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Reminder: Give feedback,  
fill Webropol questionnaire  

before 24 April



Literature on dimensionality 
reduction for visualisation

• MDS: Borg, Kroenen, Modern multidimensional scaling: theory and 
applications. Springer, 1997.


• PCA: any book on matrix algebra.

• Jarkko Venna 2007, Academic Dissertation, http://lib.tkk.fi/Diss/

2007/isbn9789512287529/  

• Lee & Verleysen, 2007. Nonlinear dimensionality reduction. Springer.

• For a reasonably recent brief review see Verleysen & Lee, 2013 

(recommended reading before exam!). https://doi.org/
10.1007/978-3-642-42054-2_77 


• See the references in the slides! Notice that most doi.org links can 
be accessed from within Aalto network (but usually not from home).


• (Not to be confused with dimensionality reduction for machine 
learning where target dimensionality is often higher!)


• Go to http://www.iki.fi/kaip/p/dr2.nb.html 
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J. Venna, S. Kaski / Neural Networks 19 (2006) 889–899 895

Fig. 3. Sample visualizations produced with different methods on the cluster data set. Key for the methods: see Fig. 1.

graph approximation of the geodesic distances. Which distance
measure produces better results depends highly on the data
set in question. Of the data sets used here the mouse gene
expression data sets a clear case for the use of geodesic
distances. On this data set the methods using geodesic distances
outperformed their Euclidean counterparts with a clear margin
in both trustworthiness and continuity. On the other hand, on
the gene expression compendium the use of geodesic distances
seems to give slightly worse results than Euclidean distances.
The exception here is SNE which failed to produce any
meaningful results with the Euclidean distance.
Quality of the visualizations. While the trustworthiness and
continuity measures give a good idea on how well the methods
preserve the local similarity structure in the data, they do not
give the whole picture on the quality of the visualizations.
Examples of the visualizations produced by the different
methods on the cluster data set are shown in Fig. 3. What
one would expect to see in these visualizations is a set of
six separate clusters, and hopefully the two-dimensional (S-
shaped manifold) structure of one of the clusters would also
be evident. By looking at the results of LLE and Laplacian
eigenmaps, it is clear that the visualizations do not perform as
well as expected. It is very hard to identify the separate clusters
from the LLE visualization. Moreover, all clusters have been

stretched to form mostly linear structures. On the visualization
produced by Laplacian eigenmaps the differences in the scales
of distances are so large that it is not possible to discern any
structure within the clusters. Only small blobs are visible.

The visualizations produced by SNEG illustrate an artifact
that is typical for methods that utilize nearest neighbor
information. The graph distances overestimate distances within
the manifold and produce clear “holes”. These are very clear
on the SNEG visualization of the S-curve cluster. This effect
can be lessened in two ways. The first is to select a method like
CCA that relies mostly on local distances and the second is to
increase the number of neighbors. The latter means has fixed the
problem for isomaps, where we had already used a very large
number (k = 67 in comparison to k = 7 (CDA) and k = 4
(SNEG)) of neighbors to make the graph connected.

4. Controlling the tradeoff: Local MDS

Every visualization method has to make a tradeoff between
gaining good trustworthiness and preserving the continuity of
the mapping. Some methods like SOM and CCA are typically
good at finding solutions with a high trustworthiness, and others
like SNE are very good at preserving the continuity. We propose
a new method, local MDS, which is a derivative of CCA with

Venna et al. 2006, 
https://doi.org/

10.1016/j.neunet.
2006.05.014!4



Recap
• PCA and MDS variants will struggle with non-linear manifolds

• PCA/Torgerson scaling is a linear projection

• techniques specifically designed to flatten manifolds

• ISOMAP

• LLE

• Laplacian eigenmap

• local multidimensional scaling

• many more exist...


• large distances dominate the cost function in MDS methods

• either redefine the distance or look only at the vicinity of 

individual points

• practical issues: distortions, may be computationally 

expensive
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Problem with lack of 
guidance

• The previous methods have one major problem: they produce an 
embedding given some (technical) criteria. The result may or 
may not be what user wants.


• One way to tune the embedding is to add guidance: find 
embedding such that it maximises dependency with respect to 
some particular variable(s)


• Assume that in the original (high-dimensional) data consists of 
pairs of variables (x,y), where x is data variable and y is response 
variable (e.g., class).


