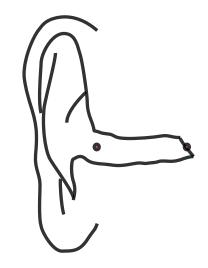
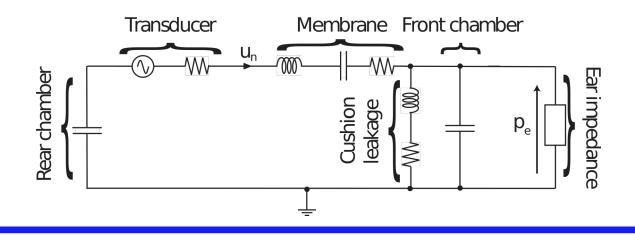
ELEC-5630 Acoustics and Audio Technilogy Seminar


Headphone acoustic coupling to the ear and equalization methods for binaural reproduction

D.Sc. (Tech) Javier Gómez Bolaños

Outline

- Acoustic system description
 - Pressure chamber principle
 - Transmission line model
- Equalization for binaural rendering
 - Model of the external ear
 - Binaural filter design
 - Headphone response inversion
 - Binaural filters post-EQ
- Hefio self-calibrated headphones

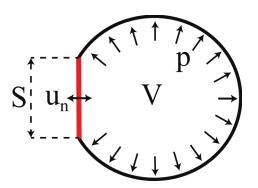


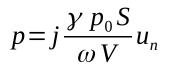
hefio

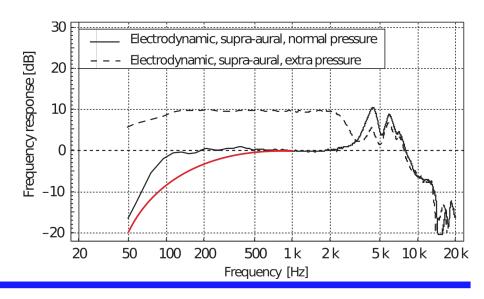
Acoustic system

- Radiating element is close to the ear
- Ear is somehow enclosed

- Rear chamber Transducer Front chamber Cup Ear cushion Concha Ear canal Ear drum
- All elements of the headphone may affect its acoustic properties
- Shifting of the headphone position may change its response
- Different type of headphones requires different approaches




hefio


Javier Gómez Bolaños

Pressure chamber principle

- Wavelength >> maximum dimension
- γ ratio of specific heats
- p_o atmospheric pressure
- Pressure inside *V* is proportional to the
- velocity of the vibrating surface
 - Pressure is uniformly distributed
 - Sensitive to leakage

Javier Gómez Bolaños

Transmission line model

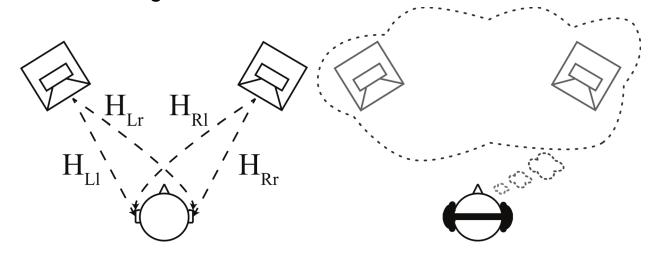
- Models the ear canal
- Wavelength > diameter of ear canal
 - Plane wave propagation
- γ propagation coefficient
- *L* length of the ear canal
- *L* is not constant with frequency
- γ contains absorption that is hard

to model/measure

• Z_d is unknown

$$P_{e} \xrightarrow{Q_{d}} P_{d}$$

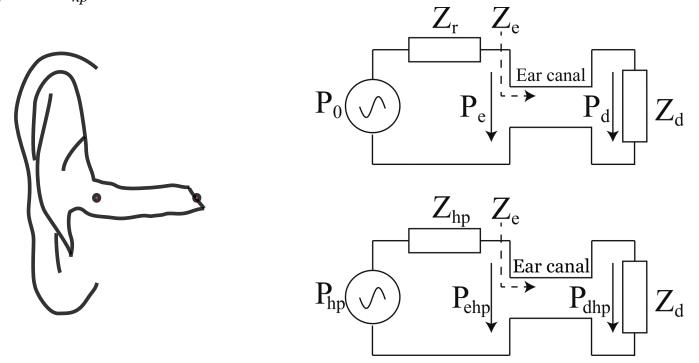
$$P_{e} \xrightarrow{I} Z_{W}, \gamma \xrightarrow{I} Z_{d} P_{d}$$


$$L$$

$$\begin{bmatrix} P_{e} \\ Q_{e} \end{bmatrix} = \begin{bmatrix} \cosh(\gamma L) & Z_{w} \sinh(\gamma L) \\ \frac{1}{Z_{w}} \sinh(\gamma L) & \cosh(\gamma L) \end{bmatrix} \begin{bmatrix} P_{d} \\ Q_{d} \end{bmatrix}$$

$$\gamma = \alpha + jk\,\omega$$

Equalization for binaural rendering

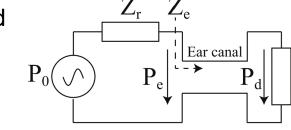

- Synthesis of sound signals at the listener's ears for emulating the auditory impression of real sources
- Using measured or simulated binaural responses (HRTF, BRIR), or binaural recordings

