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Abstract

A Cohen class time-frequency transform of signals u,v : R — C is a
time-frequency invariant sesquilinear mapping (v, v) — C(u,v),
where the time-frequency distribution

Clu] = C(u,u) :RxR >R

can be thought as a phase-space energy density of u. For instance,
all the spectrograms are such energy densities. We study properties
of different time-frequency transforms C and their related
pseudo-differential operator quantizations a — a¢ defined by the
Hilbert space duality

(u,acv)iam) = (C(u, v), 8) 12 -

We also present computed examples from acoustic signal
processing, quantum mechanics and medical sciences. When and
how often something happens in signals? By properly quantizing

these questions, we obtain the Born—Jordan transform.
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Waveform of speech...

Signal (word 'Why’), sampling rate 4000 Hz
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Wigner for speech (compare to next Born—-Jordan...)

"Why?": Discrete—time Wigner distribution




... Born—Jordan for speech (compare to next spectrogram...)

"Why?": Discrete—time Born-Jordan distribution
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a spectrogram (compare to previous Born—Jordan)

Spectrogram with a medium-wide Gaussian window




a spectrogram with wide Gaussian window...

Spectrogram with a wide Gaussian window




a spectrogram with narrow Gaussian window

Spectrogram with a narrow Gaussian window




» Tools: Fourier analysis, FFT!

» 1920s foundations of quantum mechanics
(Heisenberg, Born, Jordan, Schrodinger;
Dirac, Wigner, Weyl, von Neumann)

» Spectrograms (early 1940s Bell Labs, 1944-1946 Gabor)

» 1966 Leon Cohen's class of time-frequency distributions
(physics, signal processing)

» 1960s pseudodifferential operators (Hormander et al)

» 2010 Born-Jordan L?-continuity (Boggiatto—De Donno-Oliaro)

» 2011 Born-Jordan uncertainty (Boggiatto—Oliaro—Carypis)
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Time-like variables: Latin letters t,x,y € R.
Frequency-like variables: respective Greek letters 7,&,n € R 2 R.
Time-frequency plane

Rxf&:{(x,n): x € R, 776]@}.
Signal u : R — C has Fourier transform Zu =1 : R — C,
A= [ Iy ay.
R

Inner product (u,v) € C of signals u,v: R — C,

(u,v) = /U(X) v(x)* dx, (1)
where v(x)* = v(x) the complex conjugate. Energy of signal u:
]2 = (u, u) :/\U(X)Fdx > 0. @)

Fourier preserves inner products (and energy), (u,v) = (u, v).
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|dea of time-frequency analysis

‘Waveform. Press any key to continue.

Signals u,v: R — C
of finite energy: u,v € # = L%(R).

Time-frequency transform
C(u,v):RxI@—)(C,

t.-f. distribution (“energy density”)
C(u,u) = Clu] :RxR >R,
where the signal equivalence class

(] ={Au: XeC, |\ =1}.

500 1000 1500 2000 2500 3000 3500 4000

‘Speech: Discrete-time Born~Jordan distribution

Time-frequency weight (symbol)
a:RxR— C,

C-quantization a — ac = ac(X, D):

(uyacv)zm) = (C(u, v), a)Lz(RX@).

1000 1500 2000 2500 3000 3500 4000
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Cohen class time-frequency transforms C

Signals u, v : R — C have time-frequency transform
C(u,v) :RxR = C,

and C[u] := C(u,u) : R x R — C is time-frequency distribution
(or “energy density”).
[Cohen 1966, Grochenig 2001, T. 2016] Basic requirements for C:

» C(u,v)(0,0) = (u,dcv) for a bounded operator d¢ on J7Z.
» For v(x) = 2™ y(x — y), time-frequency shift invariance
Clvl(x,m) = Clul(x = y,n =€)
0c¢ is the C-quantized pseudodifferential operator with symbol
d = 0(0,0)-

Then C(u,v) = k¢ x W(u, v) for a tempered distribution k¢,
where W (u, v) is the Wigner transform.
Normalization [[ C[u](x,n)dxdn = ||u]|®: [[ kc(x,n)dxdn = 1.
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Potential extra conditions on C(u, v)?

