Decision making and

problem solving —
Lecture 1

. EI itation of probabilitie




Motivation

L You have just revised some key concepts of probability calculus
o Conditional probability
o Law of total probability
o Bayes’rule

O This time:
— How to build a probability-based model to support decision-making under
uncertainty?
— How to elicitate the probabilities needed for these models?
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Why probabilities for modeling
uncertainty?

O Decisions are often made under uncertainty
d “How many train drivers should be trained, when future traffic is uncertain?”

Q “Should I buy an old or a new car, given that | only need an operational one and
want to minimize costs = purchase price, maintenance & repair costs, selling
price, etc.?”

Q “Should I buy my first my apartment now or postpone the decision, given that
future interest rates, mortgage costs, personal income and apartment prices are
uncertain?”

O Probability theory dominates the modeling of uncertainty in
decision analysis
— Well established rules for computations, understandable
— Other models (e.g., evidence theory, fuzzy sets) exist, too
P e,
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Conditional probabilities et~ ooss

O The probabilities of
sequential, mutually
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L We are interested in

What If...

This metro train
is on time

0.05

‘ 0.95

This metro train
is cancelled

financial aspects and
assume that being late
results in unwanted financial
consequences (Cost 1)?

U numerical outcomes for states
You had a possibility to
influence the probability
p(this metro trainison .t
time | metro driver of this awainissi
train is sick) by use of extra
personnel (help) at a cost
(Cost 2)?

U Now the event probabilities
depend on your decision
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L Decision-making under uncertainty can be
modeled by a decision tree

d Decision trees consist of
(squares) — DM can choose which arc to follow

—  Chance nodes (circles; cf. states of nature) — chance represented by
probabilities dictates which arc will be followed (states of nature). The
probabilities following a chance node mustsum up to 1

—  Consequence nodes (triangles; resulting consequences) — at the end of
the tree; describe the consequence (e.g., profit, cost, revenue, utility) of
following the path leading to this node

L Decisions and chance events are displayed in a

logical temporal sequence from left to right

U Only chance nodes whose results are known can precede a decision
node

L Each chain of decisions and chance events
represents a possible outcome

,, Aalto University
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Take an umbrell

Do not take an
umbrella

It will not rain, p=0.6

It will rain, p=0.4

It will not rain, p=0.6

It will rain, p=0.4 < .
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Solving a decision tree

3 Adecision tree is solved by starting Evegg | Wilrain, p=04

from the leaves (consequence
nOdeS) and going backward toward Take an umbrella
the root:

— At each chance node: compute the
expected value at the node Do not take an

— Ateach decision node: select the arc with umbrella
the highest expected value

It will not rain, p=0.6

It will rain, p=0.4

EV=6

10

It will not rain, p=0.6

O The optimal strategy consists of the
arcs selected at decision nodes
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Example: Decision tree (1/12)

= Your uncle is going to buy a tractor. He has two alternatives:
1. A new tractor (17 000 €)
2. A used tractor (14 000 €)

= The engine of the old tractor may be defect, which is hard to ascertain. Your uncle
estimates a 15 % probability for the defect.

= |f the engine is defect, he has to buy a new tractor and gets 2000 € for the old
one.

= Before buying the tractor, your uncle can take the old tractor to a garage for an
evaluation, which costs 1 500 £.

= [f the engine is OK, the garage can confirm it without exception.

= |f the engine is defect, there is a 20 % chance that the garage does not
notice it.

= Your uncle maximizes expected monetary value

/é' Syst_em_s Analysi_s Laboratory _
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Example: Decision tree (2/12)

= Before making the buying decision and before you get to know
the result of any uncertain event, you must decide upon taking
the old tractor to a garage for an evaluation.

» The decision node ‘evaluation’ is placed leftmost in the tree

Evaluation

No evaluation

é Systems Analysis Laboratory
9/56
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Example: Decision tree (3/12)

= |f the old tractor is evaluated, your uncle receives the results of the evaluation

Result; “OK”

Evaluation

Result: “Defect”

No evaluation

% Systems Analysis Laboratory

W Helsinki University of Technology ~ eLearning 10/56



Example: Decision tree (4/12)

= The next step is to decide which tractor to buy

Result: “OK” New

D< old

Evaluation

New

Result: “Defect”

Old

New
No evaluation E|<
Old

é Systems Analysis Laboratory

Helsinki University of Technology elLearning
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Example: Decision tree (5/12)

= ...But the engine of the old tractor can be defect
Result: “OK”

New
Old
Evaluation No defect
e ., New
Result: Defe%
old No defect

New
No evaluation E|< Defect
|
Old O< No defect

= Now all chance nodes and decisions are in chronological order such
that in each node, we can follow the path to the left to find out what we

know

~ Systems Analysis Laboratory
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Example: Decision tree (6/12)

= We next need the probabilities for all outcomes of the chance nodes

P(result "OK”) —— Result: “OK” New P( Defect |.result OK™)
v
old Defect
Evaluation No defect

w P("No defect” | result " OK")

Ne
) . Result: “Defect” (" Defect” | result " Defect”)
P(result " Defect”) Defect
|
Old No defect

P("No defect” | result " Defect”)

New
No evaluation E|< Defect P("Defect”)
|
Old O< No defect

\

P("No defect”)

Helsinki University of Technology elLearning 13/56



Remember: Law of total probability

4 If E,,...,E, are mutually exclusive and A = U; E;, then
P(A)=P(AIE))P(E))+...+P(A[E,)P(E,)

O Most frequent use of this law:
— Probabilities P(A|B), P(A|B¢), and P(B) are known
— These can be used to compute P(A)=P(A|B)P(B)+P(A|B°)P(B®)

,, Aalto University
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Remember: Bayes’ rule

P(B|A)P(A)
P(B)

d Bayes'rule: P(A|B) =

L Follows from

1.  The definition of conditional probability: P(A|B) = P(BN4)

P(4) '

P(ANB)

“n), p(BlA) =

2. Commutative laws: P(B N A) = P(4A n B).

,, Aalto University
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Example: Bayes’ rule

This metro train
is on time

0.05

A metro train is cancelled (event C) and we have not

had the opportunity to call help. What is the probability

that the driver originally allocated to drive the train is

sick (event S)? = Whatis P(S|C)? Metro driver of

a trainis sick 0.05

Solution: Q

O P(S)=0.05, P(S%)=0.95, P(C|S)=0.95, P(C|S¢)=0.05

0.95

This metro train
is cancelled

This metro train
is on time

Metro driver
Law of total probability: P(C)=P(C|S)P(S)+P(C|S¢) P(S¢c)=  notsick
0.95x 0.05 + 0.05 x 0.95 =0.095 008

Bayes ule: P(SI0) = 5 = £ = 5o i
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Example: Decision tree (7/12)

= Solve all probabilities. You know that
= "Your uncle estimates a 15 % probability for the defect.” => P(Defect)=0.15

= “If the engine is OK, the garage can confirm it without exception.” => P(result
“OK” | No defect)=1

= “If the engine is defect, there is a 20 % chance that the garage does not
notice it.” => P(result “OK” | Defect)=0.20

=

7

\/

Systems Al
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P(result "OK") = P(result "OK" | No defect) - P(No defect) + P(result "OK" | Defect) - P(Defect)

=1.0-0.85+0.20-0.15=0.88

P(result "defect")=1- P(result "OK") =0.12

P(result "OK" | Defect) - P(Defect) 0.20-0.15
P(result "OK") ~0.88

P(No defect | result "OK") =1-0.034 = 0.966

P(result "defect”| Defect) - P(Defect) 0.80-0.15
P(result "defect") 012

P(No Defect | result "defect”) =1-1=0

P(Defect | result "OK") = ~0.034

1.00

P(Defect | result "defect”) =



Example: Decision tree (8/12)

= Compute monetary values for each end node
= Evaluation + new = 1500 + 17000 = 18500
= Evaluation + old with defect = 1500 + 14000 — 2000 + 17000 = 30500
= Evaluation + old without defect = 1500 + 14000 = 15500
= No evaluation + new = 17000
= No evaluation + old with defect = 14000 — 2000 + 17000 = 29000
No evaluation + old without defect = 14000

New

Result: “OK” Defect
Old

Evaluation mt

New
Result: “Defect” Defect
Old
New
No evaluation
/é‘ Systems Analysis Labolatory EI< Old Defect
N Helsinki University of Technology eLearning O< RS defect




Example: Decision tree (9/12)

= We now have a decision tree presentation of the problem

Result: “OK” Rew -18 500

088 old 0.034 Defect -30 500

Evaluation 0.98 No defect -15500
New -18 500

Result: “Defect” ) No defect -15 500

New -17 000

- old 0.15 Defect 229 000

No evaluation 3 No defect 14 900

/é' Syst_em_s An_alysi_s Laboratory _
\ Helsinki University of Technology elLearning 19/56



Example: Decision tree (10/12)

= Starting from the right, compute expected monetary values for each
decision

=  Place the value of the better decision to the decision node

EMV(OId | result “ok™)= 0.034 x -30500 +
0.966 x -15500=-16010

EMV(New | result “ok™)= -1850
Result: “OK” ( | ) -98 500

0,88 (o), 00saDelect 5 5o
Evaluation -16010 — No defect ;5 50

0.966
New ——— 18500
0.12 P K 0ld ~ ——5— -30500
Result: “Defect ) No defect ;15500
New

No evaluation Defoct -17 000
A old ~22 -29 000

é Systems Analysis Laboratory No defect

\" Helsinki University of Technology elLearning 0.85 '11%):@0



Example: Decision tree (11/12)

= Starting from the right, compute expected monetary values for each
decision

=  Place the value of the better decision to the decision node

0.88 x -16010 + 0.12 x -18500 =
-16309

New -18500
T_I Result: “OK” - -18 500
0.88 - 16010 -30 500
-16309 16010 @ O<< No defect
. -15 500
Evaluation

-18500
% 15500
) Old )
Result: “Defect No defect -15 500

New -17000 17 000

2 oustems Analvsis Laborat ' No defect
\éf H)élssienTiSUn?\E/igrSslify;'I?erihor:glogy elLearning -16 0 1@1@3@0

0.12
-16250




Example: Decision tree (12/12)

= The optimal solution is to buy the old tractor without evaluating it

-16309
Evaluation

-16250

New -18500

0.88

Result: “OK” Defoct
16010
-16010 @ O No defect

-18500
-18500 @

0.12

1 Defect
« k& 7 Old
Result: “Defect No defect

é Systems Analysis Laboratory

N
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. -16250 New 17000
No defect
-16 O

-18 500
-30 500

-15 500

-18 500
-30 500
-15 500

-17 000
-29 000

-14 000
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... How much should we pay for the
sample information by the garage?

0 The expected monetary value was higher without evaluating the old tractor

O Determine evaluation cost ¢ so that you are indifferent between
1. Not taking the old tractor for an evaluation (EMV = -16250€)
2. Taking the old tractor for an evaluation

New -17000-c
Result: “OK” -17000-c

Defect
4510 - ¢ -29.000 - ¢
-14510-c¢ @

(New 47000-c 1700

-17000-c \— Defect
Result: “Defect 29000 No defect 14000 - ¢
O Indifference, when EMVs equal: -16250 = -14809 — ¢ => c = 1441€

0 EXxpected value of sample information = Expected value with sample information —
Expected value without sample information = -14809€ - (-16250€) = 1441€

,, Aalto University
School of Science 10.1.2019
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Example: expected value of perfect
Information

O You are considering between three Decision tree
investment alternatives: high-risk stock, low- - .
risk stock, and savings account Up (0.5)
L Savings account: certain payoff of 500€ Same (0.3) 1500
_ | 100
Q Stocks: High-Risk Down(0.2)

— 200€ brokerage fee Stock
— Payoffs depend on market conditions _ 1000
Low-Risk ~. / Same (0.3) 200

Up SENIE Down Stock N Down (0.2) 100
High-risk 1700 300 -800
Low-risk 1200 400 100 SeigsAccomt 500
Riooabiity U2 U2 o1 gource: Clemen, R.T. (1996): Making Hard Decisions: An Introduction to

Decision Analysis, 2nd edition, Duxbury Press, Belmont.