• Problem: Find embedding X such that y depends mainly on X.
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Supervised PCA

• At simplest,  
let X be n × m data matrix (with zero mean columns) and Y be n × m' 
matrix of response variables.

• Use largest eigenvectors of XTYYTX to project into lower dimensions

• If YYT=1 this reduces to PCA


• For details and fancier variants see Barshan et al. 2011, https://doi.org/
10.1016/j.patcog.2010.12.015 
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Supervised PCA
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• Same 2-cluster data as before

• Y is n × 1 matrix and Yi1=-1 or 1 if i is in red 

or blue cluster, respectively 
(i.e. Y gives a classification of the data)
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Supervised PCA
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• Supervise PCA to separate the following parties: vihr, rkp, sdp, vas 
• Y is 515 x (4+515) matrix where  

Yi1 = 1 if candidate i is in virh,  Yi2 = 1 if candidate i is in rkp,  
Yi3 = 1 if candidate i is in sdp,  Yi4 = 1 if candidate i is in vas,  otherwise Yij = 0 for j<5.


• In addition, we set Yi(j+4)=0.01 if i=j and 0 otherwise (this is to guide PCA to find some 
structure even within points in the same class)
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Guided locally 
linear embedding
• It is possible to guide also 

other methods such as 
locally linear embedding 
(LLE)


• The principles in guided LLE 
(GLLE) are similar as for 
supervised PCA


• For details see Alipanahi et 
al. 2011, https://doi.org/
10.1016/j.patrec.2011.02.002 

We chose the linear SVM classifier to highlight the linear sepa-
rability of the different groups in the low-dimensional embed-
dings. The accuracy results are listed in Table 1.

It is interesting that by using only two dimensions, the perfor-
mance figures are appealing, except for the Protein dataset which
has six classes and 20 dimensions. Furthermore, the optimal num-
ber of nearest neighbors k is usually smaller for GLLE, which results
in faster computation times. An interesting dataset is Balance, for
which applying the SVM on the original data results in 20% better

accuracy compared to LLE. As can be seen in Fig. 1(a), LLE’s embed-
ded points of different classes severely overlap, while for GLLE the
samples are clearly separated (see Fig. 1(b)).

5.3. Visualization

In this section, we compare the embeddings that are generated
by LLE and GLLE for data visualization. GLLE uses target variables

Table 1
Classification results of GLLE, a-SLLE, and LLE on a number of datasets; algorithm accuracy is given as a percentile. ‘‘num.’’ is the number of points in the dataset, and ‘‘dim.’’ is the
dimensionality. A SVM classifier with a linear kernel is used for classification. The optimal parameter(s) of different algorithms are shown, as determined by 5-fold cross-
validation.

Dataset num. dim. Classes GLLE k c a-SLLE k a LLE k

Protein 116 20 6 64.5 5 0.75 56.2 5 0.1 47.6 90
Housing 506 13 2 93.1 5 0.0 93.1 5 0.0 93.1 5
Wine 178 13 3 99.1 30 0.1 96.6 100 0.01 96.6 100
Balance 625 5 3 94.4 15 0.05 91.7 30 1.0 69.2 100
Ion 351 34 2 92.8 50 0.25 92.2 50 0.25 79.1 5
Soybean 47 35 4 100.0 30 0.05 98.3 35 0.01 98.3 35
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Fig. 1. Comparison of LLE (k = 100) with 0.05-GLLE (k = 15) for the UCI Balance
dataset. Data points of different classes are shown with different symbols. Training
data points are hollow and test data points are filled.
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Fig. 2. Comparison of visualizations acquired by LLE and 0.5-GLLE (k = 50). There
are two groups: persons with and without glasses.

B. Alipanahi, A. Ghodsi / Pattern Recognition Letters 32 (2011) 1029–1035 1033
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Problem with lack of 
interaction

• "Controllability and interaction are two concepts that are mostly 
absent from dimensionality reduction." (Verleysen et al. 2013)


• First papers on interactive DR in 2006 (Sacha et al. 2017)


• The previous methods have one major problem: they produce 
an embedding given some technical criteria. The result may or 
may not be what user wants.


• New problem: How to create efficient interaction such that the 
user can in an understandable way modify the embedding? 