>
>
>
>

Symmetry C(v,u) = C(u,v)* (real energy density C[u]).
Should [u] — Clu] = C(u, u) be invertible?
Should [u] — C[u] be robust under noise?
Should C have correct marginal energy densities? This means
[ Clul(x,m)dn = lu(x)P? and | Clul(x, ) dx = [a(n)]2
» Should C be scale-invariant? That is, if v(x) := \/|\|u(Ax)
for 0 # A € R then C[v](x,n) = C[u](Ax,n/]\).
» Should C be time-local? This means that if u(x) =0
whenever x ¢ [a, b], then C[u](x,n) = 0 whenever x ¢ [a, b].
» Should C be frequency-local? This means that if z(n) =0
whenever ) € [a, 5], then C[u](x,n) = 0 whenever n & [, B].
» Comb-to-grid property: Since “ticking-of-a-clock”
u(x) = pez 0k(x) = X ez €27, should C[u] show
vertical and horizontal Dirac delta lines at integers k, k € Z7
(The Born—Jordan transform C = @ follows by requiring only
scale-invariance, time-locality and the comb-to-grid property; and
then Q@ satisfies all the other mentioned extras, too!) 13 /40




Why spectrograms fail?

Spectrogram Spec,, [u] = C[u] for normalized window w is given by

2
Clllen)i= | [ o2 atyuty =y ay| .
Here C(u,v)(0,0) = (u,dcv) for the original localization
dcv = (v, w)w. (4)

This is the orthogonal projection onto the 1-dimensional subspace
spanned by w. Alternatively, for w(t) := w(—t), here

Clu] = W[w] x W[u].

By unitary equivalence, we may assume w(t) = ol/4=mt? Byt
then C[u] is just “melted down” version of W/[u] by heat equation.
Hence, spectrograms always destroy information!
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Order on R characterizes Born—Jordan [V.T ]

Studying a quantum particle on the real line R, we ask:

(A) s particle on the right?

(B) s particle moving right?

So, we just ask for the directions of location and of movement

(Separate “right from left”, “up from down”, “future from past”...)
In other words, the order relation on R is essential here.

The uncertainty in (A, B) characterizes the Born—Jordan transform,
leading to sharp time-frequency (phase-space) analysis.

Other time-frequency transforms do not properly answer to (A, B).

This has important consequences in signal processing
and quantum mechanics.
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Direction of position

Wavefunction ¢ € J# = [?(R) describing a quantum particle on R.
By Max Born, probability of finding “position” right of x € R is

[ Py € o (5)
Localization to [x,00) C R is given by projection Ay : 7 — 7,
u(y) wheny > x,
Aculy) = { W) vhen s (6
0 otherwise.

Observable A,: “Is particle having position right of x?”
“Yes" (eigenvalue 1) with probability /OO lv(y)|? dy,

and we find the updated wavefunction )L(I/HUH with v = Ax.
“No” (eigenvalue 0) with probability /X l(y)[? dy,

—00
and the wavefunction becomes v/||v|| with v = ¢ — A.
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Direction of momentum

Change from “position” x to “momentum” 7 by Fourier transform.
By Max Born, probability of finding “momentum” above n € R is

[ iwore e o )
n

Localization to [n, 00) C R is given by projection B, : H — I,

N o ﬂ(f) when § > m,
Bnu(ﬁ) o {O otherwise. (8)

Observable B,;: “Is particle having momentum above 77"
“Yes” (eigenvalue 1) with probability /OO ()2 d¢,
and we find the updated wavefunction Z/HUH with u = By1).
“No” (eigenvalue 0) with probability /77 ]$(§)|2d§.

-0
and the wavefunction becomes v/||v|| with v =4 — B, 1.
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Expectation of directional uncertainty

Uncertainty observable of the observable pair (A, B) is

—i2n [A,B] = —i27 (AB — BA) . (9)
An application of the Cauchy-Schwarz inequality yields
(—i2m [A, Blu, u) = 47 Im(Au, Bu) < 4 ||Au|| ||Bull. (10)
This gives the Heisenberg uncertainty inequality
|(—i27 [A, B])| < 47 (AA) (AB), (11)

where in state u observable M has expectation (M) := (Mu, u) and
uncertainty AM := ||Mu — (M)u||. For u,v € J, define

Q(u, v)(x,n) = (—i27 [Ax, Bylu, v). (12)

We call Q(u,v): R x R — C the time-frequency transform, and
Q[u] = Q(u,u) : R x R — R the time-frequency distribution.
Q[¥](x,n) is the expectation of uncertainty of (Ax, B,) in state 1.
Especially: Q[¢](0,0) is the

expectation of uncertainty in directional location and movement,
18 /40



Born—Jordan transform

.. and a brief calculation yields the Born—Jordan transform
) 1 [xty
Quv)xm) = [ e [T u(e (e = y)dedy. (13
R Y Jx

QY] = Q(v, ) is a “quasi-probability distribution” of 1), or
Q[u] = Q(u, u) is an “energy density” of v.