,, Aalto University
School of Science 10.1.2019
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Example: investing In the stock market

0 The expected monetary values Decision tree
(EMVs) for the different alternatives -
are EMV=580¢€ g 1500
Same {0.3) 100
— HRS: 0.5-1500+0.3-100-0.2:1000=580 it -
— LRS: 0.5-1000+0.3-200-0.2-100=540 Stock armysappalian
. EMV=540€ P 1000
— Savings Account: 500 Low-Risk Same (03) 0.
Stock ="\, Down (0.2) 100
— Itis optimal* to invest in high-risk Savings Account
stock __ EMV=500€

Source: Clemen, R.T. (1996): Making Hard Decisions: An Introduction to
Decision Analysis, 2nd edition, Duxbury Press, Belmont.

A’, Aalto University
School of Science . . .
e * Assuming you are risk-neutral !!! — risk 10-1-2032
attitudes discussed later on this course



O How much could the expected value be expected to increase, if
— Additional information about the uncertainties was received before the decision

— The decision would be made according to this information?
— Note: this analysis is done before any information is obtained

L Perfect information: certain information about how the
uncertainties are resolved — "if we could choose after we know the
state of the world”

O Expected value of perfect information = Expected value with perfect
information — Expected value without perfect information

O Expected value of perfect information is computed through a
reversed decision tree in which all chance nodes precede all
decision nodes

A’, Aalto University




Expected value of perfect information

Decision tree

Up (0.5)

EMV=580€| ~———— 1500
v Same(03) .

High-Risk Down (0.2
Stock ~1000

Low-Risk

EMv=540¢ Up (05) —

Same (0.3) 200

Stock

Expected value
without perfect
information

%D 2
own (0.2) - 100

Savings Account

=580€

500

EMV=500€

,, Aalto University
School of Science

Reversed decision tree: you know the state of the
world when making the decision(s)

High-Risk Stock

., Low-Risk Stock

Market Flat

Savings Account

High-Risk Stock

Expected value
with perfect
information =

0.5-1500+0.3-500
+0.2-500=1000€

= 1000€ - 580€ = 420€

0.3)

Market
Down
(0.2)

[

Savings Account

High-Risk Stock

Expected value of perfect information

W
\ Savings Account

1500
1000

500

100
200

500

- 1000
- 100

500

10.1.2019
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Probability assessment

O Use a few minutes to answer ten probability assessment questions
— You have either questionnaire sheet A or B

d Do not communicate with others

O Do not look up the answers on the internet

,, Aalto University
School of Science 10.1.2019
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Estimation of probabilities

O How to obtain the probabilities needed in decision models?
1. If possible, use objective data

2. If objective data is not available, obtain subjective probability
estimates from experts through
0 Betting approach
0 Reference lottery
0 Direct judgement

,, Aalto University
School of Science 10.1.2019
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Estimation of probabilities: Betting

approach

U Goal: to estimate the probability of event A

— E.g., A="GDP growth is above 3% next year” or A="Sweden
will join NATO within the next five years”

O Betting approach:

— Betfor A: win X € if A happens, lose Y € if not
- Expected monetaryvalue X - P(A) — Y - [1 — P(4)]
— Betagainst A: lose X € if A happens, win Y € if not
- Expected monetaryvalue —X - P(A) +Y - [1 — P(4)]
— Adjust X and Y until the respondent is indifferent between
betting for or against A
— Assuming risk-neutrality®™, the expected monetary values of
betting for or against A must be equal:
Y

X-P(A)-Y - [1-PA)]=—-X-PA)+Y - [1-PA]=>PA) =——

Bet
against A

X+Y
,, Aalto Univers_ity

10.1.2019
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Estimation of probabilities: Reference
lottery

A X

U Lottery: Lottery
— Win X if A happens Not A Y
— WinY if A does not happen mef. p X

— XispreferredtoY lottery
O Reference lottery: P Y

—  Win X with (known) probability p
— Win Y with (known) probability (1-p)
Probability p can be visualized with, e.g., a wheel of fortune

O Adjust p until the respondent is indifferent between the two lotteries:
X-PA+Y - [1-PA)]=X-p+Y-[1-p|=>PA)=p

U Here, the respondent’s risk attitude does not affect the results (shown later)

,, Aalto University
School of Science
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Reference lottery: example

O Event A: "HIFK wins Jokerit”

10e  Therespondent i ~r<]10€  The respondent
chooses the y oe chooses the lottery:
0¢€ reference lottery: NotA 1
10€ 5 Ref. z 10e 10-P(A) >10- A
e 10-P(A) <10-=  lotery
e 6 nEoEe N 0€
0€
Lottery ’ o€ Chooses A 10€ Chooses the
Lottery
reference
NotA~~ O€  the lottery: SySEEE
JH 1 COOEE y
Ref. 10 € P(A) > _ 10 € 2
lottery SEE 0e 2 . P(A) < §

32

These four answers revealed to probability estimate of A to

be in (0.5, 0.67). Further questions should reveal the
respondent’s estimate for P(A)

10.1.2019



Estimation of continuous probability
distributions

U A continuous distribution can be approximated by estimating several event
probabilities (X is preferred to Y)

0 Example:

— Goal: to assess the distribution of the change in GDP (AGDP) in Finland next year
— Means: elicitation of probability p for five different reference lotteries

1

AGDP-3% AGDP-1%

X X AGDPI0% X ool
0.8+
Y Y Y 0.7F
X X '
Y Y v 8 ol
AGDPUL5%, AGDP 4% ol
0.2+
0.75 Y Y 0af
. 0.95 ‘ ‘
X X (23 2 1 (o] 1 2 3 4
Y Y A GDP

,, Aalto University
School of Science 10.1.2019
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Estimation of continuous probability
distributions

O Often experts assess the descriptive statistics of the distribution
directly, e.g.,
— The feasible range (min, max)
— Median f; (i.e., P(X<f;;)=0.5)
— Other quantiles (e.g., 5%, 25%, 75%, 95%)

4 In the previous example:
— "The 5% and 95% quantiles are f; =-3% and fy; = 4%”
— "The change in GDP is just as likely to be positive as it is to be negative”
— "There is a 25% chance that the change in GDP is below -1%”
— "There is a 25% chance that the change in GDP is above 1.5%”

,, Aalto University
School of Science 10.1.2019
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O Decision trees are probability-based models to support decision-
making under uncertainty

— Which decision alternative should | choose?

— How much would I be willing to pay for perfect information or (imperfect) sample
information about how the uncertainties are resolved?

O Subjective probability assessments often required
— Probability elicitation techniques require some effort

A’, Aalto University
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problem solving —
Lecture 2

e Biases in probability assessment
» Expected Utility Theory (EUT)
« Assessment of utility functions
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O Decision trees are a visual and easy way to model decision-
making problems, which involve uncertainties
O Paths of decisions and random events

O Probabilities are used to model uncertainty
O Data to estimate probabilities not necessarily available

O We often need subjective judgements to estimate probabilities

A’, Aalto University



Biases Iin probability assessment

O Subjective judgements by both "ordinary people” and "experts” are
prone to numerous biases

— Cognitive bias: Systematic discrepancy between the ‘correct’ answer and
the respondent’s actual answer
o E.g., assessment of conditional probability differs from the correct value given by Bayes’ rule
— Motivational biases: judgements are influenced by the desriability or

undesirability of events
o E.g., overoptimism about success probabilities
o Strategic underestimation of failure probabilities

1 Some biases can be easy, some difficult to correct

,, Aalto University
School of Science 17.1.2019
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Representativeness bias
(cognitive)

O If x fits the description of A well,
then P(xeA) is assumed to be
large

O The ‘base rate’ of A in the
population (i.e., the probability of
A) is not taken into account

0 Example: You see a very tall man
In a bar. Is he more likely to be a

professional basketball player or
a teacher? Teachers

29 000 in Finland.

Assume the
teachers follow the
whole population’s
height distribution

Basketball players

’, Aalto University
School of Science 17.1.2019
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Representativeness bias =

0 What is 'very tall’?
d 195 cm?

QO Assume all BB players are very tall TIREgEeEAEAEAYAEEEERIEAY
: : s F B P PR OZ YO OROEOE oG
d Based on 30 min of googling?!, the share S FEEREESLRERDSE
of Finnish men taller than 195 cm
exceeds 0.3 % | S S e e ean
410" - = - ® = =
4 If BB players go the bar as often as A0S I S < S -
. . B v (B) (B) (B) (B) 0.4 (B)
teachers, it is more probable that the SRR I - NS £ S T T
very tall man is ateacher, if the share & | 78 &7 & 28 &7 £
of very tall men exceeds 0.31% o B 22w om @
— 2018 students’ responses: 80% teacher, 20% EI}?” S §§§ §§§ gé% §§§ §§§ égg
basketball player 62 | et 40 ozs oy a7 o
— Your responses: 82% teacher, 18 basketball §:§ii33?1371?3 1§§3§ EEE §§§ §§§ }§§3§ i§§§
player — 66 ... 100.0 995 999 100.0 1000 100.0|—
17.1.2019
5
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Representativeness bias

O Lindais 31 years old, single,
outspoken, and very bright. She
majored in philosophy. As a student,
she was deeply concerned with issues
of discrimination and social justice, and
also participated in antinuclear
demonstrations. Please check the most
likely alternative:

a. Lindais abank teller.
b. Lindais abank teller and active in the
feminist movement.

O Many choose b, although bca whereby
P(b)<P(a) __active in the feminist
— 2018 students’ responses: 67% a, 33% b. movement

— Your responses: 74% a, 26% b. L0

Bank tellers who are



When information about some uncertain event is obtained, people typically do not
adjust their initial probability estimate about this event as much as they should based
on Bayes’ theorem.

Example: Consider two bags X and Y. Bag X contains 30 white balls and 10 black balls,
whereas bag Y contains 30 black balls and 10 white balls. Suppose that you select one
of these bags at random, and randomly draw five balls one-by-one by replacing them in
the bag after each draw. Suppose you get four white balls and one black. What is the
probability that you selected bag X with mainly white balls?

Typically people answer something between 70-80%. Yet, the correct probability is
27128 = 96%.

2018 students’ responses: mean response 59%. The majority (57%) answered 50%.
Your responses: mean response 68%. Many (32%) answered 50%.

A’, Aalto University



Representativeness and
conservativism bias - debiasing

O Demonstrate the logic of joint and conditional probabilities and
Bayes’ rule

O Split the task into an assessment of

— The base rates for the event (i.e., prior probability)
— E.g., what is the relative share of bank tellers in the population? What are the relative shares
of teachers and pro basketball players?

— The likelihood of the data, given the event (i.e., conditional probabilities)

— E.g., what is the relative share of people active in the feminist movement? Is this share
roughly the same among bank tellers as it is among the general population or higher/lower?

— What is the likelihood that a male teacher is taller than 195cm? How about a pro basketball
player?

,, Aalto University
School of Science 17.1.2019
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Availability bias (cognitive)

L People assess the probability of an event by the ease with which instances or
occurences of this event can be brought to mind.

0 Example: In a typical sample of English text, is it more likely that a word starts
with the letter K or that K is the third letter?

— Most people think that words beginning with K are more likely, because it is easier to think of
words that begin with "K” than words with "K" as the third letter

— Yet, there are twice as many words with K as the third letter
— 2018 students’ responses: 13% first letter, 87% third letter.
— Your responses: 46% first letter, 54% third letter.

0 Other examples:

— Due to media coverage, the number of violent crimes such as child murders seems to have
increased

— Yet, compared to 2000’s, 18 times as many children were killed per capita in 1950’s and twice as
many in 1990’s

,, Aalto University
School of Science 17.1.2019
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Availability bias - debiasing

O Conduct probability training
O Provide counterexamples
O Provide statistics

O Based on empirical evidence, availability bias is difficult to
correct

,, Aalto University
School of Science 17.1.2019
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O When assessing probabilities, respondents sometimes consider
some reference assessment

O Often, the respondent is anchored to the reference assessment
1 Example: Is the percentage of African countries in the UN

A. Greater or less than 65? What is the exact percentage?
0 Average answer: Less, 45%.
0 2018 students’ responses: Less, median 22%, mean 34%.
O Your responses: Less, median 40%, mean 48%.