• (E.g., by noticing cluster structures or outliers and asking to 

show something different, by must-link or cannot-link 
constraints etc.)

!11



Scenarios for interaction

• S1 Data selection and emphasis

• Filter applied to data and DR rerun on the remaining subset


• S2 Annotation and labelling

• Enrich data with labels etc. and use the annotations to define distance measure


• S3 Data manipulation

• Analyst manipulate data directly


• S4 Feature selection and emphasis

• Analysts, e.g., can weight the importance of features


• S5 DR parameter tuning

• Tune parameters (such as k in k-nearest neighbour)


• S6 Define constraints

• Analyst directly arranges points in visualisation


• S7 DR type selection

• Vary DR algorithm


• From Sacha et al. 2017, https://doi.org/10.1109/TVCG.2016.2598495 

SACHA ET AL.: VISUAL INTERACTION WITH DIMENSIONALITY REDUCTION: A STRUCTURED LITERATURE ANALYSIS 247

Fig. 6: Proposed “human in the loop” process model for interactive DR. The analyst can iteratively refine the analysis by interacting with the DR
pipeline. The visualization interface serves as a “lens” that interactively mediates between the DR pipeline and the analyst, presenting DR results
or updates and accepting feedback.

6 THE INTERACTIVE DR PROCESS

With the goal of making our study more broadly applicable, we sum-
marize our findings in a general process model for interactive DR in
VA. This model is shown in Figure 6. It depicts an expanded version
of the basic model in Figure 1 and is a specialized model of our gen-
eral pipeline model for visual interactive machine learning [47]. Note
that the general model is a superset of the model shown in Figure 6
and was needed to arrive at a more specialized version for interactive
DR, which contains specific steps, knowledge, and details tailored to
interactive DR, and is therefore much more actionable. At the top,
we add the seven scenarios of interacting with DR techniques, and
arrange them along the analysis pipeline. S1-S3 operate on the data,
such as by changing data values or annotating labels (blue); S4 operates
on the feature space, such as by changing distance functions or the
projection matrix (cyan); and S5-S7 directly affect the DR algorithms
(or additional ML models) (green). At the bottom, the results of the
DR process are propagated back to the analyst (yellow).

The core of our process model is the interactive visual interface
(red), which connects these two streams and serves as a lens for the
human analyst on the algorithmic building blocks. While our work
focused primarily on characterizing the forms of interaction shown by
the top arrows, it is also interesting to consider how DR results can be
visually presented to the user. We found dimensionally-reduced data is
typically presented in scatterplots or node-link diagrams, confirming
previous empirical findings [50]. Yet, our model also draws attention
to the fact that other aspects of the process model can be visually repre-
sented. For instance, the dimensions (or eigenvector) can be mapped
to a parallel coordinate plot [30]. Furthermore, the quality of the DR
pipeline can potentially be visualized, either separately, or embedded in
the low dimensional representation. Some DR types calculate or iden-
tify errors, and in combination with other machine learning methods,
additional quality information might be obtained (e.g., the precision
of a classifier [42]). Furthermore, different DR pipeline variants (e.g.,
pre-defined DR configurations or automatically built recommendations)
can be visualized [27]. These different perspectives on the DR pipeline
support the analyst’s interpretation and validation process.

In many VA tools, the analyst has not only the ability to visually
inspect and validate the data, but also the ability to provide interactive
feedback to control the analysis through the interface. As discussed
previously, this feedback is usually in the form of controls and direct ma-
nipulation interactions, such as setting positions, selecting, or grouping
data items; other interaction paradigms such as command line scripts,
gestures and speech input are also possible. The VA system maps user
inputs to the specified interaction scenario(s), providing an instance
of a typical continuous and iterative process, as it is usually targeted
in VA [34, 47]. Note that the ability of the analyst to provide useful
feedback depends on the interpretability of visual observations but also

on the accessibility (implementation) of the interaction. These aspects
further depend on both, the technical competence (DR expertise) and
domain knowledge of the analyst, as well as the analysis task (e.g.,
analyzing data records vs. dimensions [50]). Especially novice analysts
with less mathematical skills face problems of interpreting different
DR concepts (e.g., linear vs. non-linear models) in a 2D-representation
where the actual meaning of the axis is lost.