Alternatively, the Born—Jordan transform is given by

FQ(u,v)(§,y) = sinc( - y) FW(u, v)(&,y), (14)
where F = .7 @ .Z ! is the symplectic Fourier transform, and the
Wigner transform W(u, v) is defined by

W(u,v)(x,n) = /Re_i%y'" u(x +y/2)v(x —y/2)"dy.  (15)

Unfortunately, Wigner has a very bad property:
it is extremely sensitive to noise (unlike the non-unitary Q. Also,

Q is not causal nor positive.)
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Wigner distribution is sensitive to noise: speech example

Wigner distribution
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. and corresponding Born—Jordan distribution

Speech: Discrete-time Born—-Jordan distribution

Jniy
e
: 111_11“1111
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Bound for Born—Jordan energy density [V.T. 2016]

There is the optimal Born—Jordan bound

|Q(u, v)(x; ) < 7 [[ul| [ v]] (16)
for all (x,n) € R x R. Especially, |Q[u](x,n)| <  ||ul|.
Proof.

“Point localization at the origin” L = d¢:
(Lu,v) = )(0,0)

= / /zz//22u(t+z/2 v(t —z/2)"dtdz

- / / Ku(x,y) u(y) v(x)" dxdy,

with the Schwartz kernel

Ki(x,y) Ix —y|7t if xy <0,
X,y) =
LY 0 if xy > 0.
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Proof of the bound for energy density

From

(Lu, v) :/ / s dydx+// YWVED 4 ax
_ // dydx—l—// X+y uEWC) ) gy,

denoting u = Pu + Nu, where Pu(x) = 1g+(x) u(x), we get

Hilbert

(Lol < w|Pull [Nl 4 ([N ([P
= w(|Pull [Nall) - (] [P])
Cauchy—Schwarz 5 5 5
< \JIPulE + INul2 2 + ([P
= vl

Especially, |(Lu, u)| < 7 ||ul. O
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EKG (Electro-KardioGram)
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EKG: Born—Jordan distribution (absolute value)

Channilo%):oTime index interval [56001:72000]. Frequency unit 0.032 Hz. Comparison 27411.24




Another characterization for Born—Jordan [V.T. 2016]

Cohen class transforms: C = k x+ W for some k € /(R x I@)
Necessary and sufficient (i,ii,iii) for C = Q:
(i) C is scale-invariant. This means that if v(x) = A/2u(\x) for
A > 0 then C[v](x,n) = Clu](Ax,n/N).
(i) C is time-local. This means that if u(x) = 0 whenever
x ¢ [a,b] C R then C[u](x,n) = 0 whenever x ¢ [a, b] C R.
(i) C maps Dirac delta comb to Dirac delta grid. This means

C[(SZ](X777) = 6Z(X) + 6Z(77) - 17
where the Dirac delta comb is
0z(x) =) dk(x) = e,
kEZ KEZ

with &, being the Dirac delta distribution at k € Z. Think iz
as a ticking-of-a-clock. Notice that .7 (dz) = dz.

Wigner distribution has properties (i,ii) but not (iii).

Spectrograms satisfy none of the properties (i, ii,iii). 26 /40



Proof idea of Born—Jordan characterization

Let FClu] = ¢ FW[u]. We must show ¢(&, y) = sinc(£ - y).
() = ¢(&y)=a(£ y) for some o € S'(R).
(ii,i) = ¢(x) =0 for almost all |x| > 1/2.
So ¢ : C — C analytic by Paley-Wiener-Schwartz Thm.

Giji) = o(k)=4t k=0,
0 if keZ\{0}.
So u = @/sinc : C — Cis analytic. Then ¢ = u*1{_1/51/9]
gives

dplx+k) = > /[_1/271/2] u(x+k—y)dy

keZ kez
£(0)

_ /u(x)dx =5(0) = L =1

so p(x) =1 for almost all x € [-1/2,1/2]. Thus we obtain
1/2

o(&y) = /e_ihxy'5 o(x)dx = / e 12MYE dx = sinc(€-y). [
—1/2 27 /40




Inversion of Born—Jordan distribution [V.T.]

Mapping u — Q[u] is not invertible: Q[\u] = |\[2Q[u].
But mapping [u] — Q[u] is invertible, where the equivalence class

[u]={ u: NeC, |N=1}

It is easy to see invertibility of Wigner [u] — W]u], and by (14)
also [u] — Q[u] can be inverted. Notice the marginals:

/ Qlul(x. ) dy = |u(x) P, [Q[u](x,n)dx—m(n)r% (17)
R R

Yet these marginals are not enough to find [u].
Suppose u(x) # 0 for Schwartz function u. Then we have inversion

u(x +h) = Z&lR — kh, h) (18)

for all h # 0, where 0y is the partlal derlvatlve in the first variable,

R(x.y) == /R 0271 Q[u)(x, 7) . (19)
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Quantization a — ac