B. Greater or less than 10?7 What is the exact percentage?
0 Average answer: Greater, 25%.

0 2018 students’ responses: Greater, median 23%, mean 27%.
O Your responses: Greater, median 20%, mean 27%.

A” Sehool of Scien Based on Internet sources, the correct share is
(maybe) 54/193 = 28%



Anchoring bias - debiasing

O Avoid providing anchors

U Provide multiple and counteranchors

O =if you have to provide an anchor, provide several which differ significantly
from each other

O Use different experts who use different anchors

U Based on empirical evidence, anchoring bias is difficult to
correct

17.1.2019
12
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Overconfidence (cognitive)

O People tend to assign overly narrow confidence intervals to their probability estimates

: : Your responses:
Martin Luther King'’s age at death 39 years

Length of the Nile River 6738 km
Number of Countries that are members of OPEC 13
Number of Books in the Old Testament 39

Diameter of the moon 3476 km

Weight of an empty Boeing 747 176900 kg

Year of Wolfgang Amadeus Mozart’s birth 1756

Gestation period of an Asian elephant 645 days i

Air distance from London to Tokyo 9590 km 0 i E e ER = —

Depth of the deepest known point in the oceans 11033 m ’ ’

Number of respondents
£ (<2 0 E :

[N}

BO®NOO A WNE

Number of questions in which true value outside the
given 90 % confidence interval

O If 3 or more of your intervals missed the correct value, you have demonstrated

overconfidence
Q 89% of you did

,, Aalto University
School of Science 17.1.2019
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Overconfidence - debiasing

O Provide probability training
O Start with extreme estimates (low and high)

O Use fixed values instead of fixed probability elicitations:

— Do not say: "Give a value x such that the probability for a change in GDP lower than
x is 0.05”

— Do say: "What is the probability that the change in GDP is lower than -3%?”
O Based on empirical evidence, overconfidence is difficult to
correct

,, Aalto University
School of Science 17.1.2019
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Desirability / undesirability of events
(motivational)

U People tend to believe that there is a less than 50 % probability that negative

outcomes will occur compared with peers

— lamless likely to develop a drinking problem
— Your responses: 20% (25% in 2018) more likely, 34% (31%) less likely, 46% (44%) equally likely

L People tend to believe that there is a greater than 50 % probability that

positive outcomes will occur compared with peers
— I am more likely to become a homeowner / have a starting salary of more than 3,500€
— Your responses on owning a home: 49% (44%) more likely, 12% (13%) less likely, 39% (44%) equally likely
— Your responses on salary: 54% (38 %) more likely, 8% (19%) less likely, 38% (44%) equally likely

L People tend to underestimate the probability of negative outcomes and
overestimate the probability of positive outcomes

,, Aalto University
School of Science 17.1.2019
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O Use multiple experts with alternative points of view

O Place hypothetical bets against the desired event
O “Make the respondent’'s money involved”

O Use decomposition and realistic assessment of partial probabilities
O “Split the events”

O Yet, empirical evidence suggests that all motivational biases are
difficult to correct

Further reading: Montibeller, G., and D. von Winterfeldt, 2015. Cognitive and
Motivational Biases in Decision and Risk Analysis, Risk Analysis

A’, Aalto University



Risky or not risky?

https://presemo.aalto.fi/riskattitudel/

O Which one would you choose:

a) Participate in a lottery, where you have a 50 % chance of
getting nothing and 50 % chance of getting 10000 €

b) Take 4000 €

10000 €

0€

4000 €

O Many choose the certain outcome of 4000 €,
although a)’s expected monetary gain is
higher

Option b) involves less risk

,, Aalto University
School of Science 17.1.2019
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How to compare risky alternatives?

O Last week

— We learned how to support decision-making under uncertainty,
when the DM’s objective is to maximize the expected monetary

value
— Maximizing expected value is rational only if the DM is risk A 10000
neutral, i.e., indifferent between
o obtaining x for sure and 0.6 20000
o0 agamble with uncertain payoff Y such that x=E[Y] B 0.3 10000
— Usually, DMs are risk averse = they prefer obtaining x for 0.1 5000
sure to a gamble with payoff Y such that x=E[Y] i
Expectation =
L Next: 14500

— We learn how to accommodate the DM'’s risk attitude

(=preference over alternatives with uncertain outcomes) in
decision models

,, Aalto University
School of Science
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Expected utility theory (EUT)

O John von Neumann and Oscar Morgenstern (1944) in Theory of
Games and Economic Behavior:
— Axioms of rationality for preferences over alternatives with uncertain outcomes

— If the DM follows these axioms, she should prefer the alternative with the highest
expected utility

4 Elements of EUT
— Set of outcomes and lotteries
— Preference relation over the lotteries satisfying four axioms
— Representation of preference relation with expected utility

,, Aalto University
School of Science 17.1.2019
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EUT: Sets of outcomes and lotteries

O Set of possible outcomes T:
— E.g.,revenue T euros / demand T

O Set of all possible lotteries L.:

— Alottery f € L associates a probability
f(t) € [0,1] with each possible outcome
teT

0 Finite number of outcomes with a positive
probability f(t) >0

0 Probabilities sumup toone ), f(t) =1

o) Lotteries are thus discrete PMFs / decision trees
with a single chance node

d Deterministic outcomes are modeled as
degenerate lotteries

Probability
LOttery mass function
N (PMF)
Decision tree
06 20000 0.6, ¢t = 20000
0.3 0.3,t = 10000
10000 f(t) = 0.1t = —5000
0.1 5000 0, elsewhere

Degenerate lottery

Decision tree PDE

1 _ 1’ t = 10000
Qi 10000 f(t) = {o, elsewhere

,, Aalto University
School of Science
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EUT. Compound lotteries

0 Compound lottery:

— Get lottery fy € L with probability A
— Get lottery fy € L with probability 1 — 4

O Compound lottery can be modeled as lottery f, € L:
fz0) =)+ A -Dfp () VEET = f =Afx + (1 - fy
4 Example:
— You have a 50-50 chance of getting a ticket to lottery fyx € L or to lottery f, € L

fX 0.2

1-1=05

,, Aalto University
School of Science 17.1.2019
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Preference relation

U Let > be preference relation among lotteries in L
— Preference fyx = fy: fx at least as preferable as fy
— Strict preference fy > fy defined as =(fy = fx)

— Indifference fx~fy, definedas fxy = fy A fy = fx

,, Aalto University
School of Science 17.1.2019
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EUT axioms Al1-A4 for preference
relation

O Al: > is complete

— Forany fy, fy € L, either fx > fy or fy = fx or both
O A2: > is transitive

— Iffx = fyand fy = fz, then fx > f
O A3: Archimedean axiom

— If fxy> fy > fz, then 34, u € (0,1) such that

Ay +(L—=NDfz > fyand fy > ufxy + (1 — pw)fz

4 A4: Independence axiom

— LetA € (0,1). Then,
fx>freoAfx+QA-Dfz>Afy +(1-N)f;

,, Aalto University
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If the EUT axioms hold for the DM’s
preferences

O A3: Archimedean axiom
— Letfy> fy > f; . Thenexistsp € (0,1) sothat fy ~pfx + (1L —p)f;
O A4: Independence axiom
- fx~fre A+ QA -Dfz~2fy + (1 - A)f;
— Any lottery (or outcome = a degenerate lottery) can be replaced by
an equally preferred lottery; According to A3, such lotteries /

¢ it 05 250
outcomes exis _ _
05 250 A=05_100 1=05
fx (—=100 ~fy Q< < = 05 ~0
05 >0 05 ~ Jz 05 fz
— NOTE: f; can be any lottery and can have several possible outcomes

,, Aalto University
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Main result: Preference representation
with Expected Utility

O = satisfies axioms A1-A4 if and only if there exists a real-valued utility
function u(t) over the set of outcomes T such that

foxfr e ) ROu® 2 ) fi@u)
teT teT
O Implication: a rational DM following axioms A1-A4 selects the

alternative with the highest expected utility
Fu(0] = ) fy (u(e)

teT
— A similar result can be obtained for continuous distributions:

0 fy=fy © E[u()] = E[u()], where E[u(X)] = [ f(Out)dt

,, Aalto University
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Computing expected utility

U Example: Joe’s utility function for the number of O = (o) = &
apples is u(1)=2, u(2)=5, u(3)=7. Would he prefer O] = u(2) =

— Two apples for certain (X), or E[u(¥)] = 0.5u(1) + 0.5u(3)
— A 50-50 gamble between 1 and 3 apples (Y)? =05-2+05.-7=45

L Example: Jane’s utility function for money is u(t) =

t2. Which alternative would she prefer? E[u(X)] = 0.5u(3) + 0.5u(5)
—  X:50-50 gamble between 3 and 5SM€ =05-9+05-25=17
— Y: Arandom amount of money from Uni(3,5) distribution 5 51
_ E[u(Y =f tutdtzf—tzdt
—  What if her utility function was u(t) = %? (V)] 3 fr(Oult) )
a 1

=-53 —133 = 16.33333
6 6 '

,, Aalto University
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https://presemo.aalto.fi/drcuckoo

The utility function of Dr. Cuckoo is u(t) = Vt. Would he

a) Participate in alottery A with 50-50 chance of getting either O
or 400 €7

b) Participate in a lottery B in which the probability of getting
900 € is 30% and getting 0 € is 70%7?

u(0) = 0, u(400) = 20, u(900) = 30

a) E[u(4)]=05-0+05-20=10

b) E[u(B)]=07-0+03-30=9

NOTE! the expectation of lottery A = 200 € is smaller than that of

B =270€

A’, Aalto University



Uniqueness up to positive affine
transformations

pl u:l p2 Uzog
d DM's preferences: X =Y fx ©< 7 fy©<
u=0.2

Q E[u(X)]=p; 209p,+02(1~-p,) 1—p,~u=0 1=,
- . - p, ~v=90
3 v: Multiply each utility u by 100 p,_~V=100 4 2
O E[v(X)] = 100p, = 100E[u(X)] = fx 7~ JY ~
100E[u(Y)] = 90p, + 20(1 — p,) = E[v(Y)] 1—p>v=0 1—p,Vv=20

O w: Add 20 to all utilities v

p w=120 p,_~w=110
Q EwX)] =120p, +20(1 —p,) = 100p, + ; S f
20 = E[v(X)] + 20 > E[v(Y)] + 20 = fx = Jy
90p, +20(1 — p,) + 20(L +p, — p,) = 1 — pr>w=20 1—p,~W=40
110p, + 40(1 — py) = E[w(Y)] 1

,, Aalto University
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Uniqueness up to positive affine

transformations

D1 u=1
O DM's preferences: X =Y fx ©<
Q Elu(X)]=p; 209p,+02(1-p,) u=0

1-p,
A v: Multiply uby a > 0 Elv(X)] = ap, = p, V=«
aE[u(X)] > aE[u(Y)] = 09ap, + 02a(1 —p,) = fx
E[v(Y)] 1 v=0

0 w: Add g to all utilities v

Q Ew)]=@Q+B8)p,+B(L-p)=ap,+f= p,_~-W=a+ [
E[v(X)] + B = E[v(Y)] + 8 = 0.9ap, + fx

02a(1—py) + LA +p,—py) = (09a +
Bp, + (0.2a + B) (1 —p,) = E[w(Y)]

p, ~Vv=0.9 a
?fY©<
1 — D> v=0.2 a

w= 0.9a+ 8
&)

1-p,
w=0.2a+ f3

,, Aalto University
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Uniqueness up to positive affine

transformations

A Letfy > fy © Elu(X)] = E[u(Y)]. Then E[lau(X) + B] = aE[u(X)] + B =
aElu(Y)] + f=E[au(Y) + f] forany a >0

O Two utility functions uq(t) and u,(t) = au(t) + B, (a > 0) establish
the same preference order among any lotteries:

Elu,(X)] = Elau, (X) + B] = aEu; (X)] + B.