We now demonstrate how the proposed process model can be used
for comparative, as well as generative purposes [2]. We first use it to
describe and compare four existing examples. We then use it to identify
and reason about open research opportunities.

6.1 Descriptive Use of the Process Model – Examples
Figure 7b instantiates the DR process model on four examples. Their
representation in the proposed model provides a consistent way to
understand these systems and compare their capabilities for interaction.

iPCA (S1, S3, S4) The iPCA system [30] (Figure 7a-1) addresses
typical data and feature space interactions. Several aspects of PCA
are visualized in linked views, including projection, data, eigenvector,
and correlation views. Each view supports a wide range of interactions
including navigation, selection, and linking & brushing, however, the
authors focused on three interactions that require re-computation of
PCA. First, for S1 Data Selection & Emphasis an analyst can remove
data items (e.g., outliers) and observe the resulting changes in data- and
eigen-space. Second, the analyst can modify data values in some views
or spaces (S3 Data Manipulation). Finally, iPCA offers sliders for each
dimension for S4 Feature Selection & Emphasis, enabling the analyst to
modify each dimension’s contribution to the final PCA calculation. This
lets the analyst test how the DR is affected by removing or “dimming”
the importance of certain dimensions.

Interactive Cluster Separation (S4, S6, other ML) Molchanov
and Linsen [43] present another way to infer feature weights from
interactions (Figure 7a-2). They invert the process of modifying the
projection matrix in a star coordinates widget by allowing the analyst
to specify the desired configuration directly in the projection view (by
rearranging control points). They show an example where S4 Feature
Selection & Emphasis is inferred from direct manipulation of data
points. In addition, the control points serve as S6 Defined Constraints
for the projection. To achieve an appropriate DR output, the projection
matrix is recalculated “based on an LS solution of an over determined
system of linear equations”. The control points can be selected by
the analyst, however, the authors recommend using cluster medians or
centroids for better cluster separation. This implies that the labels must
be contained in the data or determined by a classifier beforehand.

StarSPIRE (S1, S2, S4, S6) Bradel et al. [6] extends the Force-
SPIRE system proposed by Endert et al. [19]. Their extension offers
a richer set of interaction scenarios. A modified force-directed layout
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[11], Locally linear embedding [10], non-negative matrix factorization [6], archety-
pal analysis [3] and CUR decomposition [4].

Apart from these unsupervised embedding techniques, there are methods that
take supervision into account, like guided locally linear embedding [1] and super-
vised PCA [2]. Many of the classic embedding methods also have a semi super-
vised extensions [12]. One particularly interesting setting is utilizing must-link
and cannot-link constraints [13]. In this paper we employ the semi-supervised
least squares projections (LSP) [8, 9] method, which computes an embedding
based on a set of exemplary embedded data points.

In contrast to other authors applying semi-supervised embedding techniques,
our aim is not a fixed one-time-embedding. Our application rather exploits the
influence of the control points in order to enable the user to shape and steer a life-
updating embedding. This active layout approach ultimately empowers the user
to highlight aspects of the dataset that he considers interesting. This is illustrated
in Figure 3 on a selection of four persons from the CMU Face Images dataset.
While a regular PCA embedding does not directly convey insights, arranging
a few control points in different constellations, can highlight different semantic
aspects of the data.

Fig. 3. A dataset of facial images embedded in different ways. The left figure shows a
plain PCA embedding, while the other two figures use LSP to group the control points
by person and by pose (looking-straight, -up, -left and -right), respectively.

2 Method

Consider a dataset X with n data records x1, ..., xn from an instance space
X ⊆ Rd and the general task to map {x1, ..., xn} into an embedding space
Y ⊆ R2, yielding {y1, ...yn}. To determine this mapping, the user chooses a set
of k data records from X , denoted by X̂, and fixes their coordinates in the
embedding space, providing Ŷ . For the purpose of our application, we consider
the desired projection P : X → Y to be the linear projection matrix with the
least squared error in mapping X̂ to Ŷ . Regarding X̂ and Ŷ as data matrices of
shape d× k and 2× k we can formulate the system of linear equations PX̂ ≈ Ŷ ,
which can be solved for P with least squared error efficiently, especially since
the calculation only depends on k and not all n data points. The least squares
projection matrix P is then used to determine the final embedding Y of all
n data points X by matrix multiplication PX = Y . Note, that every time Ŷ

Paurat et al. 2013
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Table 1: Exemplary results of the ten highest quality patterns, delivered by different pattern-mining approaches on the cocktail

dataset. Note that here the top-10 frequent item sets are also all closed. The high-lift patterns were sampled according to their rarity

measure [6]. In case of subgroup discovery, the label indicates whether a cocktail is creamy or not.

