7. The Electronic Bandstructure of Solids

Despite the success of the free-electron-gas model in describing electrons in crystals
(Chap. 6), it must be recognized that the assumptions of the one-electron approxima-
tion and of a square-well potential, are oversimplifications. Thus one cannot expect this
model to explain, for example, the fundamentally important optical and electronic pro-
perties of semiconductors. If one imagines, as discussed briefly in Chap. 1, that a solid
is created by allowing initially free atoms to gradually approach one another, then the
discrete nature of the energy levels of the isolated atoms should clearly by reflected in
the properties of the solid. Indeed, discrete energy levels must be present in order to ex-
plain, e.g., the sharp resonance-like structures observed in the optical spectra of solids.
An explanation of such features is beyond the scope of the free-electron-gas model. Fur-
thermore, this model is unable to shed any light on the nature of semiconductors and
insulators. To make further progress one has to take into account that the electronic
states in solids form so-called bands. One can think of these as deriving from the states
of the free atom.

In our present approximation, all deviations from perfect periodicity, be they static
perturbations of the lattice or dynamic lattice vibrations, will be neglected. The assump-
tion of an infinitely extended potential also means the neglect of all surface effects. To
arrive at a finite crystal, i.e., one with a finite number of degrees of freedom, that is
compatible with the infinite periodicity, one again makes use of the periodic boundary
conditions introduced in Sect. 5.1.

7.1 General Symmetry Properties

We are now faced with the task of solving the time-independent Schrédinger equation
for a single electron under the assumption that the potential ¥ (r) is periodic:

hZ
Hy(r) = [—— V2+V(r)] wr)=Ey(r), 7.1)
2m
where
V()= V(r+r,); r,=hna;+nmay+na; . (7.2)

As in Sect. 3.2, r, represents an arbitrary translation vector of the three-dimensional
periodic lattice, i.e., #, consists of multiples (rn,n,,n;) of the three basis vectors
a;, a,,a; of the real-space lattice.

Since the potential V' (r) has the same periodicity as the lattice, it can be expanded
in the following Fourier series:
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Vi)=Y Vgel®r (7.3)
G

where the vector G must be a reciprocal lattice vector
G=hg +kg,+lg,, h,k,/ integers (7.4)

(in the one-dimensional case G~ G = h27n/a). The most general plane-wave expansion
of the required wavefunction () is

wr) = ,E: Cetvr . (7.5)

Here k is a point in reciprocal space that is compatible with the periodic boundary con-
ditions (Sects. 5.1 and 6.1). Substituting the expansions (7.3) and (7.5) into the
Schrodinger equation (7.1) we obtain:

h2k?
)
k2m

Ckeik'r_l_ Z Ck’ VGei(k'+G)'I‘=E Z Ckeik'r . (7.6)
k'G k

After renaming the summation indices this becomes

ik-r hzkz
Z € —-E Ck+ Z VGCI(——G =0. (77)
2m G

k

Since this condition is valid for every position vector r, the expression in brackets, which
is independent of », must vanish for every k, ie.,

h2k2
< —-E Ck+ E VGCk—G= 0. (7.8)
2m G

This set of algebraic equations, which is simply a representation of the Schrédinger
equation (7.1) in reciprocal space, couples only those expansion coefficients C; of y (r)
(7.5), whose k-values differ from one another by a reciprocal lattice vector G. Thus C;
is coupled to Cy_:Cr_G»Cr—G> - - - -

The original problem thus separates into N problems (N = number of unit cells),
each corresponding to a k-vector in the unit cell of the reciprocal lattice. Each of the
N systems of equations yields a solution that can be represented as a superposition of
plane waves whose wave vectors k differ only by reciprocal lattice vectors G. The eigen-
values E of the Schrodinger equation (7.1) can thus be indexed according to k,
E, = E(k), and the wavefunction belonging to Ej is

W)= Y C_ge® (7.9)
G

or

v =Y Cr_ge 'O e* T = u (r)e* T . (7.10a)
G

The function uy, (#) introduced here is a Fourier series over reciprocal lattice points G
and thus has the periodicity of the lattice. The wave vector k, which, for periodic bound-
ary conditions, can take the values (Sect. 6.1)
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k, =0, iZL—”, i4L_n’ . % (7.10b)
kZ=09 iz_ﬂ', i4—n)---’2nnz
L L L