O Implications:
— Any linear utility function u; (t) = at + S, (a > 0) is a positive affine transformation of
the identity function u, (t) = t = u, (t) establishes the same preference order as expected
value

— Utilities for two outcomes can be freely chosen:

o E.g., scale utilities represented by u, such that and u,(t*) = 1 and u,(t%) = 0:
uy () — uy (¢°) 1 uy (t°)
20 = ) —w () ) w0 B e

1 ! 17.1.2019
=a>0 :B 30



O Probability elicitation is prone to cognitive and motivational biases
— Some cognitive biases can be easy to correct, but...
— Some other cognitive biases and all motivational biases can be difficult to overcome

O The DM'’s preferences over alternatives with uncertain outcomes
can be described by a utility function

O Arational DM (according to the four axioms of rationality) should
choose the alternative with the highest expected utility
O NOT necessarily the alternative with the highest utility of expectation

A’, Aalto University



Decision making and

problem solving —
Lecture 3

e Modeling risk preferences
» Stochastic dominance




O Last time:
Decisions should be based on expected value of the alternatives’ outcomes (if and)

only if the DM is risk neutral
Under 4 axioms for the DM’s preference relation between risky alternatives, there

exists a real-valued function (“utility function”) so that
The DM should choose the alternative with the highest expected utility
Itis unique up to positive affine transformations -> we can normalize the utility

function the way we want
O This time:
What is this utility function and how to model the DM’s preferences with it?
We learn how these preferences correspond to the DM’s attitude towards risk

,, Aalto University
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Assessment of utility functions

O Utility functions are assessed by asking the DM to choose between a simple
lottery and a certain outcome (i.e., a degenerate lottery)

—  X: Certain payoff t
— Y: Payoff t* (t~) with probability p (1-p) P t
U General idea:

— Vary the parameters (p,t,t*, t7) until the DM is indifferent between X and Y:
Efu()] = Eu(V)] & u(®) = pu(t*) + (1 —p)u(t™)
— Repeat until sufficiently many points for the utility function have been obtained
L Because u is unique up to positive affine transformations, u can be fixed at
two points

O Usually, uis set at 1 at the most preferred level, and at O at the least preferred

1-p t

,, Aalto University
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Assessment: The certainty equivalence

approach

d The DM assesses t

0 Example: Assess utility function for the interval [-10,50] euros

— Normalization: we can fix u(-10)=0 and u(50)=1 )

30€ 20€ 40€ 7

0.5 Eoe 0.5 30¢ 0.5 c0e §0:4_

05 N -10¢ 0.5 -10€ 0.5 30€ o2l

u(30) u(20) u(40)
= 0.5u(-10) + 0.5u(50) = 0.5u(—10) + 0.5u(30) = 0.5u(30) + 0.5u(50)

=05-0+05-1=05 =05-0+05-05=0.25 =05-05+05-1

=0.75

10 20 30 40 50
t

,, Aalto University
School of Science
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Other approaches to utility assessment

O Probability equivalence:
— The DM assesses p p o 2
d Gain equivalence: 1o ¢ i
— The DM assesses t*
O Loss equivalence:
— The DM assesses t p t

1-p ?
O Often in applications, the analyst chooses a family of utility functions
and then asks the DM to compare lotteries to fix the parameter(s)
— E.g., the exponential utility function (parameter p)
t

u(t)=1-e P,p>0

,, Aalto University
School of Science 28.1.2019
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Reference lottery revisited

L Assume that an expected utility maximizer with utility
function u uses a reference lottery to assess the

probability of event A Lottery X " !

L She thus adjusts p such that she is indifferent NotAd T
between lottery X and reference lottery Y: D -
E[u(X)] = E[u(Y)] Coterry N |

& P + (1 - P(A))u(t™) = pult?) + (1 — plu(e)
& PA)(u@™) —ult™)) =p(ult?) —u®))
& PA)=p

O Ultility function u does not affect the result

,, Aalto University
School of Science 28.1.2019
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Expected utility In decision trees

O Do everything in the usual way,

7 Profit  Utility
but EU=1.07 29 __ 1500 178
— Chance node: compute the Same @3 100 1.10
expected utility . g 20D 1000 071
— Decision node: select the | U0 1000 163
alternative corresponding to e “’31’ 200 1.18
maximum expected utility e a2 _100 0.89
— Cf. the umbrella example, in which ,
Savings Account
‘some numbers’ represented - 00 1.39

preferences
—t
u(t) = 2 — 1000

,, Aalto University
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Expected utility in Monte Carlo

Jx

=2-EXP(-F12/1000)

O For each sample x4, ..., x,, of D : ; G H
random variable X, T Per—
Compute Utlllty U,(Xl) 0.502964 990.301%, 1.58097

D Mean Of Sample San"lnple n45:w? 954215?| 1u;:i|,l5il55|
utilities U,(Xl), e U,(Xn) 2 0.704234 1268.308 1.718693

. . 3 0.777865 1382.501  1.74905
prOVIdeS an estimate for a 0.534927 1043.831 1.647897
E[U,(X)] 5 0.4426 927.8094 1.604581

6 0.916252 1690.147 1.815508
7 0.649453 1191.922 1.696363
g 0.65278 1196.418 1.597725
g 0.110887 389.0874 1.322325
10 0.189275 559.714 1.428628
11 0.902882 1649.073 1.807772
A,, gz::golilnoifvggietXw 28.1.2019
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EUT for normative decision support

O EUT is a normative theory: if the DM is rational, she should select
the alternative with the highest expected utility

— Not descriptive or predictive: EUT does not describe or predict how people
actually do select among alternatives with uncertain outcomes

O The four axioms characterize properties that are required for
rational decision support
— Cf. probability axioms describe a rational model for uncertainty
— The axioms are not assumptions about the DM’s preferences

,, Aalto University
School of Science 28.1.2019
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http://presemo.aalto.fi/2134lec?2

O Which of the below alternatives would you choose?

1. Asuregainofl M€

2. A gamble in which there is a
o0 1% probability of getting nothing,
o 89% probability of getting IM€, and
0 10% probability of getting SM€

A’, Aalto University



http://presemo.aalto.fi/2134lec?2

O Imagine that a rare disease is breaking out in a community and is
expected to kill 600 people. Two different programs are available
to deal with the threat.

— If Program A is adopted, 200 people will be saved

— If Program B is adopted, there’s a 33% probability that all 600 will be
saved and a 67% probability that no one will be saved.

Which program will you choose?

1. Program A
2. Program B

A’, Aalto University



http://presemo.aalto.fi/2134lec?2

O Which of the below alternatives would you choose?

1. A gamble in which there is a
o0 89% probability of getting nothing and
0 11% probability of getting IM€

2. A gamble in which there is a
0  90% probability of getting nothing, and
0 10% probability of getting SM€

A’, Aalto University



http://presemo.aalto.fi/2134lec?2

0 Imagine that a rare disease is breaking out in some community
and is expected to kill 600 people. Two different programs are
available to deal with the threat.

— If Program C is adopted, 400 of the 600 people will die,

— If Program D is adopted, there is a 33% probability that nobody will die
and a 67% probability that 600 people will die.

Which program will you choose?

1. Program C
2. Program D

A’, Aalto University



O  Which of the below alternatives would you choose?
A. Asuregainof 1 M€
B. A gamble in which there is a

o] 1% probability of getting nothing,
o] 89% probability of getting IM€, and
o] 10% probability of getting 5SM€

O  Which of the below alternatives would you choose?
C. Agamble in which there is a

o] 89% probability of getting nothing and
o] 11% probability of getting IM€

D. A gamble in which thereis a
o] 90% probability of getting nothing, and
o] 10% probability of getting 5SM€

QO Actual choice behavior is not always consistent with EUT

,, Aalto University
School of Science

Most people choose A; hence
E[u(A)I>E[u(B)]:
u(1) > 0.10u(5)+0.89u(1)+0.01u(0) =

0.11u(1) > 0.10u(5)+0.01u(0)

Most people choose D; hence
E[u(D)I>E[u(C)]:
0.10u(5)+0.90u(0) > 0.11u(1)+0.89u(0) =

0.11u(1) < 0.10u(5)+0.01u(0)




Framing effect

O Most people choose A and D
U People tend to be "risk-averse” about gains and "risk-seeking”
about losses

A 200 (=600-400) C 400
[0)
. 33%<] 600 (=600-0) 33% o
D
67% 0 (=600-600) 67% -600

,, Aalto University
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Risk and risk preferences

U Risk: possibility of loss (or some other unpreferred outcome)
— Characterized by both the probability and magnitude of loss

U Risk preferences:
— How does the riskiness of a decision alternative affect its desirability?
— E.g., risk neutrality: choose the alternative with the highest expected (monetary) value, riskiness
Is not a factor

U Definition of risk preferences requires that outcomes T are quantitative and
preferences among them monotonic
— E.g., profits, costs, lives saved etc.
U Here, we assume that more is preferred to less, i.e., u(t) is increasing (and
differentiable) for all t

,, Aalto University
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Certainty equivalent in Expected Utility
Theory

O Definition: Certainty equivalent of a random variable X, denoted by

CE[X], is an outcome in T such that CE[X]
u(CEIX])) = E[u(X)] X
CE [X ] — ’L<L_1(E [u (X )]) Allowed
------------- because u is
monotonic

— IMPORTANT! CE[X] is the certain outcome such that the DM is indifferent
between alternatives X and CE[X]
— CE[X] depends on both the DM’s utility function u (preferences) and the distribution

of X (uncertainty)
0 My CE for roulette may be different from yours
0 My CE for roulette may be different from my CE for one-armed bandit

,, Aalto University
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Certainty equivalent - Example

O Consider a decision alternative X with fx(3) = 0.5 and fx(5) = 0.5 and
three DMs with the below utility functions

U Compute each DM’s certainty equivalent for X

u(t) u(t) u(t)

u(b)
ETu(X)]
u(3)

u(5) u(5)

E[u(X)] E[u(0)]

u(3)

> u(3)

L The shape of the utility function seems to determine whether CE[X] is
below, above, or equal to E[X]=4

,, Aalto University
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Convex and concave functions

4 Definition: u is concave, if for any t, t,:
Au(ty) + (L —Du(ty) <u(it; + (1 —A)t,) vA€[0,1]

— Aline drawn between any two points u(t,) and u(t,) is below (or
equal to) u(t)

- u'(t) <0Vt €T, if the second derivative exists

d Definition: u is convex, if for any t; t,:
Au(ty) + (L — Du(ty) = u(dt; + (1 — A)t,) vA€[0,1]

— Aline drawn between any two points u(t,) and u(t,) is above (or
equal to) u(t)

- u'(t) =0Vt €T, if the second derivative exists

,, Aalto University
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Convex utility functions

A For any utility function u, E|u(X)] = ). fx(t;) u(t;) for X with
discrete set of outcomes t;;i =1,...,n
0 Note: ), fx(t;) =1

O Let u be convex. Then
Q Au(ty)) + (1 —Du(ty) = uldt; + (1 — Dt,) VA€ [0,1] (by def., previous slide)
O And, specifically, by applying this definition several times,

fe(u(ty) + .. + fx(t)u(ty) = E[UX)] =z u (Z fx(ti)ti> = U(EIX])

O For convex u: Expected utility of X is higher than (expected) utility
of E(X)

,, Aalto University
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Jensen’s inequality

O For any random variable X, if function u is
I.  Convex, then E[u(X)] = u(E[X])
II. Concave, then E[u(X)] < u(E[X])

=
u concave u convex
= E[u(X)] < u(E[X]) = Elu(X)] = u(E[X])
Su T E@)) SuTwERXD) e uH(EG)]) = ut wEXD)
Auowea'"""é CE[X] < E|X] & CE[X] = E[X]

mcreasmg
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Risk attitudes in Expected Utility Theory

l. uis concave iff CE[X] < E[X] for all X CE[X] 5
II. uis convex iff CE[X] = E[X] for all X
lll. uis linear iff CE[X]=E[X] for all X N

O A DM with a linear utility function is called risk neutral
— Indifferent between uncertain outcome X and a certain outcome equal to E[X]

O A DM with a concave but not linear utility function is called risk averse
— Prefers a certain outcome smaller than E[X] to uncertain outcome X

0 A DM with a convex but not linear utility function is called risk seeking
— Requires a certain outcome larger than E[X] to not choose uncertain outcome X

,, Aalto University
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Risk premium in Expected Utility Theory