Unsupervised pattern-mining methods Supervised pattern-mining methods

Frequent (closed) item sets Sampled patterns with high lift closed subgroups �1-relevant subgroups

Vodka Vodka & Cranberry juice Baileys Baileys
Orange juice Vodka & Triple sec Crème de cacao Crème de cacao

Amaretto Baileys & Kahlúa Milk Milk
Pineapple juice Vodka & Gin Kahlúa Kahlúa

Grenadine Vodka & Blue curaçao Baileys & Kahlúa Cream
Gin Pineapple juice & Malibu rum Cream Irish cream

Baileys Vodka & Amaretto Irish cream Crème de banana
Tequila Vodka & Rum Vodka & Baileys Butterscotch schnapps
Kahlúa Orange juice & Amaretto Crème de banana Whipped cream

Triple sec Vodka & Tequila Baileys & Butterscotch schnapps Vodka & Kahlúa

points and relocating them in a playful manner, the analyst can see
how other patterns relate, as they move accordingly. On the other
hand, the analyst does not have to ‘play’ with the embedding, but
can also directly express desired similarities among patterns by se-
lecting similar ones and placing them close to each other in the
embedding. In this way the analyst can also incorporate domain
knowledge into the embedding. The above mentioned structures
that occur in the visualization can come in various shapes; clusters
of patterns, regions of higher density, outliers, or mirroring shapes
can all be fruitful to investigate. Reasoning about the contents of
these structures and how they differ from another usually uncovers
interesting aspects about the patterns and the original dataset.

4. AN EXEMPLARY STUDY

In this section, we demonstrate the use of our interactive pattern-
exploration approach by performing an artificial exemplary knowl-
edge discovery session on a cocktail-ingredient dataset. The data is
an excerpt of the drinks presented on the website webtender.com.
It can be downloaded, together with our interactive embedding tool
from http://kdml-bonn.de/InVis. In the following we give an exam-
ple of a concrete instantiation of the above introduced framework.
This setup is precisely the workflow that we use in our exemplary
study in Section 4.1. For the other examples in Sections 4.2 and
4.3, only the first step changes, as the pattern collection is retrieved
using different algorithms.

1. Mine the 1000 most-frequent item sets from the cocktail
dataset. Here, every cocktail is described as the set of ingre-
dients it contains.

2. Represent each of the 1000 frequent item sets by a binary
vector over all occurring items of the pattern collection in
lexicographical order.

3. Visualize the pattern vectors, using the most-likely embed-

ding technique with an initial PCA embedding as the prior
mean and interact with it to shape out interesting structures.

4. Inspect these structures by highlighting patterns that contain
certain ingredients and by listing the five most-present single
items of the structure in a tag cloud.

A list of the ten highest-quality patterns, found by several classical
pattern-mining algorithms, is given as a reference in Table 1. The
first three methods, frequent, closed frequent, and sampled high-lift

patterns, do not consider label information, but provide us with an
overview on the most-striking ingredients and ingredient combina-
tions. The subgroup- and relevant-subgroup-discovery methods on
the other hand do use a label and show us ingredients (and their
combinations) that are strongly related to it. For these methods, we
manually assigned a label to each cocktail according to whether it
is “creamy”. In Sections 4.1, 4.3 and 4.2 we will apply our interac-
tive approach on the output of different pattern-mining algorithms
with the goal of gaining additional insights into the results of Table
1 and to understand the patterns’ relations. In each session we mine
1000 patterns and represent them as binary vectors over all items
that occur within the patterns, sorted in lexicographical order. We
then visualize the mined patterns using an interactive embedding
technique and search for emerging structures in an interactive man-
ner.

