Aalto University
School of Science

Lecture 6: k-Center via Parametric Pruning Joachim Spoerhase

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q} \geq 0$ satisfying the triangle inequality and a natural number $k \leq|V|$.
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Parametric Pruning

Suppose we know OPT $=c\left(e_{j}\right)$ where $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$.

Parametric Pruning

Suppose we know OPT $=c\left(e_{j}\right)$ where $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$.

Parametric Pruning

Suppose we know OPT $=c\left(e_{j}\right)$ where $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$.

...try each G_{i}.

Dominating Set

Def. A vertex set D of a graph H is dominating, when each vertex is either in D or adjacent to a vertex in D.The cardinality of a smallest dominating set in H is denoted by $\operatorname{dom}(H)$.

Dominating Set

Def. A vertex set D of a graph H is dominating, when each vertex is either in D or adjacent to a vertex in D.The cardinality of a smallest dominating set in H is denoted by $\operatorname{dom}(H)$.

Dominating Set

Def. A vertex set D of a graph H is dominating, when each vertex is either in D or adjacent to a vertex in D.The cardinality of a smallest dominating set in H is denoted by $\operatorname{dom}(H)$.

... computing $\operatorname{dom}(H)$ is NP-hard.

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

Obs. A dominating set in G_{j}^{2} with $\leq k$ elements is already a 2-Approximation.

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

Obs. A dominating set in G_{j}^{2} with $\leq k$ elements is already a 2-Approximation.

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

Obs. A dominating set in G_{j}^{2} with $\leq k$ elements is already a 2-Approximation.
Why? $\max _{e \in E\left(G_{j}\right)}=e_{j}$!

Independent sets

Def.
A vertex set U in a graph is called independent (or stable), when no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent sets

Def.
A vertex set U in a graph is called independent (or stable), when no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent sets

Def.
A vertex set U in a graph is called independent (or stable), when no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent sets

Def.
A vertex set U in a graph is called independent (or stable), when no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent sets

Def. A vertex set U in a graph is called independent (or stable), when no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent sets

Def. A vertex set U in a graph is called independent (or stable), when no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent sets

Def. A vertex set U in a graph is called independent (or stable), when no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent sets

Def. A vertex set U in a graph is called independent (or stable), when no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent sets

Def.

A vertex set U in a graph is called independent (or stable), when no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Obs. Maximal independent sets are dominating sets :-)

Independent sets in H^{2}

Lem.
For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$

Independent sets in H^{2}

Lem. For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$

What does a dominating set of H look like in H^{2} ?

Independent sets in H^{2}

Lem.
For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$

What does a dominating set of H look like in H^{2} ?

Independent sets in H^{2}

Lem.
For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$

What does a dominating set of H look like in H^{2} ?

Factor-2 approx. for metric k-CENTER

Algorithm Metric- k-Center
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$
for $j=1, \ldots, m$ do
Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2} if $\left|U_{j}\right| \leq k$ then
return U_{j}

Lem. For j provided by the Algorithm, we have $c\left(e_{j}\right) \leq \mathrm{OPT}$.

Factor-2 approx. for metric k-CENTER

Algorithm Metric- k-Center
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$
for $j=1, \ldots, m$ do
Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2} if $\left|U_{j}\right| \leq k$ then return U_{j}

Lem. For j provided by the Algorithm, we have $c\left(e_{j}\right) \leq$ OPT.

Thm. The above algorithm is a factor-2 approximation algorithm for the metric k-CENTER problem.

Can we do better ... ?

Can we do better ...?

What about a tight example?

Can we do better ... ?

What about a tight example?

$$
\begin{aligned}
& \text { black } \rightsquigarrow \operatorname{cost}=1 \\
& \text { red } \rightsquigarrow \operatorname{cost}=2
\end{aligned}
$$

Can we do better ... ?

What about a tight example?

$$
\begin{aligned}
& \text { black } \rightsquigarrow \operatorname{cost}=1 \\
& \text { red } \rightsquigarrow \operatorname{cost}=2
\end{aligned}
$$

Thm. Assuming $P \neq N P$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\epsilon>0$.

Can we do better ... ?

What about a tight example?

$$
\begin{aligned}
& \text { black } \rightsquigarrow \text { cost }=1 \\
& \text { red } \rightsquigarrow \operatorname{cost}=2
\end{aligned}
$$

Thm. Assuming $P \neq N P$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\epsilon>0$.

Proof: Idea: reduce from dominating set to metric k-CENTER.

- If $\operatorname{dom}(G) \leq k$, then opt k-center has cost ≤ 1.
- else $(\operatorname{dom}(G)>k)$, opt k-center has cost ≥ 2.

Metric k-Center problem

Given: A complete graph $G=(V, E)$ with metric edge costs $c: E \rightarrow \mathbb{Q} \geq 0$ and a natural number $k \leq|V|$.

For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Metric K-CENTER problem
 weighted

Given: A complete graph $G=(V, E)$ with metric edge costs $c: E \rightarrow \mathbb{Q} \geq 0$ and a natural number $k \leq|V|$.

For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Metric K K-Center problem
 weighted

Given: A complete graph $G=(V, E)$ with metric edge costs $c: E \rightarrow \mathbb{Q} \geq 0$ and $-k$. vertex weights $w: V \rightarrow \mathbb{Q} \geq 0$ and a weight limit $W \in \mathbb{Q}_{+}$

For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Metric K KCenter problem
 weighted

Given: A complete graph $G=(V, E)$ with metric edge costs $c: E \rightarrow \mathbb{Q} \geq 0$ and $-k$. vertex weights $w: V \rightarrow \mathbb{Q} \geq 0$ and a weight limit $W \in \mathbb{Q}_{+}$

For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.
vertex set S of weight at most W
Find: A k-elemet ${ }^{\text {a }}$, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

The weighted version

Algorithm metric-weighted-CENTER
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$
for $j=1, \ldots, m$ do
Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2}
if $\left|U_{j}\right| \leq k$ then
return U_{j}

The weighted version

Algorithm metric-weighted-CENTER
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$
for $j=1, \ldots, m$ do
Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2}
if $\left|U_{j}\right| \leq k$ then
return U_{j}
what about the weights??

The weighted version

Algorithm metric-weighted-CENTER
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$
for $j=1, \ldots, m$ do
Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2}
if $\left|U_{j}\right| \leq k$ then
return U_{j}

$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

The weighted version

Algorithm metric-weighted-CENTER
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$
for $j=1, \ldots, m$ do
Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in U_{j}\right\}$ if $\left|U_{j}\right| \leq k$ then
return U_{j}

$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

The weighted version

Algorithm metric-weighted-CENTER
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$
for $j=1, \ldots, m$ do
Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in U_{j}\right\}$
if $U_{j} \leq$ then $w\left(S_{j}\right) \leq W$ return $\varnothing_{j} S_{j}$
<

The weighted version

Algorithm metric-weighted-CENTER
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$
for $j=1, \ldots, m$ do
Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in U_{j}\right\}$ if $U_{j} \leq$ then $w\left(S_{j}\right) \leq W$

```
return \(\varnothing_{j} S_{j}\)
```


Thm.
The above is a factor-3 approximation algorithm for the metric weighted-CENTER problem.

The weighted version

Algorithm metric-weighted-CENTER
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$
for $j=1, \ldots, m$ do
Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in U_{j}\right\}$
if U_{j} then $w\left(S_{j}\right) \leq W$ Next Week:
return $\varnothing_{j} S_{j}$

Local Search
Min. Degree Spanning Trees
Thm. The above is a factor-3 approximation algorithm for the metric weighted-CENTER problem.