(L = macroscopic dimension of the crystal), yields the correct quantum numbers
ky ky, k, or ny, n, n,, according to which the energy eigenvalues and quantum states
may be indexed. In other words, we have shown that the solution of the one-electron
Schrédinger equation for a periodic potential can be written as a modulated plane wave

wi(r) = u (r)e*” (7.10¢)
with a modulation function
Up(r) = uy(r+r,) (7.10d)

that has the periodicity of the lattice. This result is known as Bloch’s theorem, and the
wavefunctions given in (7.10a—d) are called the Bloch waves or Bloch states of an elec-
tron (Fig. 7.1).
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Fig. 7.1. Example of the construc-
tion of a Bloch wave ()=
u, (r)et*” from a lattice-periodic
function u,(r) with p-type bon-
ding character and a plane wave
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The strict periodicity of the lattice potential has further consequences that follow
directly from the properties of the Bloch states. From the general representation of a
Bloch wave (7.10a), and by renaming the reciprocal lattice vectors G” = G'—G, it
follows that

Wirg) =Y Crig-ge G 7e® 0= <Z Ck—G”e_iG”.r> X =y, (r) ,
G ¢’ (1.11a)
ie,

Wira(r) = vy (r) . (7.11b)

Thus Bloch waves whose wave vectors differ by a reciprocal lattice vector are identical.
The Schrodinger equation (7.1):

Ay =Ek)wy (7.12)
and that for the same problem displaced by G:

HWyrc=Ek+G)Yriq (7.13)
together with (7.11b) then yield

Ky, =EEk+G)y; . (7.14)
Comparing (7.12) with (7.14) we see that

E(k)=EF(+G) . (7.15)

Thus the enecrgy eigenvalues E'(k) are a periodic function of the quantum numbers k,
i.e., of the wave vectors of the Bloch waves.

Similar to the case of phonons, whose w (¢) can be described by dispersion surfaces
in reciprocal g-space, the one-electron states of a periodic potential can be represented
by energy surfaces £ = E(k) that are a periodic function of the wave vector (quantum
number) in reciprocal k-space. Taken together, these energy surfaces form the electronic
bandstructure of the crystal. Since both w,(r) and E(k) are periodic in reciprocal
space, one only needs to know these functions for k-values in the first Brillouin zone
(Sect. 3.5). A periodic continuation of the functions then provides the values through-
out the whole of k-space.

7.2 The Nearly-Free-Electron Approximation

To understand the general concept of electronic bands it is particularly instructive to
consider the limiting case of a vanishingly small periodic potential. We therefore imag-
ine that the periodic potential starts at zero and is gradually “switched on”. What hap-
pens then to the energy states of the free electrons which, in the square-well potential,
were described by the energy parabola E = h2k%/2m? In the extreme case where the
potential is still zero, i.e., where all Fourier coefficents V; (7.3) vanish, one must
nonetheless consider the symmetry requirements of the periodicity, since the re-
quirements will be a decisive factor even for the smallest nonvanishing potential. This
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general demand of periodicity immediately implies, from (7.15), that the possible elec-
tron states are not restricted to a single parabola in A-space, but can be found equally
well on parabolas shifted by any G-vector:

2

E(k)=E(k+G) L lk+G|* . (7.16)
2m

For the one-dimensional case (G— G = h2n/a) this is depicted in Fig. 7.2.

Since the behavior of E(k) is periodic in k-space, it is sufficient to represent this in
the first Brillouin zone only. To achieve this one simply displaces the part of the
parabola of interest by the appropriate multiple of G = 27/a. This procedure is called
“Reduction to the first Brillouin zone”.

In three dimensions, the E(k) bands are already more complicated, even in the case
of a vanishing potential, since in (7.16) one now has G contributions in all three coor-
dinate directions. Figure 7.3 shows the E(k) curves along &, in the first Brillouin zone
for a simple cubic lattice with vanishing potential.

The effect of a finite but very small potential can now be discussed with reference
to Figs. 7.2 and 7.3.

