Chapter 6

POLARIZATION OPTICS II

Refractive indices in anisotropic media

Crystalline

Liquid crystal
\mathbf{D} is not in general parallel to \mathbf{E}

$$
D_{i}=\sum_{j} \epsilon_{i j} E_{j} \Leftrightarrow \mathbf{D}=\boldsymbol{\epsilon} \cdot \mathbf{E}
$$

$$
\text { The electric permittivity tensor is } \boldsymbol{\epsilon}=\left[\begin{array}{lll}
\epsilon_{x x} & \epsilon_{x y} & \epsilon_{x z} \\
\epsilon_{y x} & \epsilon_{y y} & \epsilon_{y z} \\
\epsilon_{z x} & \epsilon_{z y} & \epsilon_{z z}
\end{array}\right]
$$

$\Rightarrow \epsilon_{0} \mathbf{E}=\boldsymbol{\eta} \cdot \mathbf{D}$, where $\boldsymbol{\eta}=\epsilon_{0} \mathbf{\epsilon}^{-1}$ is the impermeability tensor.
The index ellipsoid $\sum_{i j} \eta_{i j} x_{i} y_{j}=1$ is the geometric representation of tensor $\boldsymbol{\eta}$. If $\mathbf{x}_{1}, \mathbf{x}_{2}$ and \mathbf{x}_{3} are the principal axes of the material, $\boldsymbol{\eta}$ is diagonal and we have

Polarization modes \boldsymbol{a} and \boldsymbol{b}
$\longleftarrow \begin{aligned} & \eta_{i}=1 / n_{i}^{2} \text { and } \\ & \frac{x_{1}^{2}}{n_{1}^{2}}+\frac{x_{2}^{2}}{n_{2}^{2}}+\frac{x_{3}^{2}}{n_{3}^{2}}=1 .\end{aligned}$
Change of polarization upon propagation:

mode a, n_{a}

$\operatorname{mode} \boldsymbol{b}, n_{b}$

The dispersion relation and k surface

$$
\begin{aligned}
\mathbf{k} \times \mathbf{H} & =-\omega \mathbf{D} \\
\mathbf{k} \times \mathbf{E} & =\omega \mu_{o} \mathbf{H}
\end{aligned}
$$

$\Rightarrow\left[\begin{array}{ccc}n_{1}^{2} k_{o}^{2}-k_{2}^{2}-k_{3}^{2} & k_{1} k_{2} & k_{1} k_{3} \\ k_{2} k_{1} & n_{2}^{2} k_{o}^{2}-k_{1}^{2}-k_{3}^{2} & k_{2} k_{3} \\ k_{3} k_{1} & k_{3} k_{2} & n_{3}^{2} k_{o}^{2}-k_{1}^{2}-k_{2}^{2}\end{array}\right]\left[\begin{array}{l}E_{1} \\ E_{2} \\ E_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \Leftrightarrow \mathbf{K} \cdot \mathbf{E}=0$
$\Rightarrow \operatorname{det}\{\mathbf{K}\}=0$ - the equation of the \mathbf{k} surface. The intersection of the normalized
\mathbf{k} / k_{0} surface with the propagation direction gives the mode refractive indices.

Double refraction

For a uniaxial crystal, $n_{1}=n_{2}=n_{0}$ and $n_{3}=n_{\mathrm{e}}$, the equation for the \mathbf{k}-surface is

Optical activity

The polarization modes of an optically active medium are RCP and LCP and their refractive indices are n_{+}and n_{-}.

The angle of rotation per unit length is

$$
\rho=\frac{\pi}{\lambda_{o}}\left(n_{-}-n_{+}\right)
$$

Optically active medium is spatially dispersive. The medium equation can be written as

$$
\mathbf{D}=\epsilon \mathbf{E}+j \epsilon_{o} \xi \nabla \times \mathbf{E}=\epsilon \mathbf{E}+j \epsilon_{o} \mathbf{G} \times \mathbf{E}
$$

where ξ is a constant and $\mathbf{G}=\xi \mathbf{k}$ is the gyration vector. The refractive indices are then given by

$$
n_{ \pm}=\sqrt{n^{2} \pm G} \Rightarrow \rho \approx-\frac{\pi G}{\lambda_{o} n}
$$

Faraday effect

The modes are circularly polarized as well, and n_{+}and n_{-}are different. However, the rotation is not reciprocal.

The material equation can be written in the same form:

$$
\mathbf{D}=\epsilon \mathbf{E}+j \epsilon_{o} \mathbf{G} \times \mathbf{E},
$$

where $\mathbf{G}=\gamma \mathbf{B}$ and γ is the magnetogyration coefficient. The rotatory power is

$$
\begin{aligned}
& \rho=\mathfrak{V} B \approx-\frac{\pi G}{\lambda_{o} n} \\
& \Rightarrow \mathfrak{V} \approx-\frac{\pi \gamma}{\lambda_{o} n} \quad \text { (Verdet constant) }
\end{aligned}
$$

Optics of liquid crystals

(a) Nematic

(b) Smectic

(c) Cholesteric

Twisted nematic liquid crystals:

Each slice acts as a uniaxial crystal with the optic axis at

$$
\theta=\alpha \mathrm{Z}
$$

and the phase retardation coefficient

$$
\beta=\left(n_{\mathrm{e}}-n_{\mathrm{o}}\right) k_{0} \gg \alpha
$$

The modes are linearly polarized along and perpendicular to the optic axis at each coordinate z and having the refractive indices n_{o} and n_{e}. The orientation of the molecules can be changed with an electric field, which is used in modulators.

Polarization devices

Polarizers

Anisotropic absorption (dichroic material) or reflection:

Reflection at the Brewster angle:

Refraction and reflection in a polarizing beam splitter:

(a) Wollaston prism

(b) Rochon prism

(c) Glan-Thompson prism

Polarization devices

Wave retarders

Anisotropic crystals, $n_{1}<n_{2}$ (including tunable Pockels-type crystals and liquid crystals)

Phase retardation is

$$
\Gamma=\left(n_{2}-n_{1}\right) k_{0} d .
$$

In mica, $\Gamma=\pi$ for $d=60 \mu \mathrm{~m}$ at $\lambda=600 \mathrm{~nm}$.

A tunable wave retarder between crossed polarizers = optical modulator

Electrically tunable liquid crystal or Pockels cell

Polarization devices

Polarization rotators

Optically active and Faraday rotators
$n_{\mathrm{RCP}}<n_{\mathrm{LCP}}$

Optical isolators