O Definition: Risk premium for random variable X is RP[X]=E[X]-CE[X]
— RP[X] depends on both the DM’s preferences (u) and the uncertainty in the decision
alternative (distribution of X)
— RP[X] is the premium that the DM requires on the expected value to change a

certain outcome of CE[X] to an uncertain outcome X
u(t)

. DM is risk neutral, iff RP[X]=0 for all X u(5)
E[u(X)]

. DM is risk averse, iff RP[X] = O for all X “(3)
Ill. DM is risk seeking, iff RP[X] < O for all X

,, Aalto University
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Computing CE and RP

Example: Jane’s u(t) = t? and her
payoff is Y~Uni(3,5)

1 Eu()] = [ fr(®u(t)dt = 16.33
v=u@)=t’et=utlw)=\v
CE[X] =u~1(16.33) = /16.33 = 4.04
RP[X] =4 -4.04 =-0.04

Compute E[u(X)] and E(X)
Solve u~1(")

Compute CE[X] = u Y (E[u(X)])
Compute RP[X]=E[X]-CE[X]

W e

> W N

Q Step 2: if u=1(-) cannot be solved
analytically, solve it numerically from
u(CE[X]) = Elu(X)]

— Trial and error
— Computer software

,, Aalto University
School of Science 28.1.2019
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Prospect theory

. utility
O Expected Utility Theory assumes that people only care about the 4
outcome in the absolute sense
O Yet, empirical evidence suggests that people tend to  outeome
— think of possible outcomes relative to a certain reference point (often the Losses Gains
status quo),
— have different risk attitudes towards gains and losses with regard to the
reference pOint, Reference point
— overweight extreme, but unlikely events, but underweight "average" events.
O Prospect theory seeks to accommodate these empirical findings:
Tversky, A. and D. Kahneman. ” Advances in prospect theory: Cumulative
representation of uncertainty.” Journal of Risk and uncertainty 5.4 (1992): 297-
323.
O NOTE:
—  EUT isa normative theory: tells what rational people should do
—  Prospect theory is a descriptive theory: tries to describe what people tend to
do in real life
,, Aalto University
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Sto C h aSti C d om I nance https://presemo.aalto.fi/stocdom/

O Question: Which decision alternative would you choose?

1

1. X — 0 -
2 Y 08— EX(I) 7
0.6 //

) /
//

Fy(t) < Fy(t) VtET //

0
-10 -5 0 5 10 15 20

,, Aalto University
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First-degree Stochastic Dominance

-] 7
Definition: X dominates Y in the sense of First- 08" /
degree Stochastic Dominance (denoted X >ggpY), if 06
/ X ZFsD Y
0.4
Fy(t) < Fy(t) VEET /
0.2
//
with strict inequality for some t. B s 0 S 0 12
1 i
Theorem: X >ggpY if and only if I // -
g B either
E[u(X)] =2 E[u(Y)] Yu € U°, alternative
0 ; : ; ; ; 06 dominates
where U" is the set of all strictly increasing functions / he ofher in
0.4 the sense of
.. . . : : FSD
Implication: If an alternative is strictly dominated in the sense 02 /
of FSD, then any DM who prefers more to less should not _
choose it. R 0 5 10 15 20

,, Aalto University
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FSD: Mining example

Parcel A Parcel B 5
1"’
0 A mining company has an opportunity HighBid  Fai
. Bid
to bid on two separate parcels of land HighBid  Fails q/ Medium 4 Bi
- )
0 Decisions to be made: JM : L\ Parct
. 3 edium 0 Low
O Overall commitment of some $500 L‘ Bid
m||||0n Low Wins Parcel A /
Bid Parcel B i
—  How much to bid? Alone High Bid =
—  Bid alone or with partner? LA Bid J -
—  How to develop the site if the bid turns out HADe, Bais g1 Madion 3% Wi
9 Bid withl Parc
successfull.- . Partner ) Medim 4 Low
O Large decision tree model built to L‘ Bid
Low Wins Parcel A ]

obtain cumulative distribution functions
of different strategies (= decision

alternatives)
Stay with Own Property

§9 Aalto University Source: Hax and Wing (1977): "The use of decision analysis in a capital investment
A School of Science probelm” In Bell, Keeney, and Raiffa (eds.): Conflicting Objectives in Decisions, Wiley. 28.1.2019
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FSD: Example (cont’'d)

CDFs of Strategies
I

1.0 I
® Strategy 1: Bid High Alone
D Assume that the 091 m S::a:egz 2: Bid High with Partner
company prefersa g { s lihotoy i b
larger net present 07 it Parter
value (NPV) to a & 067
smaller one 3§ 0
£ 04
[l . 0'3 y
0 Which strategies 02 - //f
would you 0.1 1
recommend? 0 x
- 100 -50 0 50 100 150 200
NPV ($Million)
9 Aalto University Source: Hax and Wing (1977): "The use of decision analysis in a capital investment
A School of Science probelm” In Bell, Keeney, and Raiffa (eds.): Conflicting Objectives in Decisions, Wiley. 28.1.2019
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Second-degree Stochastic Dominance

d Theorem:
EluX)] = E[u(Y)] VueU *“* JZ [Fx(t) — Fy(t)]dt <0 Vz €T,
where U Y = {u € U°|u is concave}. -
O Definition: X dominates Y in the sense of Second-degree Stochastic Dominance
(denoted X >=ggp Y), if
Jz [Fy(t) — Fy(O)]dt <0 Vz€ET.

with strict inequality for some z.

O Implication: If an alternative is strictly dominated in the sense of SSD, then any risk-
averse or risk neutral DM who prefers more to less should not choose it.

,, Aalto University
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SSD: graphical interpretation
z j‘;; | \\ A4 e 6
J [Fy(t) = Fy(D)]dt <O VZET [ . /
— 0.04 / \ /
0.03 // \‘ .4
O Integral 002 / \ " ,\/ () > Fy(t)
— : TEy ()= Ex(t
) t:z tacl)’epaoaettr/een FX (t) e Fy (t) 0.0;10 0/ 10 20\ 0 o / 10 20 30

= the area between the Fy(t)-Fy (t) .
and the horizontal axis up to pointz @

‘ —— Integral of FX(t)—FY(t) up to z

0.1 \ 0 \

Q If itis non-positive for all z, then / B \ 05 \
X = Y )

SSP o1 \ A ' \ /

O Here: X >ggp Y, because area A is N/
bigger than area B, and Aisleftof B 03, : 5 = % 250 o I 2 3
z
,, Aalto University
A School of Science 28.1.2019

31



SSD: Mining example revisited

CDFs of Strategies
|

1.0
[ Assume that the and 8 Stmtcgyl 1: Bid High Alone
. . . -7 71 B Strate 2: Bid High with Partner
mining company is M
either risk-averse or st with Perues
risk-neutral 5 061
E 0.5
_ _ £ 0.4 -
O Which strategies .
would you 02 - 1/}’
recommend? 0.1 1
Y_';_x/x

- 100 -50 0 50 100 150 200

NPV ($Million)

,, Aalto University
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Properties of FSD and SSD

O Both FSD and SSD are transitive:
— WX >pgp Yand Y =ggp Z, then X >ggp £
o Why? Take anyt. Then, Fx(t) < F,(t) < F,(t).
— I X>ggp Yand Y >ggp Z, then X =ggp Z
o Why?Takeanyu € UY. Then, E[u(X)] — E[u(Z)] = E[u(Y)] — E[u(Z)] = 0.
d FSD implies SSD:

— X >pgp Y, then X =ggp Y.
0 Why? Takeany u € U°”. Then, u € U°, and since X >ggp Y, we have E[u(X)] =
ETu(Y)].
o Or consider the definitions of FSD and SSD: If Fy(t) < F,(t) vVt € T , then

Jz [Fx(t) — Fy(t)]dt < Jz Odt <0 VzeT

,, Aalto University
School of Science
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O Utility function is elicited through specification of equally preferred

lotteries
O Then: expected utilities equal

L The shape of the utility function determines the DM’s risk attitude
— Linear utility function = risk neutral
— Concave utility function = risk averse
— Convex utility function = risk seeking

O Even if the utility function is not completely specified, decision
recommendations may be implied by stochastic dominance
— If the DM prefers more to less, she should not choose an FSD dominated alternative
— Ifthe DM is also risk averse, she should not choose an SSD dominated alternative

,, Aalto University
School of Science
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1 Last time we learned how :

— To model the DM’s preferences over risk by eliciting her utility function

— The shape (concave / linear / convex) of the utility function corresponds to
the DM’s risk attitude (risk averse / neutral / seeking)

— Decision recommendations may be implied by stochastic dominance even
if the utility function is not (completely) specified:

— If the DM prefers more to less, she should not choose an FSD dominated alternative
— Ifthe DM is also risk averse, she should not choose an SSD dominated alternative

O This time (Part A):

— We take a look at risk measures and examine how they can be used
to describe alternatives’ risks

,, Aalto University
School of Science



O Risk measure is a function that maps each decision alternative to a
single number describing its risk
— E.g.,variance Var[X] = E[(X — E[X])?]
—  The higher the variance, the higher the risk
O Risk measures are not based on EUT, but can be used together with
expected values to produce decision recommendations

— Risk constraint: Among alternatives whose risk is below some threshold, select the
one with the highest expected value

— Risk minimization: Among alternatives whose expected value is above some
threshold, select the one with minimum risk

— Efficient frontier: Select one of those alternative compared to which no other
alternative yields higher expected value and smaller risk

A’, Aalto University



Risk measures: Value-at-Risk (VaR)

U Value-at-Risk (VaR,[X]) is the outcome
such that the probability of a worse or
equal outcome is a:

VaR ,[x]
| e = Fvar XD =

— 00
O Higher VaR means smaller risk
— Unless applied to a loss distribution
L Common values for a: 1%, 5%, and 10%

U Problem: the length/shape of the tail is not
taken into account

0.8}

0.6+

0.4}

0.2+

—F0
—F0

Lo

0.08

0.07r

0.06

0.05¢

0.04r

0.03r

0.02t

0.01r
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Mining example revisited

CDFs of Strategies
1.0 I I

——
J Assess VaR50/ for ® Strategy 1: Bid High Alone s
0 0.9 < ® Strategy 2: Bid High with Partner :
I X Strategy 17: Bid Low with Partner
Strateg IES 1 and 25 0.8 1 A Strategy 25: Develop Own Property
with Partner

Probability
o=
wn

— 100 —500 | 0 50]I 100 150 200
|
NBV (§Milion)
/ .38 B

. .t /
A” Sehool of Science Strategy 1 31.1.2019
Strategy 25




Risk measures: Conditional Value-at-
Risk (CVaR)

O Conditional Value-at-Risk (CVaR ,[X]) is the fx (©)
expected outcome given that the outcome is at most —
VaR,: 0.08}

CVaR[X] = E[X]|X < VaR,[X]] 0.06}

0.04

VaR ;g [X] = —1.85
VaR;go,[Y] = —0.97 |

CVaRygy[X] = —3.26
CVaRjgy[Y] = —4.23.

fr(®)

O Higher CVaR means smaller risk (unless applied to
losses)

0.02}

-10 0 10 20

O Computation of CVaR[X] to discrete and continuous X:

— t _ (VaR.[x], fx()
ElX|X < VaRa[X]] = ZtSVaRa[x]th( ); E[X|X < VaRa[X]] = f_oo tXTdt.

a

— Note: a = P(X < VaR,[X]); PMF/PDF fx(t) is scaled such that it sums/integrates up to 1.

,, Aalto University
School of Science 31.1.2019
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Computation of VaR and CVaR

O If the inverse CDF of X is well-defined, VaR can be obtained from
VaR,[X] = Fy ()
— In Excel: norm.inv, lognorm.inv, beta.inv, binom.inv etc
— In Matlab: norminv, logninv, betainv, binoinv etc

0 CVaR can then be computed using the formulas on the previous slide
— Sometimes an analytic solution can be obtained; if, e.g., X~N(u, 02) and VaR,[X] = £, then

ol

a

o)

g

where ¢ and @ are the standard normal PDF and CDF, respectively.
— Sometimes numerical integration is needed

CVaR,[X]|=u—o

,, Aalto University
School of Science 31.1.2019
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Computation of VaR and CVaR

O With discrete random variables VaR and CVaR are not always well
defined for small values of a

— But what are VaRx,[X], CVaR o, [X]?