In the one-dimensional problem of Fig. 7.2 there is a degeneracy of the energy values
at the edges of the first Brillouin zone, ie., at +G/2 = n/a and —G/2 = — n/a, where
two parabolas intersect. The description of the state of an electron with these k-values
is necessarily a superposition of at least two corresponding plane waves. For a vanishing
potential (zeroth-order approximation) these waves are

iGx/2

e and e1[(G/2)—G]x= e—lGx/2 .

(7.17)
Equation (7.8) implies that waves with G-values larger than 27n/a¢ must also be taken
into account. However, on dividing (7.8) by [(h% K2/ 2m)—E}, it follows that Cj, is par-
ticularly large when E, and E,_ are both approximately equal to #2k%/2m, and that
the coefficient Cy_ then has approximately the same absolute magnitude as Cy. This
is precisely the case for the two plane waves at the zone boundaries (7.17), and thus,
to a first approximation, one can neglect contributions from other reciprocal lattice vec-
tors. The appropriate expressions for a perturbation calculation of the influence of a
small potential are therefore of the form

Wy~ +e 7102y —cosn X , (7.184a)
a
w_~(9¥2 7092y _gin g X | (7.18Db)

a
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Fig.7.2. The parabolic energy
curves of a free electron in one
dimension, periodically contin-
ued in reciprocal space. The per-
iodicity in real space is a. This
E(k) dependence corresponds to
a periodic lattice with a vanishing
potential (“empty” lattice)
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Fig. 7.3. Band structure for a free
electron gas in a primitive cubic
lattice (lattice constant a), repre-
sented on a section along k, in
the first Brillouin zone. The
periodic potential is assumed to
be vanishing (“empty” lattice).
The various branches stem from
parabolas whose origin in recipro-
cal space is given by the Miller in-
dices hkl. ( ) 000, (——-)
100, 100, (—--) 010, 010, 001,
001, (- -+) 110, 101, 110, 101, 110,
101, 110, 101
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Fig. 7.4. (a) Qualitative form of the potential energy V(x) of an electron in a one-dimensional lattice. The
positions of the ion cores are indicated by the points with separation a (lattice constant). (b) Probability densi-
ty o, = w* w, for the standing wave produced by Bragg reflection at k = + n/a (upper edge of band (D
in Fig. 7.5). (c) Probability density o_ = w* w_ for the standing wave at the lower edge of band @ (Fig.
7.5 at k= xn/a

Fig. 7.5. Splitting of the energy parabola of the free electron (— — —) at the edges of the first Brillouin zone
(k = + n/ain the one-dimensional case). To a first approximation the gap is given by twice the corresponding
Fourier coefficient ¥ of the potential. Periodic continuation over the whole of k-space gives rise to con-
tinuous bands @ and @ , shown here only in the vicinity of the original energy parabola

These are standing waves possessing zeros at fixed positions in space. As seen in the
discussion of diffraction from periodic structures (Chap. 3), these standing waves can
be represented as a superposition of an incoming wave and a counter-propagating
“Bragg-reflected” wave. The probability densities corresponding to y, and y_,

0, =w*w, ~cos’n kd , (7.19a)
a
" .2 X
o_=wily_~sin“m—, (7.19b)
a

are depicted in Fig. 7.4 together with a qualitative sketch of the potential. For an elec-
tron in the state y,, the charge density is maximum at the position of the positive
cores and minimum in between; for w_ the charge density is maximum between the
cores. In comparison with the travelling plane wave €'**, which is a good approxima-
tion to the solution further away from the zone boundary, w_ thus has a lower total
energy (particularly potential energy), and w_ a higher energy than that of a free elec-
tron on the energy parabola (zero potential case). This increase and decrease in the
energy of the states at the zone boundary represents a deviation from the free-electron
energy parabola (Fig. 7.5).

Having gained insight into the problem from this qualitative discussion, it is now
easy to carry out a formal calculation of the magnitude of the so-called band splitting
or energy gap shown in Fig. 7.5.