In the following studies we employ a variant of Iwata, Houlsby and
Ghahramani’s most-likely embedding technique [17] to interact
with the embedding via control points. The general idea behind
this method is to customize a matrix that projects the data into
the embedding space in a probabilistic way. This projection ma-
trix is assumed to be matrix-normal distributed, a matrix-valued
extension to the normal distribution. Ultimately, MLE calculates
the embedding with the least uncertainty about the placement of
the data records, given a prior belief on the projection matrix and
conditioned on the control points’ placements as evidence. In con-
trast to Iwata et al.’s method we do not use the Laplacian of the
nearest-neighbour graph, but instead the projection onto the first
two principal components as prior belief about the embedding (see
Appendix A.1).

Finally, inspecting the structures that emerge when interacting with
the embedded patterns can be done in various ways. In our exem-
plary study we use two simple, yet effective methods. The first is
highlighting all the patterns within the embedding that contain an
item of interest. Second, we also consider presenting the five most-
frequently occurring items in a studied structure in a tag cloud. It
is also possible to use more-sophisticated methods to study the pat-
tern distribution. For example, we could perform pattern mining
on the previously discovered patterns that form such a structure.
Alternatively, we can also find a single well-suited representative
pattern of the structure However, as our study shows, it is possi-
ble to gain insights and craft hypotheses using only our employed
naïve methods.
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• Mine patterns, represent them with high-dimensional 
vectors, and then reduce dimensionality to 2


• Patterns = frequently occurring combinations of ingredients 
of coctails


• Clusters of patterns represents ~classes of coctails
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4.1 Frequent Itemsets

In this section we show our proposed approach in action and
demonstrate how the frequent patterns reflect rudimentary prop-
erties of the original dataset. Note that investigating the most
frequent item sets with our proposed method serves mostly the pur-
pose of a sanity check and demonstrating our approach in action.
Figure 1 shows the 1000 most-frequent item sets of the cocktail
dataset represented as binary vectors over all items, embedded onto
their first two principal components. Immediately, we can see two
well separated clusters that resemble roughly in their shape. In-
vestigating these clusters closer reveals that the right one contains
only patterns that include the ingredient Vodka, the most-frequent
single item in the original dataset, whereas the left one doesn’t (see
Figure 1, left). The second most-frequent ingredient, Orange juice,
determines whether a pattern is mapped to the top or to the bottom
of the embedding (see Figure 1, right).

Figure 1: The 1000 most-frequent item sets of the cocktail

dataset, embedded onto their first two principal components,

labeled by the presence of Vodka (left) and Orange juice (right).

Interacting with the embedding by relocating two control points,
as shown in Figure 2, unravels the blending of the patterns that
contain Orange juice and the ones that don’t. The resulting four
clusters clearly separate the patterns by their presence or absence
of the ingredients Vodka and Orange juice.

Figure 2: Dragging two control points (emphasized in blue) to

new locations, reveals a structure that was previously hidden in

the PCA embedding. The four clusters indicate the presence or

absence of the two ingredients Vodka and Orange juice.

Figure 3 inspects one of these emerging structures, the top-right
“Vodka and no Orange juice cluster” from Figure 2, in a closer
manner.
With a glance at the top-left picture of Figure 3 we can see that the
corresponding patterns containing Vodka but no Orange juice also
frequently contain other strong alcohols, especially Rum, Gin, and
Triple sec. We can also observe a sub-cluster structure within this
particular embedding, which is determined by the presence or ab-
sence of the ingredients Rum (top-right, highlighted in green) and
Gin (bottom-left, highlighted in blue). The ingredient Triple sec

Figure 3: A closer look at the top-right cluster of Figure 2 re-

veals the ingredients that the patterns from the “Vodka and no

Orange juice cluster” are frequently mixed with (top-left). The

other three pictures indicate the presence of Rum (highlighted

in green), Gin (blue), and Triple sec (red).

(bottom-right, highlighted in red), although frequent within this
cluster, seems not to contribute to the sub-structure, but can be
found in all of the sub-clusters. This is an interesting finding, as
Triple sec is much more frequent than Rum. In fact, Rum does not
even occur among the ten most-frequent ingredients, yet it has a
striking influence on the structure of this cluster. Note that this
is an insight that could not have been drawn purely from the re-
sults of Table 1. In the following sections we will perform sim-
ilar studies with pattern collections that were drawn according to
more-sophisticated interestingness measures than frequency of oc-
currence.