Example:
t -10 -5 1 10 20
f, () 0.06 0.02 0.02 0.5 0.4
VaR 190, [X]=1
CVaR gy [X] = 0.06(-10)+0.02(-5)+0.02(1) _ 6.8

0.06+0.02+0.02

A”

Aalto University
School of Science

31.1.2019
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VaR and CVaR with Monte Carlo - Excel

A B

=AVERAGE(D12:D211)

C D ,f F

—/

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Col.mean Col.meapl CVaR-10%,

0.507501 1008.3@ VaR-10%
4105591/ =PERCENTILE.INC(C12:C211;0.1)

Sample u
1 0.691314
2 0.603078
3 0.548331
4 0.058081
=] 0.442469
] 0.628886
7 0.157181
8 0.355657
9 0.545768
10 0.416183
11 0.879097
12 0.022042
13 0.000927
14 0.071391

X Below VaR
1249.789 above —
1120.659 above — =IF(C12<=%$F$10;C12;"above”)

1060.723  above
214.4534 214.4534
927.6436 above

1164.452 above

496.9445  above

B814.9539 above .
1057.455|_above Note! 200 samples is very
1585243 above little, because only 1/10=20
-6.5468 | -6.64468 are used to estimate CVaR

-556.359 -556.359
267.2461 267.2461

A!

, Aalto University
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VaR and CVaR with Monte Carlo -
Matlab

5=10"5;

mu=1000;

=2igma=500;
Sample=normrnd (ma, sigma,5,1):
VaB=prctile (Samnple, 10)
TailIndices=find (S5ample<=VaR) ;

CWVaBE=mean (Sample (TailTndices))

$S5amnple size 10,000

iGenerates 105 observations from N{mu,=igma)
iReturn=s the 10% percentile of the sample
iBeturn=s the indices of those elements

%3in the sample below or egqual to VaR
i#Computes the arithmetic mean among those
felements in the sample belor or egqual to VaR

A”

Aalto University
School of Science

31.1.2019
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Risk measures and stochastic

dominance
O Theorem: X >ggp Y if and only if L
VaR,[X] = VaR,|Y] Va € [0,1] — R0
0.8F | —F, ()
Q Theorem: X >ggp Yifandonly if °°
CVaR,[X] = CVaR,|Y] Va € |0,1] 0.4
10 5 0 tejros'Elﬁo 15 20
$S
A” Sehool of Scionce s



O EUT provides a more comprehensive way to capture the DM’s
preferences over uncertain outcomes

O With risk measures, one must answer questions such as
— Which measure to use?
— Which a to use in VaR and CVaR?

How to combine EV and the value of a risk measure into an overall performance
measure?

O Yet, if answers to such questions are exogenously imposed, the use
of risk measures can be easy

— E.g., laws, regulations, industry standard etc.

A’, Aalto University



Motivation

O Consider yourself
choosing
accommodation for
a (downhill) skiing
vacation trip

O How do the
accommodation
alternatives differ
from each other?

U What are the
attributes that
influence your decision?

,, Aalto University
School of Science

Breakfast & dinner
included

Bergland Design- und Wellnesshotel Wg;‘i‘ig‘ﬁ 93

Q Séiden — Show on map Location 9.4
E550 m from center

& people are looking right now
Booked 3 times in the last 24 hours

e 94% of guest reviewers had their expectations of this property met or exceeded

Price for 7 nights

Double Room e € 3,290

In high demand - only 2 rooms left!

includes taxes and charges
Breakfast & dinner included

Select your room »

™ A Casa Kristall & % Excellent [£¥

: 142 reviews
¢ Sélden — Show on map
B2 km from center

2 people are looking right now
Booked 2 times in the last 24 hours

Great Value Today

Apartment aem — 30 m* € 830
In high demand - there's only 1 like it!

Price for 7 nights

includes taxes and charges

See all 4 available apartments >

= = Wonderful
Das Central — Alpine . Luxury . Life o

@ Sélden — Show on ma Location 9.4



O So far:

— We have considered decision-making situations in which the DM has one
objective (e.g., maximize the expected value/utility of a monetary payoff)

O This time:

— We consider decision-making situations in which the DM has
multiple objectives or, more precisely...

Multiple attributes with regard to which the achievement of some
fundamental objective is measured

A’, Aalto University



Multiattribute value theory

O Ralph Keeney and Howard Raiffa (1976): Decisions with Multiple Objectives:
Preferences and Value Tradeoffs

O James Dyer and Rakesh Sarin (1979): Measurable multiattribute value functions,
Operations Research Vol. 27, pp. 810-822

0 Elements of MAVT
— Avalue tree consisting of objectives, attributes, and alternatives

— Preference relation over the alternatives’ attribute-specific performances and differences thereof &
their representation with an attribute-specific value function

— Preference relation over the alternatives’ overall performances and differences thereof & their
representation with a multiattribute value function

,, Aalto University
School of Science 31.1.2019
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Value tree: objectives, attributes, and

alternatives

1 A value tree consists of
— A fundamental objective

Ideal car

— Possible lower-level objectives

— Attributes that measure the
achievement of the objectives \

— Alternatives whose attribute-
specific performances are being

measured \

Economy

Driving

Price

Expenses Acceleration Top speed

=i

Audi A4

VW Passat Citroén C5

,, Aalto University
School of Science

31.1.2019
16




Value tree: objectives, attributes and
alternatives

Q The attributes a,,..., a,have
measurement scales X, i=1,...,n; e.g., Job
—  X,=[1000€/month, 6000€/month] \
— X, =[2 weeks/year, 8 weeks/year]
— X3=[0 days/year, 200 days/year]
— X, ={poor, fair, good, excellent}

Fit with
interests

Business

Saldny travel

Vacation

O Alternatives x = (x4, x5, ... x,) are

characterized by their performance
w.r.t. the attributes; e.qg.,

Banker Researcher Ef‘g'”ee“ In Consultant
industry

— Banker=(6000€/month, 5 weeks/year, 40
days/year, fair) € X; x X, X X5 X X,.

,, Aalto University
School of Science 31.1.2019
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Preference relation: attribute-specific
performance

O Let > be preference relation among performance levels a and b on a given
attribute

Preference a > b: a at least as preferable as b
Strict preference a > b defined as —(b > a)
Indifference a~b definedasa>b Ab > a

,, Aalto University
School of Science 31.1.2019
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Axioms for preference relation

O Al: > is complete

— Foranya,b € X, eithera > b or b > a or both
O A2: > is transitive

— Ifa>=band b >=c,thena = c

,, Aalto University
School of Science 31.1.2019
19



Ordinal value function

Theorem: Let axioms A1-A2 hold. Then, there exists an ordinal
value function v;(+): X; — R that represents preference relation > in

the sense that
vi(a) 2vi(b) & a>b

O An ordinal value function does not describe strength of preference,
l.e., it does not communicate much more an object is preferred to

another

,, Aalto University
School of Science 31.1.2019
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LAssume you have two mopeds A and B with top speeds of 30 and
35km/h, respectively

dYou have two alternatives for upgrade

U Increase top speed of moped A to 40
U Increase top speed of moped B to 45

dYour prefer a higher top speed to a lower one
0 45>40>35>30
0 v(45)=1, v(40)=0.8, v(35)=0.5, v(30)=0.4
0 w(45)=0.9, w(40)=0.8, w(35)=0.6, w(30)=0.4
dBoth v and w are ordinal value functions representing your
preferences but they do not describe your preferences between the two

upgrade alternatives
0 v(45)-v(35)=0.5 > v(40)-v(30)=0.4, but w(45)-w(35)=0.3 < w(40)-w(30) =0.4

A’, Aalto University



Ordinal value function

Theorem: Ordinal value functions v;(-) and w;(-) represent the same
preference relation > if and only if there exists a strictly increasing
function ¢: R — R such that w;(a) = ¢[v;(:)] Va € A.

Example: Let consultant > professor > janitor be Jim’s preferences over
these jobs and v(consultant) = 10 > v(professor) = 8 > v(janitor) = 7.

Then v' and v" both represent the same preferences as ordinal
value function v

. |consultant_|professor |janitor
v 10 8 4

- v 20 16 14
A” School o 20 16 8 31.1.2019
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The goal Is to compare multi-attribute
alternatives, wherefore ordinal value
functions are not enough

O Let >, be preference relation among differences in performance levels on a
given attribute

—  Preference (a < b) =, (c < d): achange from b to a is at least as preferable as
a change fromd toc

—  Strict preference (a < b) >; (c « d) defined as =((c « d) >4 (a < b))

— Indifference (a « b)~,4(c « d) definedas (a « b) >4 (c « d) A(c «
d) =4 (a < b)

Aalto Un
A” School fS 31.1.2019
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Axioms for preference relation (cont’d)

Q A3:VabceX;:: azbo (a<Db) >4 (c<c)
— Ifais preferred to b, then a change from b to a is preferred to no change
Q Ad:VvabcdeX;:.(aeb)>;(c—d)e(dec)>=5(b<a)

— E.g., ifanincrease in salary from 1500€ to 2000%€ is preferred to an increase from 2000€ to 2500€, then a
decrease from 2500€ to 2000€ is preferred to a decrease from 2000€ to 1500€

O A5:Va,b,cdefeX:(aeb)zgde—e)A(bec)zs(e<f)=>(a<c)=s(d<f)

a)~q4(a < c)

— Equally preferred differences between attribute levels can always be constructed
—  Thereis always an attribute level a between b and ¢ such that a change from c to a is equally preferred to a
change from atob.
Q A7Y: The set (or sequence) {a,|b > a, where(a,, < a,_1)~q(a;< ay)} is finite for any b in X;
—  Thesequence of equally preferred differences over a fixed interval is finite
—  “No b can be infinitely better than other performance levels”

A” gzggrs French (1988) incorrectly puts it; the idea here is that it is possible tor
onstruct equally preferred changes in order to represent preferences




0 Theorem: Let axioms A1-A7 hold. Then, there exists a cardinal
value function v;(:): X; — R that represents preference relations >
and >, in the sense that

vi(a) 2 v;(b) = a>b
vi(a) —vi(b) =2 v;(c) —v;(d) & (a < b) 74 (c « d).

Note: A cardinal value function is unique up to positive affine
transformations, i.e., v;(x) and v, (x) = av;(x) + B, > 0 and
represent the same preferences

A’, Aalto University



Cardinal value function: positive affine
transformations

Example: Let consultant > professor > janitor and ( consultant «
professor) =4 (professor < janitor) be Jim’s preferences and
v(consultant) = 10 > v(professor) = 8 > v(janitor) = 7.

Then v' and v" both represent same preferences as cardinal value
function v

. |consultant | professor |janitor
v 10 8 4

v =2v 20 16 14
v''=v"—10 10 6 4

26
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Attribute-specific value functions

O Avalue function maps the
attribute-specific measurement
scale onto a numerical scale in
accordance with the DM’s
preferences

O Value and utility:

— Value is a measure of preference
under certainty

OBJECTS ——————3% NATURAL SCALE ———— VALUI; SCALE ~——>>= UTILITY SCALE

LOCATIONS === DRIVING DISTANCE ———— RATINGS OF ——»= UTILITIES OF VALUES
OF APARTMENS (IN MILES) FROM RELATIVE VALUE OF DRIVING DISTANCE
OFFICE OF DRIVING

DISTANCES

by —————3 (L) ———3 (@) T u(v)

100, f
RS R k —
10 20
Distance 0

Utility 8

Value

0 100
.- . Distance Volue
— Utility is a measure of preference SET
under uncertai nty Figure 7.2. The four steps needed to construct value and utility functions.
,, Aalto University
A School of Science 31.1.2019
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Elicitation of value functions

O Phases:
— Define the measurement scale X; = [a}, a;] (or |a}, a}])
— Ask a series of eliciation questions
— Check that the value function gives realistic results

,, Aalto University
School of Science 31.1.2019
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Elicitation of value functions:
Indifference methods

1 Bisection method:

— Ask the DM to assess level x, 5 € [a}, a;] such that she is indifferent
between change x, : « a® and change a* < x;s.
— Then, ask her to assess levels x; ,5 and x -5 such that she is indifferent

between
0 changes xq,s « a’ and x, 5 < x,5, and
0 changes xy -5 < xys and a* « xg 5.

— Continue until sufficiently many points have been obtained
0 Use, e.qg, linear interpolation between elicited points if needed
— The value function can be obtained by fixing v;(a?) and v;(a}) at, e.g., 0
and 1

,, Aalto University
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Elicitation of value functions:
Indifference methods i

0.8

O Example of the bisection method -
— Attribute a5 : Traveling days per year > 0.4
0.2

— Measurement scale [a}, ad], where a3 = 0 and
a3 = 200; fix v3(ad) =0 and v5(a}) =1 % 50 100 150 200
0 "What would be the number x, 5 of traveling days such that -

you would be indifferent between a decrease from 200 to x s v3(130) —v3(200) = v3(0) — v3(130) =

days ayear and a decrease from x, s to zero days a year?” v3(130) = v3(0) + v;(200) =05
(Answer e.g., "130”) 2

0 "What would be the number x, ,5 of traveling days such that _ _ _
you would be indifferent between a decrease from 200 t0 x5~ ° (170) = v3(200) = v5(130) ~ v3(170) =

130) + v3(200
days a year and a decrease from x, ,s to 130 days a year?” v3(170) = v3(130) > v3(200) =0.25
(Answer e.g., "170”)
0 "What would be the number x 5 of traveling days such that _
g : — v3(130) = —
you would be indifferent between a decrease from 130 to x /s v3(80) v3gj 3;3% N 53 8%0) v3(80) =
days ayear and a decrease from x, ;5 to zero days a year?” v3(80) = > > > =0.75
(Answere.g., ’80")

31.1.2019
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Elicitation of value functions:
Indifference methods

1
O Sequence of equally preferred
differences:

T 0
0.8}
Set x, € (al, a}) 0.6
Ask the DM to assess level x; € (x,a;] such that he is <
indifferent between changes x, < af and x; < x, 0.4+
0 v;(x) —vi(al) = vi(x1) — vi(x0) = v; (x1)=2v;(x0)
Then, ask him to assess level x, € (x1,a;] such that he is 0.2y
indifferent between change x; < xy, and x, < x;
0 vi(x1) — vilxo) = v;(x2) — vi (1) = v;(x2)=3v; (o) %00 2000 3000 4000 5000 6000
—  Continue until xy=a; and solve the system of linear equations Salary x€/month
_ vilxn) _ _ 2
o) v; (XO) = —vNiII =Nt = V; (Xl)—m etc. Example
If xy>a; (see the exercises!)
o] Change a; to xy and interpolate, or
(0]

[ a?,a}] = [1000,6000], x,= 1500
x1= 2500, x, = 4000, x; = 6000 = a; =
Interpolate to get v;(a;) — v;(a?) v,(1500) = %’ v,(2500) = %’ v,(4000) = %.
A’, Aalto University

School of Science
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Elicitation of value functions:
Indifference methods

4 Indifference methods are likely to result in a cardinal value function
that captures the DM’s preferences

O Therefore, they should be used whenever possible

O Yet: indifference methods cannot be used when the measurement
scale is discrete
— E.g., Fitwith interest: X, ={poor, fair, good, excellent}
— Cf. Axiom A6

,, Aalto University
School of Science 31.1.2019
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Elicitation of value functions: direct
methods

O Direct rating
— Ask the DM to directly attach a value to each attribute level

— E.g. ”Assume that the value of poor fit with interests is O and the value of excellent fit with
interests is 1. What is the value of fair fit with interests? How about good fit?”

O Class rating

— Divide the measurement scale into classes and ask the DM to attach a value to these classes

L Ratio evaluation
— Take one attribute level as a reference point and ask the DM to compare the other levels to this
— E.g., ’How many times more valuable is 1000€ than 900€?”

U Direct methods should be avoided whenever possible
— Usually do not result in a cardinal value function

,, Aalto University
School of Science 31.1.2019
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Next time: Aggregation of values

O Problem: How to measure the overall value of alternative x =

(x11x21 xn)?
V(xy,xp,...x,) =2

O Question: Could the overall value be obtained by aggregating
attribute-specific values?

V(e 2z 2) = F(0(), o, 0(0))?

O Answer: Yes, if the attributes are
— Mutually preferentially independent and
— Difference independent

,, Aalto University
School of Science 31.1.2019
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O Under certain axioms, the DM’s preferences over changes on a
measurement scale can be captured by a cardinal (measurable)
value function

O “I prefer a change from O euros to 10 euros to a change from 10
euros to 22 euros”

O Elicitation of the attribute-specific value functions
— Use indifference methods if possible

A’, Aalto University
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O Given certain axioms, a DM’s preferences about a single attribute can be represented
by a cardinal value function v;(x;) such that
vi(x) 2 v (v) & x; 7y
vi(x) —vi(x) 2 vi () —vi () © (< xp) Z2q i < ¥1).

O Attribute-specific value functions are obtained by
—  Defining measurement scales [x?, x;]

— Asking a series of elicitation questions through, e.g.,
1. Bisection method
2. Equally preferred differences
3. Giving a functional form; e.g., v;(x;) is linear and increasing

O Result: shape of the value function

Q Value functions can be normalized such that v;(x{) = 0 and v;(x;) = 1.

,, Aalto University
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J How to measure the overall value of multi-attribute alternative x =

(x11x21 xn)?
V(xy,xp,... %) =2

O Could the overall value be obtained by aggregating attribute-specific
values?

V(e 2z 2) = F(0(0), e 0(00)) = Z:lwiviv (x;)?

O Answer: Yes, if the attributes are
— Mutually preferentially independent and
— Difference independent

O ... But how to interpret and elicit attribute weights w;?

A’, Aalto University



O Definition: Attribute X is preferentially independent of the other
attributes Y, if for all x,x’ € X

(x,y) = (x'\y)=(xy) = (" y)forally ey

O Interpretation: Preference over the level of attribute X does not
depend on the levels of the other attributes, as long as they stay
the same

O “All other things Y being equal (no matter what they are), an
alternative with performance level x w.r.t. X is preferred to an
alternative with level x’ € X”

A’, Aalto University



Last time

O Consider yourself
choosing
accommodation for
a (downhill) skiing
vacation trip

O How do the
accommodation
alternatives differ
from each other?

U What are the
attributes that
influence your decision?

,, Aalto University
School of Science
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Preferential independence: example 1

O Attribute X is preferentially independent of the other attributes Y, if
for all x,x’ € X

(x,y) = (" y)=(xy) > y)foraly ey
O 2 Attributes
a X={1,...,500} number of reviews
O Y=[1,10] average of reviews
4 Is X preferentially independent of Y?
d No: (500,10) =(5,10), but (500,1) <(5,1)
O Is Y preferentially independent of X?

O Yes (if higher average is preferred independently of #reviews, as long there
are equally many reviews): (500,10) >(500,9) = (x,10)>=(x,9) for any x

,, Aalto University
School of Science 7.2.2019
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Preferential independence: example 2

L Consider choosing a meal using two attributes:
1.  Food € {beef, fish}
2.  Wine € {red, white}

U Preferences:

1.  Beefis preferred to fish (no matter what the wine is):
(beef, red) > (fish, red)
(beef, white) > (fish, white)

2. White wine is preferred with fish and red wine with beef
o] (fish, white) > (fish, red)
o] (beef, red) > (beef, white)

U Food is preferentially independent of wine
O Beef is preferred to fish, no matter what the wine is: (x,y") = (x",y") = (x,y) = (x',y) forally € Y
0 Wine is not preferentially independent of food
O Attribute-specific valuation of wine is not meaningful from the meal’s perspective
A” gz::gol:'yfvg':'etxce 7.2.2019
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Mutual preferential independence

O Definition: Attributes A are mutually perferentially independent, if
any subset of attributes XcA is preferentially independent of the
other attributes Y=A\X. l.e., for any XcA, Y=A\X:

(x,y) =" y)=>(xy) = (x',y)forally e Y

O Interpretation: Preference over the levels of attributes X does not
depend on the levels of the other attributes, as long as they stay
the same

,, Aalto Univer sty
School OfS 7.2.2019
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Mutual preferential independence:
example

L Consider choosing a meal using three attributes:
1.  Food € {beef, fish}
2. Side dish € {potato, rice}
3.  Wine € {red, white}
U Preferences:
1. All other things being equal, red > white, beef > fish, potato > rice

2.  Full meals:
(o] (beef, rice, red) >(beef, potato, white)

o] (fish, potato, white) 3> (fish, rice, red)

Each attribute is preferentially independent of the other two, but the
attributes are not mutually preferentially independent:

(y',potato,white) > (y',rice,red) # (y, potato,white) > (y,rice,red)

,, Aalto University
School of Science 7.2.2019
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Mutual pref. iIndependence: example 2

O Choosing a car w.r.t. attributes A={top speed, price, CO,
emissions}
O Attributes defined on continuous scales
O Are all A’s subsets (X) preferentially independent of the other
attributes (Y=A\X)?
O Each single attribute is preferentially independent of the other

attributes, because

O Lower price is preferred to higher price independent of other attributes (if other
attributes are equal)

O Higher top speed is preferred to lower
O Smaller emissions are preferred to bigger ones

,, Aalto University
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Q Is X={price, CO, emissions} pref. independent of Y={top speed}?

Q Consider two cars which differ in price (e.g., 30000 e, 25000 e) and emissions
(150 g/km, 200 g/km) so that one of the alternatives is better in emissions and the
other in price. Set the same top speed for the alternatives (e.g. 230 km/h). Which
one is better?
O DM says (230 km/h, 30000 e, 150 g/km) > (230 km/h, 25000 e, 200 g/km)
O =when top speed is 230 km/h, she is willing to pay extra 5000 € on top of 25000 € for

this emission reduction

O Change the top speed. Is the first car still preferred to the second? e.g. does (150
km/h, 30000 e, 150 g/km) > (150 km/h, 25000 e, 200 g/km) hold?
O  “No matter what the top speed is, (30000 e, 150 g/km) > (25000 e, 200 g/km)”

Q Consider other prices and emissions; does your preference hold for all top speeds?

O If varying the top speed does not influence preference between alternatives, then
{price, CO, emissions} is preference independent of {top speed}

A’, Aalto University



Difference independence

O Definition: Attribute X is difference independent of the other
attributes Y if for all x,x’ € X

(x,y) « (', y)=a(x,y) « (x"y)forally eY

U Interpretation: The preference over a change in attribute X does
not depend on the levels of the other attributes Y, as long as they
stay the same

,, Aalto University
School of Science 7.2.2019
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Difference independence: example

O Is {top speed} difference independent of the other attributes {price,
CO, emissions}?
O Constructy and y’ from any two levels of price and CO, emissions; y=(25000 e,
150 g/km) and y’=(30000 e, 200 g/km)
O Consider any two levels of top speed; x’=200 km/h, x=250 km/h

O Does (250 km/h, 30000 e, 200 g/km) « (200 km/h, 30000 e, 200 g/km) ~4 (250
km/h, 25000 e, 150 g/km) < (200 km/h, 25000 e, 150 g/km) hold?

U If yes (for all x,x",y,y’), then difference independence holds
U That is, does the value of increased top speed depend on the levels of other attributes or not?

U Is the "amount of” value added by a fixed change in top speed independent of the other
attributes?

,, Aalto University
School of Science 7.2.2019
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O We are choosing downhill skiing accommodation with regard to 6
attributes, which include cost per night (in €) and possibility to go
to sauna (binary)

0 We think that (170 e, sauna, X3, X4, ...)~(145 e, no sauna, X, X,, ...) with some

X3,...,Xg = We would pay an additional 25 € on top of 145 € for the sauna, with some
X3, Xg

Q Then, if difference independence holds (for each attribute):
(145 e, no sauna, Xz, Xy, ...) < (170e, N0o sauna, Xz, Xy, ...) ~4
(170 e, sauna, X3, X, ...) < (170 e, no sauna, Xg, X,, ...) for any Xs,...,Xg

d Forany x3,...,Xs = "No matter how close to nearest ski lifts, no matter how fancy
the breakfast, how bad the reviews, etc.”