Starting from the general representation of the Schrodinger equation in k-space
(7.8), translation by a reciprocal lattice vector yields
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n?
<E_— |k—G|2> Ce-6=Y VeCrog-¢'= L Vo-6Cic' » (7.20a)
2m G’ G'

ie.
Y Ve -6Creg
G

" E-(¥2m) k-G’

Cite (7.20b)

For small perturbations, a first approximation to the calculation of C;_g; can be made
by setting the true eigenvalue E that we are seeking equal to the energy of the free elec-
tron (A%k%/2m). Furthermore, in this first approximation, only the largest coefficients
C,_¢ are of interest; in other words, we expect the greatest deviation from free-electron
behavior when the denominator in (7.20b) vanishes, i.e., for

K= |k-G|? . (7.21)

This is identical to the Bragg condition (3.24). The strongest perturbations to the energy
surface of the free electron (spheres in k-space) produced by the periodic potential, oc-
cur when the Bragg condition is satisfied, i.e., for the k-vectors at the edge of the first
Brillouin zone. It follows from (7.20b), however, that besides Cj_g, the coefficient C,
is equally important. Thus, in the system of equations (7.20a), for this approximation
we only need to consider two relations (V, = 0):

hZ
<E—_ k2> Ck_VGCk—G — O

2m
(7.22)
h’ 5
E——|k—G| Ck—G_V—GCk=0 .
2m
We thus obtain the secular equation for the energy value
B2
(— k2~E> Vg
2m
: =0 . (7.23)
h 2
2m

With E}_g = (h*/2m)|k—G|? as the energy of the free electrons, the two solutions to
this secular equation may be written

E* = L(E}_G+EDEIL(EF_g—ER+ Vo |12 . (7.24)

Therefore, at the zone boundary itself, where the contributions of the two waves with
C; and Cy_g are equal — see (7.21) — and where E)_; = EY, the energy gap has a
value

AE=FE,-E_=2|V| , (7.25)

ie., twice the Gth Fourier component of the potential.
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Fig. 7.6. Energy dispersion curves
E(k) for a one-dimensional lat-
tice (lattice constant a) in the ex-
tended zone scheme. As can be
seen, the quasi-free-electron ap-
proximation gives rise to forbid-
den and allowed energy regions
due to the opening of band gaps,
as shown in Fig.7.5 (cf. the
“vanishing potential case of Fig.
7.2). The parts of the bands cor-
responding to the free-electron
parabola are indicated by the
thick lines

112 7. The Electronic Bandstructure of Solids

AE
Allowed

ey

Allowed
band

Forbidden band___

Allowed
band
Forbidden band
Allowed band, ) f B AN AN -
s T T i T T
S 37 -a 0@ 3% Sg K
| e |
Brillouin
zone

Near to the zone boundary, the form of the two energy surfaces that are separated
by this gap is described by (7.24) (in which one again sets E$ = h%k?/2m). Figure 7.5
illustrates this for the one-dimensional case near to the zero boundary at k = G/2.

The correspondence between the energy parabola of the free electrons and the
periodic bandstructure, with its energy gaps due to the realistic potential, is depicted in
Figs. 7.5 and 7.6, in both cases for the one-dimensional problem.

7.3 The Tight-Binding Approximation

The electrons that occupy the energetically low-lying core levels of a free atom are
strongly localized in space. They naturally retain this strong localization when the atom
participates in the formation of a crystal. It thus appears that the description of a
solid’s electronic structure in terms of quasi-free electrons must be inadequate. Since
these core electrons largely retain the properties that they had in the free atom, an ob-
vious approach is to describe the crystal electrons in terms of a linear superposition of
atomic eigenfunctions. This procedure, also known as the LCAO method (Linear Com-
bination of Atomic Orbitals), was already discussed qualitatively in Chap. 1 in relation
to chemical bonding, in order to explain the existence of electronic bands in solids.

In formulating the problem, one assumes that the solutions to the Schrodinger equa-
tion for the free atoms that form the crystal

Har—1,)9;(r—r,) = E;@;(r—ry) (7.26)

are known. #, (r—r,) is the Hamiltonian for a free atom at the lattice position
r, = Ry, +n,a,+nsa; and ¢;(r—r,) is the wavefunction for an electron in the atomic
energy level E;. One imagines the entire crystal to be built up of single atoms, i.e., the
Hamiltonian for an electron (one-electron approximation!) in the total potential of all
the atoms can be written:




