| Lecture | Topic | Exercise | Lecturer | Deadlines | |---|--|---|---|--| | 3 h each, mixture
with interactive
lecture and
exercises | · | | | | | 1
Wed 17.4. 13-
16.30 | Course introduction
Introduction to modelling and
simulation
Modelling procedure | Introduction with
SUMO
Hydraulics in plant
models (SUMO) | Anna Mikola | | | 2
Wed 24.4. 13 –
16.30 | Modeling biological phenomena: Typical expressions for process kinetics, biological models, mass balances Model structure, Gujer matrix SUMO exercises Activated sludge models | Basic NR process
model and
simulations
Introduction of the
individual project
topics Homework 1
with SUMO | Anna Mikola | | | 3
Fri 26.4. 8.30 - 12 | Influent fractions and characterization, nutrient removal processes Dynamic simulations Physical phenomena: Phase separation, gas transfer, Chemical precipitation, pH | SUMO exam,
Selection of project
topics,
SUMO homework 2 | Anna Mikola | SUMO exam | | 4
Fri 3.5. 8.30 -
11.30 | Excu to Klaukkala WWTP | | Anna Mikola | | | 5
Wed 8.5. 13-
16.30 | Model calibration Calibration tools Sensitivity of parameters Assessment of the selected parameters | Model calibration
demo, personal
project assignment
SUMO homework 3 | Anna Mikola
Kristian
Sahlstedt
Pöyry | DL HW1
Select your
personal
project work
topic | | 6
Fri 10.5. 8.30 –
12 | Energy, GHG and cost in modeling, example: aeration control Exercise (cost calculation) | Written exam of the basics on modelling personal project assignment | Diego Rosso | Exam 1 | | Sun 12.5.
7
Wed 15.5. 13 –
16.30 | Introduction to process control – Goals and strategies: disturbances and manipulated variables | SUMO exercise for controllers, | Michela
Mulas | DL HW 2 | | 8 Fri 17.5. 8.30-
12 | Feedback control: algorithms and tuning methods | Alternative designs
and operation
strategies, personal
project assignment
SUMO homework 4 | Michela
Mulas | | | Mon 20.5. 8:30 -
12 | Automation, instrumentation and process control during | | Teemu
Koskinen | | | | plant design and start-up, PI
schemes More advanced
control systems, cascade
controllers and model based
control I | | Ramboll
Michela
Mulas | | |------------------------------|--|--|--|-------------------------------| | 9
Wed 22.5. 13 –
16.30 | Instrumentation, analysers | Exercises on
advanced control
systems, personal
project assignment | Michela
Mulas
Pasi
Puranen,
Hyxo | DL HW 3 | | 10
Fri 24.5. 8.30 –
12 | Advanced control systems II Future of control Exam Summary | Finalizing the presentations Written exam on control; Course feedback discussion | Henri Haimi
OK
Anna Mikola
Michela
Mulas | Exam 2 | | Mon 27.5. 8.30 -
12 | Students' presentation | | | Presentations | | Fri 31.5. | | | | DL HW 4
Written
reports |