

Combinatorics of **Efficient Computations**

Approximation Algorithms

Lecture 6: k-Center via Parametric Pruning Joachim Spoerhase

The metric k-Center-Problem

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.

Parametric Pruning

Suppose we know OPT = $c(e_j)$ where $c(e_1) \leq \ldots \leq c(e_m)$.

 \dots try each G_i .

Dominating Set

Def.

A vertex set D of a graph H is **dominating**, when each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by dom(H).

 \ldots computing dom(H) is NP-hard.

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_j

Def. The square H^2 of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^2 when they are within distance **two** in H.

Obs. A dominating set in G_j^2 with $\leq k$ elements is already a 2-Approximation.

Why? $\max_{e \in E(G_j)} = e_j$!

Independent sets

Def.

A vertex set U in a graph is called **independent** (or **stable**), when no pair of vertices in U form an edge. An independent set is called **maximal** when no superset of it is an independent set.

Obs. Maximal independent sets are dominating sets :-)

Independent sets in H^2

Lem. For a graph H and an independent set U in H^2 , $|U| \leq \text{dom}(H)$

What does a dominating set of H look like in H^2 ?

Factor-2 approx. for metric k-CENTER

```
Algorithm Metric-k-CENTER
Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)
for j=1,\ldots,m do

Construct G_j^2
Find a maximal independent set U_j in G_j^2
if |U_j| \leq k then

\lfloor \text{return } U_j \rfloor
```

Lem. For j provided by the Algorithm, we have $c(e_j) \leq \mathsf{OPT}$.

Thm. The above algorithm is a factor-2 approximation algorithm for the metric k-CENTER problem.

Can we do better . . . ?

What about a tight example?

black
$$\rightsquigarrow$$
 cost =1

$$red \rightsquigarrow cost = 2$$

Thm. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\epsilon > 0$.

Proof: Idea: reduce from dominating set to metric k-CENTER.

- If $dom(G) \le k$, then opt k-center has $cost \le 1$.
- else (dom(G) > k), opt k-center has $cost \ge 2$.

Metric k-CENTER problem weighted

Given: A complete graph G=(V,E) with metric edge costs $c\colon E\to \mathbb{Q}_{\geq 0}$ and a natural number $k\le |V|$. , vertex weights $w\colon V\to \mathbb{Q}_{\geq 0}$ and a weight limit $W\in \mathbb{Q}_+$

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

vertex set S of weight at most W

Find: A k-element vertex set S, such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.

The weighted version

Algorithm metric-weighted-CENTER Sort the edges of G by cost : $c(e_1) \leq \ldots \leq c(e_m)$ for $j = 1, \ldots, m$ do Construct G_i^2 Find a maximal independent set U_i in G_i^2 Compute $S_i := \{ s_i(u) \mid u \in U_i \}$ if $|U_i| \leq k$ then $w(S_i) \leq W$ **Next Week:** return \mathcal{U}_j S_i **Local Search** Min. Degree $\leq 3c(e_j)$ **Spanning Trees**

Thm.

The above is a factor-3 approximation algorithm for the metric weighted-CENTER problem.