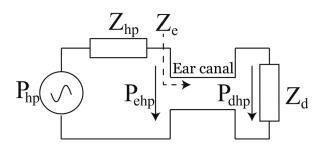
Model of the external ear [1]

- P_o and P_{hp} are the sound signals at the entrance of the blocked ear canal for the free-air and headphone cases
 - Z_r and Z_{hp} is the radiation impedance of the ear for both cases

hefio

Javier Gómez Bolaños


Binaural filter design^[1]


- P_o , P_e , and P_d can be a HRTF, BRIR, or binaural recordings (Individual vs generic)
- P_{hp} , P_{ehp} , and P_{dhp} (HpTF) should be inverted

 H_{Γ}

Ideal case:

• Inversion may be a problem

• Blocked ear:

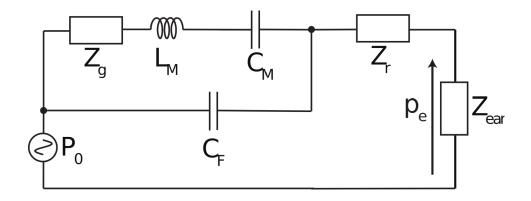
Open ear:

$$H_{B} = \frac{P_{0}}{P_{hp}}$$

$$H_E = \frac{P_e}{P_{e_{hp}}} = \frac{P_0}{P_{hp}} \frac{Z_r + Z_e}{Z_{hp} + Z_e} = \frac{P_d}{P_{d_{hp}}}$$

hefio

Javier Gómez Bolaños


1.4.2019

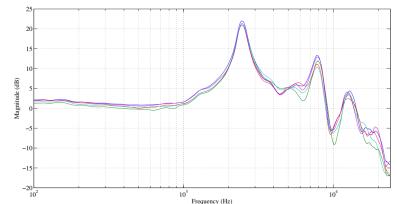
Zd

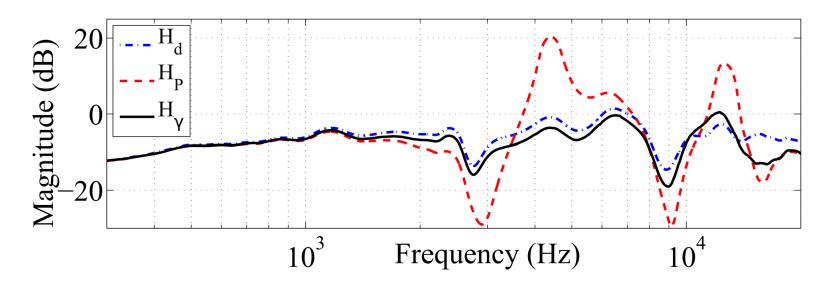
Hefio Oy

Binaural filter design

- Blocked ear:
 - If $Z_{hp} = Z_r$, the headphone is Free-air equivalent coupling (FEC) compliant

and $H_{\rm B} = H_{\rm D}$

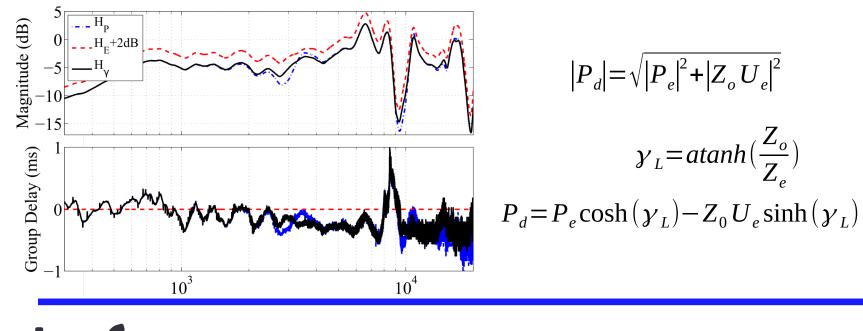

• But only few headphones are close to be FEC compliant


Binaural filter design

Open ear:

- Entrance position is hard to define
- If P_{ehp} position changes with respect

to P_{e} large errors can occur

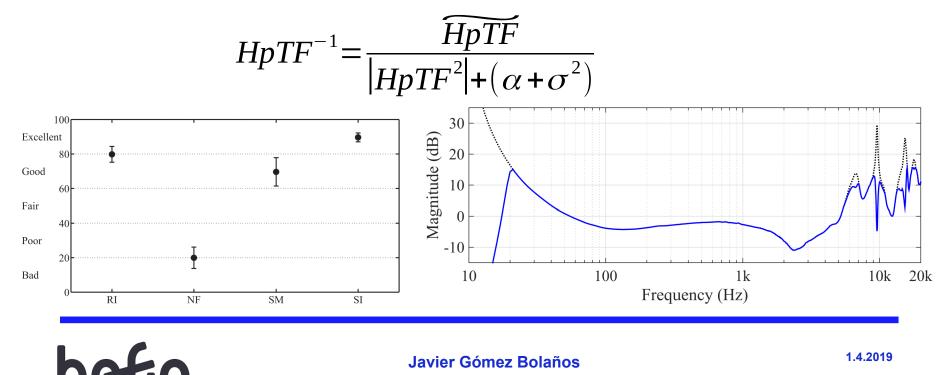


hefio

Javier Gómez Bolaños

Binaural filter design ^{[2] [3]}

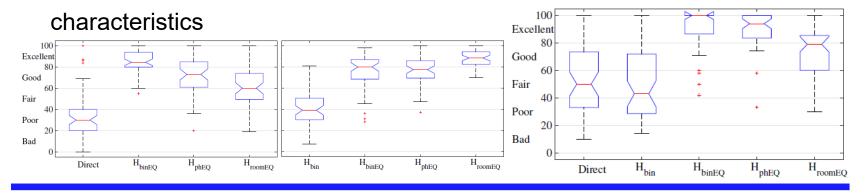
- At eardrum:
 - Hazardous in practice
 - Can be estimated if P_e and U_e are known: \rightarrow Microflown
 - Immune to microphone shift (till some degree)

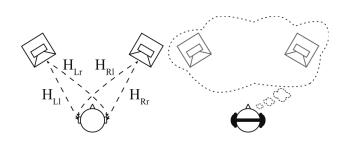


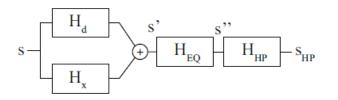
10

Javier Gómez Bolaños

Headphone response inversion


- When inverting the HpTF, large notches should be avoided to minimize errors due to repositioning or mic displacement
 - Typical methods: Regularized inversion, HpTF Smoothing, statistical smoothing
 - Sigma regularization: automatic regularization factor [4]




Hefio Oy

Binaural filters post-EQ

- Post-EQ of binaural filters for better sounding
- Stereo enhancements:
 - Add spatial information to the sound
 - Based in some type of binaural rendering
 - Timbre is affected
- Method to preserve the sound quality of the headphone ^[5]
 - Flatten the sum of the cross-talk to maintain the headphone sound

Javier Gómez Bolaños Hefio Oy

13

Bibliography

[1] H. Møller, *"Fundamentals of binaural technology"*, Applied Acoustics '92.

[2] M. Hiipakka, M. Karjalainen, and V. Pulkki, *"Estimating pressure at eardrum with pressure-velocity measurement from ear canal entrance,"* WASPAA '09.

[3] J. Gómez Bolaños, and V. Pulkki, "Estimation of pressure at the eardrum in magnitude and phase for headphone equalization using pressure-velocity measurements at the ear canal entrance," WASPAA '15.

[4] J. Gómez Bolaños, A. Mäkivirta, and V. Pulkki, *"Automatic regularization parameter for headphone transfer function inversion,"* JAES '16.

[5] J. Gómez Bolaños, A. Mäkivirta, and V. Pulkki, *"Headphone stereo enhancement using equalized Binaural responses to preserve headphone sound quality,"* AES Headphone Conference '16.

Hefio

- Design of a self-calibrated headphone
 - Founded by D.Sc (Tech) Marko Hiipakka
 - Headphone measures the user's ear acoustics and flattens its response at the eardrum

Hefio One: (obsolete)

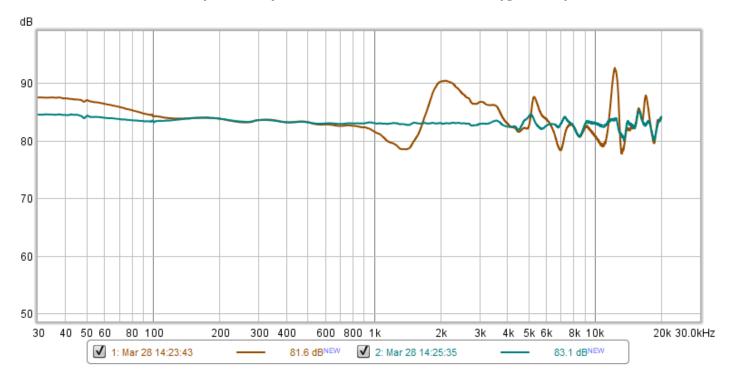
- Mobile/PC App
- DSP in server
- Flattens response at eardrum
- Introduce a "natural" target function

Hefio

Hefio Play:

Intended for professionals who want a portable "studio" (or configurable) sound

- Autonomous system
- USB powered
- DSP embedded
- Flattens response at eardrum
- GUI for configuration
- Introduce selectable target function
- Selectable binaural stereo filters
- 3-bands EQ
- Extra functionality:
 - Sound level meter
 - Sound level exposure time


hefio

Javier Gómez Bolaños

Hefio

Response at the eardrum of an artificial ear after calibration on human's ear (brown) and on artificial ear (green)

hefio

Thanks for your attention!

Any question? Do you want to test the demo?