4.2 Sampled Patterns

A fruitful way to quickly draw patterns from a dataset according
to different interestingness measures is to sample. Although sam-
pling itself provides diversity among the drawn patterns, sorting
them by the measure and listing only the top-k ones can reintro-
duce a certain amount of redundancy. On the other hand, diversity
is not impaired when exploring the set of all sampled patterns in
our proposed way and the analyst is further enabled to discover the
different concepts among the patterns. In this study, we sampled
1000 patterns from the cocktail dataset, according to their rarity
measure, a variant of the lift measure which promotes patterns con-
taining items that are statistically dependent (see Appendix A.2).
The samples were drawn using the direct local pattern sampling

tool which was provided to us by Boley et al. [6] and can be down-
loaded from http://kdml-bonn.de/?page=software_details&id=23.

The retained collection of the sampled patterns demonstrates well
how our proposed approach benefits from the use of interactive em-
bedding techniques. The plain PCA embedding of the frequent pat-
terns in the previous Section 4.1 already exhibited a clear structure,
which directly invited the analyst to further explore it. For this par-
ticular set of sampled patterns, however, this is not the case. Figure
4 shows the sampled rare patterns embedded into two dimensions,
using different techniques, namely PCA, Isomap, and locally linear
embedding.1

1 The latter two techniques estimated the assumed lower-
dimensional manifold via the 10-nearest-neighbour graph.
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Fig. 1. Overview of the interaction process.

−2 −1 0 1

−1
0

1
2

PCA1[0.093] = +0.71 (X1) −0.71 (X2) +0.01 (X3)

PC
A2

[0
.0

49
] =

 +
0.

71
 (X

1)
 +

0.
71

 (X
2)

 −
0.

07
 (X

3)

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ● ●

●
●

●

●

●

●●

●

●
●

●

● ●

●

●
●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●●

●

●

●

●●

●
● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

−2 −1 0 1

−1
0

1
2

PCA1[0.093] = +0.71 (X1) −0.71 (X2) +0.01 (X3)

PC
A2

[0
.0

49
] =

 +
0.

71
 (X

1)
 +

0.
71

 (X
2)

 −
0.

07
 (X

3)

●

●
●
●

●

●

●●●

●

●●●
●

●

●
●

●
● ●

●

● ●

●●●

●
●

●
●

●● ●

●●
●

●

●

●

●
●●

●
●
●

●

●

●●
●

●●
●●
● ●●

●

●

●
●

●●
●

●

●
●

●
●

●

●

●
●

●●
●

●

●

●●
●
●

●

●

●
●

●●●

●
●

●●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●●
●

●
●

●

●

●
●

●
●●

●●

●

●

●

●

●
●

●
●●

●

●

●
● ●

●

●

●

●●

●

●

●

●
● ● ●

●
●

●

●

●

●●

●

●
●

●

● ●

●

●
●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●●

●

●

●

●●

●
● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

−0.5 0.0 0.5 1.0 1.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

PCA1[0.00022] = +0.97 (X3) +0.19 (X2) +0.13 (X1)

PC
A2

[6
e−

06
] =

 +
0.

98
 (X

2)
 −

0.
19

 (X
3)

 +
0.

01
 (X

1)

●●

●●
● ●

●●
●

●●
●

●●

●
●●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

● ●

●

● ●●

●
●

● ●●

●

●

●
●

● ●
●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●●
●●

●

● ●
●
●

●

●

●
●
●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●
●● ●●

●

●

● ●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●●

●

●

●

●● ●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

(a) (b) (c)

Fig. 2. Synthetic data with 3 dimensions. (a) Projection of the data to the first two principal components together with a sample of background distribution;
(b) After the user’s knowledge is taken into account, the updated background distribution matches the data in this projection; (c) The user is then shown the
next most informative projection.

is the one that (for a certain statistic) is maximally different
with respect to the background distribution that represents the
user’s current understanding of the data.

In addition to showing the data in the scatterplot, we display
a sample from the background distribution as gray points (and
lines that connect the respective points, to give an indication
of the displacement in the background distribution, per data
point); see Fig. 2 for an example and Sec. III for details.
The data analyst’s interaction consists of informing the system
about sets of data points they perceive to form clusters within
this scatter plot. The system then takes the information about
the user’s knowledge of the data into account and updates the
background distribution accordingly (Fig. 2b).

