiSSLClient
https://github.com/xliu59/SSL-TLS_SOCKET
https://tomcat.apache.org/tomcat-9.0-doc/ssl-howto.html
https://websiteforstudents.com/create-ssl-tls-self-signed-certificates-on-ubuntu-16-04-18-04-18-10/
https://websiteforstudents.com/create-ssl-tls-self-signed-certificates-on-ubuntu-16-04-18-04-18-10/
https://kevincurran.org/com320/labs/wireshark/lab-ssl.pdf
https://tools.ietf.org/html/rfc5246#page-42
http://www.cs.kent.edu/~mallouzi/ccn%20Spring%202014/lab-ssl.pdf

,, Aalto University SSL V1.0 9 (9)
School of Electrical Course ELEC-C7420

Engineering Date

[4] James F. Kurose and Keith W. Ross. Computer Networking — A Top-Down
Approach. Pearson.

[5] http://www.criptored.upm.es/intypedia/docs/en/video9/Exercisesintypedia009.pdf. Author:
PhD Alfonso Mufioz Mufioz (Accessed on 26.3.2019)

http://www.criptored.upm.es/intypedia/docs/en/video9/ExercisesIntypedia009.pdf