Cohen class transform C gives the corresponding quantization
arac, ac=ac(X,D)

from symbols a : R x R—Cto pseudo-differential operators ac.
Such linear operator ac = ac(X, D) is defined by the duality

<U, aCV> = <C(U, V)? a>‘ (20)
Properties of C are reflected in a — ac. E.g. marginal conditions
[ cltman =t [ cladtamax=@P, @y

mean that if a(x,n) = f(x) and b(x,n) = g(n) then
acu(x) = f(x) u(x) (multiplication) and

bcu(x) = g * u(x) = [ g(x — y) u(y)dy (convolution).
Especially, if (21) and a(x,n) = x and b(x,n) =,

then ac = X and b = D, where

Xu(x) = xu(x), Du(x)=

29 /40



Quantization examples

For example, the Wigner transform C = W from formula (15) gives
rise to the Weyl quantization a — ayy:

awv(x // i2r(=y)m g ) v(y)dydn.  (22)

Born—Jordan transform Q gives Born—Jordan quantization a — ao,

squi) = [ [ L [Tatedevty) dyan. (23)

What makes the Born—Jordan quantization unique among
quantizations is that if a(x,n) = f(x) and b(x,n) = g(n) then

{a, b}Q = —i27 [aQ, bQ], (24)
where the Poisson bracket {a, b} is reduced to
_(0a 0b 0a 0b PR
o) = (52 50— 50 o) Cem = FF@.  (25)

(24)-remark: no-go-theorems [Groenewold 1946, van Hove 1951].
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MRI + “patient” (frequency unit 1 Hz)

Restore/Delete/+/-/Zoom/Compute. Frequency unit 8.0007 Hz.
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MRI + “patient” after noise filtering

Restore/Delete/+/-/Zoom/Compute. Frequency unit 8.0007 Hz.
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Born—Jordan energy density of noise and...

Discrete-time Born—Jordan distribution

200 400 600 800 1000 1200 1400 1600 1800 2000
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... and localized noise (complement of a rectangle)

Discrete-time Born—Jordan distribution

200 400 600 800 1000 1200 1400 1600 1800 2000
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and a spectrogram of same Born—Jordan -localized noise

Spectrogram with a Gaussian window
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Relation of different quantizations

Let C =4 * W. Then

C(u,v), a)
« W(u,v),a)

(
(v
((Fy) Fw(u,v), Fa)
(
(w

<U, acv) =

Fw(u,v), (FY) Fa)
= (W(u,v),b)
= (u,bwv),
where Fb = (F1) Fa. That is, ac = by here.
Quantization a — ac is surjective if [u] — C[u] is invertible.
Quantization a — ac is injective if F1) does not vanish.

Examples: Weyl and Kohn—Nirenberg quantizations are bijective:
a(x,n) = e 12mxn agn(x — ei%x'”).

Born-Jordan [u] — Q[u] = ¢ * W[u] is invertible, with
Fiy(&,y) =sinc(€ - y). Here a — ag is surjective but not injective. 36,40



Orthonormal bases have uniform energy densities

Theorem. Let {ux}?° | be an orthonormal basis of L?(R).
Let C = ¢« W with energy normalization [[ v(x,n)dxdn = 1.
Then for almost every (x,n) € R x R

oo
> Clud(x,m) =1
k=1
(with easy generalization to tight frames and non-normalized C.)

Proof. Let a(x,n) := > 72, W[uk](x,n). Here awv = v, because

(viawv) = (W(v,v),a) = > (W[v], W[u])
k=1
I\/Ig/al Z ‘(V, Uk>‘2 Pars:eval <V, V>.
k=1

Thereby a(x,n) = 1 for almost every (x,7) € R x R. Hence
Soreq Clukl(x,m) =¥ = a(x,n) = [[(t,w)dtdw = 1. Oy



On Born—Jordan boundedness

Let a=f ® g, where f continuous bounded (|f| < [|f]|1~ < 00),
g > 0 integrable ([ g(x)dx = g(0) < oo, so [g] < &(0) = [I&]lc=)-

Then
/L/g“‘YX%fXLyﬂwdtwndy

wﬁm/[/gu—ynwmm@2w

111z 1 1Zoo I v 12
2 2
[[all7e [ v]]
so for all v € /# = L2(R), we obtain the norm bound

lag(X, D)v| < |lv|l max _[a(t,n)l.
t,n)ERXR

2
lag(X, D)v]|? dx

IN

IN

For any a € L}(R x R) we have the norm bound
lagvll < = lafl . [lv].
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Born—Jordan of noisy speech...

Speech: Discrete-time Born—Jordan distribution
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. enhanced after two localizations

Speech: Discrete—time Born—-Jordan distribution
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