When we have ascertained ourselves that the background
distribution matches the data in the projection as we think
it should, the system can be instructed to find another 2-
D subspace to project the data onto. The new projection
displayed is the one that is maximally insightful considering
the updated background distribution. The next projection is
shown in Fig. 2c and reveals that one of the three clusters
from the previous view can in fact be split into two. The user

can now add further knowledge to the background distribution
by selecting the two uppermost clusters and the process can be
repeated. For our 3-D dataset, after the background distribution
is updated upon addition of the new knowledge, the data and
the background distribution match, and in this case, further
projections will not reveal any additional structure.

A. Contributions and outline of the paper
The contributions of this paper are:
- We review how to formalize and efficiently find a back-

ground distribution accounting for a user’s knowledge, in
terms of a constrained Maximum Entropy distribution.

- A principled way to obtain projections showing the
maximal difference between the data and the background
distribution for the PCA and ICA objectives, by whitening
the data with respect to the background distribution.

- An interaction model by which the user can input what
she has learned from the data, in terms of constraints.

- An experimental evaluation of the computational perfor-
mance of the method and use cases on real data.

- A free open source application demonstrating the method.

Tell the me something I don't know

• We model user's knowledge of the data (background model)

• We show the user the view in which the data and the background model differs 

most

• Each time the user observes something marks it (e.g., cluster, outlier) the 

background model is updated accordingly

• Uses dimensionality reduction to produce views (tuned to show maximal difference 

between data distributions)

• Visually controllable data mining. Extension of Furnas' effective view navigation to 

the context of having automated analysis. Puolamäki et al. 2010, https://doi.org/
10.1109/ICDMW.2010.141


• Demo (implemented by R Shiny) http://www.iki.fi/kaip/sider.html

• Puolamäki et al. 2017, https://arxiv.org/abs/1710.08167 
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 Interactive Visual Data Exploration with
Subjective Feedback — sideR

Kai Puolamäkia,b, Emilia Oikarinenb, Bo Kangc, Jefrey Lijffijtc, Tijl De Biec

a Department of Computer Science, Aalto University, Helsinki, Finland
b  Finnish Institute of Occupational Health, Helsinki, Finland

c Data Science Lab, Ghent University, Ghent, Belgium

+ handling large data 
+ handling high-dimensional data 
+ making analytic comparisons 
- identifying patterns truly relevant for the user 
- black boxes, incomprehensible for the user

+ huge background knowledge 
+ spotting patterns 
- handling large, high-dimensional data 
- making analytic comparisons

Summary We introduce a novel generic method for interactive visual exploration of high-dimensional data. We 
construct a theoretical model where identified patterns can be input as knowledge to the system. This background 
knowledge is used to find a Maximum Entropy distribution of the data, after which the system provides the user data 
projections in which the data and the Maximum Entropy distribution differ the most, hence showing the user aspects of 
the data maximally informative given the user's current knowledge.

For details, see: Kai 
Puolamäki, Emilia 
Oikarinen, Bo Kang, 
Jefrey Lijffijt, Tijl De 
Bie. Interactive Visual 
Data Exploration with 
Subjective Feedback:  
Information-Theoretic 
Approach, arXiv:
1710.08167, 2017

• Data = real vectors
• Background distribution (a) = 

Maximum Entropy distribution 
satisfying constraints (initially: no 
constraints, unit Gaussian spherical 
distribution with zero mean)
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• Direction-preserving whitening transformation of 
the data results in a unit Gaussian spherical 
distribution, if the data follows the current 
background distribution

• PCA/ICA used to find non-Gaussian directions: 
subjectively interesting projection of data (b,c)

• User observes patterns and adds 
respective constraints (d,e)

• Background distribution is updated (f); 
the process is iterative

• Various constraints based on simple 
linear and quadratic constraints

Whitened data 
after adding 
cluster constraints 
for the visible 
clusters

Black dots = data
Gray dots = sample 
from background 
distribution
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http://www.iki.fi/kaip/sider.html !18



Student presentations

• Global warming (A1E3):

• Eetu Rantanen

• Savolainen Eerika


• Eurostat (A2E2):

• Yuan Zheng: green house gas (GHG) emission 

• Kévin Selänne: Timeseries (2000–2014) of patents

• Tuomo Kivekäs: Broadband internet penetration
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