Implication: “the improvement needed in an attribute to compensate a loss in
another attribute does not depend on the levels of other attributes”
I o



Theorem: If all attributes are mutually preferentially independent and each
attribute is difference independent of the others, then there exists an additive
value function

n

Ve =Vl %) = ) vix)

i=1
which represents preference relations >, >, in the sense that
Vix)=V(iy)exx=y
V) V) 2V V) e (x«x') >2q (y <« ¥)

Note: The additive value function is unique up to positive affine transformations,
l.e., V(x) and V'(x)=aV(x)+3, a>0 represent the same preferences

A’, Aalto University



. But where are the attribute weights
Wi?
Theorem: If all attributes are (...) , then there exists an
additive value function

V) = V(o) = z v ()

4 Slide 3: Could the overall value be obtained by
aggregating attribute-specific values?

V(xli Xy v xn) — f(v(xl)’ ’v(xn)) — z:lzlwivl!v(xi) ?

Aalto Un
A” School fS 7.2.2019
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Normalized form of the additive value
fUﬂCtIOﬂ V(x) =V(xy,. xn)—z_vl(xl)

O Denote B

—  x? = Least preferred level w.r.t to attribute i
— x; = Most preferred level w.r.t to attribute i

O Then,
Vix)=V(x) - V(% + V(9
= Y vi(x) — X v (x) + V(0= T [ () — v (x)] +V (x9)

- )~ P e

W;>0
— n , —vi(x{) 0
A e e RO Ren e | RGNS
a>0 3i

,, Aalto University
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Normalized form of the additive value
function (cont’'d)

LEXELW, Laivi (x;) + 'Bil + V(x9°) Norrr_lglized attribute-
specific value

vNelo,1] < licval
function v;" (x;) €

Wi
=iz l(Z?ﬂ w;) - T v () |+ V(x©) [0.1]

1=1 l

=w;>0X1., wi=1
:£2?=1 Wiz z?=1 Wile (xzz +V(x?)
x>0 VN(x) < s Normalized additive value function

=xVN(x) + 6 VN (0)=Xi, wiv) (x;) € [0,1]

V(x) = xVN(x) + § is a positive affine transformation of
V¥ (x); they represent the same preferences!

,, Aalto University
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Interpretation of attribute weights

wi  _ _ vilxp)-vi(xd)

LWy B 2?:1(”1'(’5;)_”1'("?

Q By definition, w; = < Vi) = vi(x7)

O Attribute weight w; reflects the increase in overall value when the performance level on
attribute a, is changed from the worst level to the best — relative to similar changes in
other attributes

0 Weights thus reflect trade-offs between attributes; not their absolute "importance”

O Elicitation of attribute weights without this interpretation is not meaningful
— Do not ask: "What is more important: environment or economy?”
— Do ask: "How much is society willing to pay to save an insect species?”

,, Aalto University
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Interpretation of attribute weights

O Correct interpretation and hence application of the weights may lead to
‘resistance’

L Let the least preferred and the most preferred levels in

O costsavings be O € and 1 B€ (“money”)

O the number of insect species saved from extinction in Finland be O and 1 (“environmental

aspects”)

O Environmental aspects are likely to receive a small weight, as for example weighting (0.5, 0.5)

would mean that we equally prefer saving 1 B€ and saving 1 species

O Cf. ... Let the least preferred and the most preferred levels in
O costsavings be O € and 1 B€

O the number of insect species saved from extinction in Finland be O and 100

,, Aalto University
School of Science 7.2.2019
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0 What if the conditions (mutual preferential independence and
difference independence) do not hold?

— Reconsider the attribute ranges [a?, a;]; conditions are more likely fulfilled
when the ranges are small

— Reconsider the attributes; are you using the right measures?

 Even if the conditions do not hold, additive value function is often
used to obtain approximate results

A’, Aalto University



Example (Ewing et al. 2006*): military
value of an installation

* “How to realign US Army units and which bases to close in order to
operate more cost-efficiently?”

« Many attributes, including "total heavy maneuver area” (x;) and
"largest contiguous area” (X,; a measure of heavy maneuver area

guality)

- "Total heavy maneuver area” is not difference independent of the other attributes x,
U y'" because (1000 ha, 100 ha, y”") < (100 ha, 100 ha, y’’) ~4 (1000 ha, 10 ha, y”)
< (100 ha, 10 ha, y’’) as the ncrease from 100 to 1000 ha in total area is found quite
useless, if total area consists of over 100 small isolated pieces of land

7.2.2019

A’, Aalto University
School of Science . ) .. ..
* Ewing, Tarantino, Parnell (2006): Use of Decision Analysis in the Army Base 99

Realignment and Closure (BRAC) 2005 Military Value Analysis. Decision Analysis 3, 33-49



Example (Ewing et al. 2006*): military
value of an installation

O Solution: unite the two attributes x, and x, into one attribute "heavy

maneuver area”

d Then (1000 ha, 100 ha, Y) « (100 ha, 100 ha, Y) >4 (1000 ha, 10 ha, Y) « (100
ha, 10 ha, Y) does not violate required difference independence conditions
(x,y") « (x',y)~s(x,y) « (x',y) forall y € Y, because x, is no longer an element
ofyory’

O BUT we need to elicit preferences between different 'pairs’ (x,, X,)

Total hcav_v maneuver area (1,000s acres)

Largest contiguous

area (1,000s acres) <10 =10and <50 =50and <100 =100
<10 0.1 2 14 2.0
=10 and <50 3.2 43 5.2
=50 and <100 6.1 7.6
=100 10.0

,, Aalto University
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Elicitation of attribute weights

O Attribute weights are derived from the DM’s preference
statements

1 Approaches to eliciting attribute weights:
— Trade-off weighting
— "Lighter” techniques: SWING, SMART(S), and ordinal methods

Aalto Un
A” School fS 7.2.2019
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Trade-off weighting

(d The DM is asked to

1. Set the performance levels of two imaginary alternatives x and y such that they are equally
preferred (x~y):

wy v (1) + -+ wp vl (x,) = wyvd (y) + -+ w vl (3,), or

2. Set the performance levels of four imaginary alternatives x, X', y, and y’ such that changes
X « X andy « y' are equally preferred (x « x'~; y « y'):

wy (v1 (1) = 07 (1)) + -+ F w (07 () — v (k) = wi (01 (7)) — v (1)) + -+ + wo (V3 ) — w0’ ()

,, Aalto University
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O n-1 pairs of equally preferred alternatives/changes — n-1 linear
constraints + 1 normalization constraint

O If the pairs are suitably selected (no linear dependencies), the system
of n linear constraints has a unique solution
— E.g., select a reference attribute and compare the other attributes against it

— E.g., compare the "most important” attribute to the second most important, the
second most important to the third most important etc

A’, Aalto University



Trade-off weighting: example (1/7)

O Consider two magazines A and B reporting a comparison of cars
x!, x?,and x>, based on the same expert appraisal, using the

same attributes:

a,: Top speed a,: Acceleration | a3: CO, a,. Maintenance
km/h 0-100 km/h emissions g/km | costs €/year
1
X

192 km/h 12.0s 120 g/km 400 €/year
x? 200 km/h 10.4 s 140 g/km 500 €/year
x3 220 km/h 8.2s 150 g/km 600 €/year

,, Aalto University
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Trade-off weighting: example (2/7)

O Consider changing top speed (reference attribute) from 150 to
250 km/h. All other things being equal, what would be an equally
preferred change in

— Acceleration time? Expert’s answer: from 14 to7s =

_ _ Y@ -vY (4
wy (v1 (250) — v (150)) = w, (v} (1) - v} (14)) = o T 250 (150)

— CO, emissions? Expert’s answer: from 100 to O g/km =

_ _ vY¥(0)-vl (100
wy (v (250) — v} (150)) = w; (v§'(0) — v§'(100)) = o T T 250 (150)

— Maintenance costs? Expert’s answer: from 800 to o €/year =

_ _ v (0)-vl (800)
wy (v (250) — v} (150)) = wy (v} (0) — v} (800)) = o T TN 250N (150)

,, Aalto University
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Trade-off weighting: example (3/7)

O Attribute-specific value functions according to the expert:

1
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>
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Trade-off weighting: example (4/7)

0 Magazine A uses the following measurement scales:

a,: Top speed (km/h) [150, 250] v (180) = 0.5, v (192) = 0.7, vV (200) = 0.75, vV (220) = 0.87
a,: Acceleration time (s) [7,14] vY¥(12) = 0.5, v) (10.4) = 0.75, v) (8.2) = 0.95
az: CO, emissions (g/km) [120, 150] 5—x3/30
a,: Maintenance costs (€/year) [400,600] 3 — x4/200
_ow W m-ras)
w, vN(250)-vN(150)
100
_ Wi _ vé\’(o)_vé\’(loo) _ w(vé\, (120) - Uév (150)) _ E
ws  vN@s50)-vN(150) 1 3
_ wi_ oM @-vle00) _ 530w (400) - v¥ (600))
ws oM @250)-vN(150) 1 =4

Q The three equalities and Y7, w; = 1 give w; = w, = 0.39, w; = 0.12, w,= 0.10.
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Trade-off weighting: example (5/7)

0 Magazine A reports the alternatives’ attribute-specific values multiplied by 10
(i.e., scaled to interval [0,10]) and the attribute weights:

x! 7 5 10 10

6.86
x? 7.5 7.5 3.3 5 6.76
x3 8.7 9.5 0 0 7.14
Weights w; 39% 39% 12% 10%

O Possible (mis)interpretations / "headlines”:
— ”Only power matters — minor emphasis on costs and environment”
— “Car x> terrible w.r.t. CO, emissions and maintenance costs — yet, it's the expert’s choice!”

— ”No significant differences in top speed — differences are in CO, emissions and maintenance
costs”

,, Aalto University
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Trade-off weighting: example (6/7)

0 Magazine B uses the following measurement scales:

a;: Top speed [192,220]  vI(150) = —4.12, v} (180) = —1.18, v¥ (192) = 0, v¥ (200) = 0.29, v¥ (220) = 1, v} (250) = 1.76
a,: Acceleration [8.2,12] vy (14) = -1.11,v)(12) = 0, v} (10.4) = 056, v} (82) = 1, v) (7) = 1.11

az: CO, emissions [0, 250] 1 —x3/250

a,: Maintenance [0,2000] 1 - x,/1000

N _.,N
~ wy (vI¥(250) — v} (150)) = w, (v (7) — v} (14)) > 22 = el — Lt — 378

wy,  vN@250)-vN(150)  1.76+4.12
150

N N 1—
_ wi . v3(0)-v3 (100) _ 250 —

ws  vN@250)-vN(150)  1.76+4.12 0.068
_wi_ oM @-ul(e00) _ 1oipes _ 0.136

ws  vN@250)-vN(150)  1.76+4.12

Q The three equalities and Y7, w; = 1 give w; = 0.039, w, = 0.103, w3 = 0.572, w, = 0.286.
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Trade-off weighting: example (7/7)

0 Magazine B reports the alternatives’ attribute-specific values multiplied by 10
(i.e., scaled to interval [0,10]) and the attribute weights:

x! 0 0 5.2 6 4.7

x? 2.9 5.6 4.4 5 4.6
x3 10 10 4 4 4.9
Weights w; 3.9% 10.3% 57.2% 28.6%

O Possible (mis)interpretations:
— ”Emphasis on costs and environmental issues”
— ”x”>wins only on the least important attributes — yet, it’'s the expert’'s choice!”
— "Car x! terrible w.r.t. top speed and acceleration time”

,, Aalto University
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O Weights reflect value differences over the measurement scales —
changing the measurement scales changes the weights

O The attribute-specific values used in trade-off weighting take the
measurement scales explicitly into account — weights represent
the DM’s preferences regardless of the measurement scales

O Trade-off weighting has a solid theoretical foundation and requires
thinking; use whenever possible

A’, Aalto University



0 Swing-weighting process:
1. Consider alternative x° = (x?, ..., x2) (each attribute on the worst level).

2. Choose the attribute a; that you would first like to change to its most
preferred level x;* (i.e., the attribute for which such a change is the most
valuable). Give that attribute a (non-normalized) weight W; = 100.

3. Consider xY again. Choose the next attribute a,that you would like to
change to its most preferred level. Give it weight W; € (0,100] that reflects

this improvement relative to the first one.
4. Repeat step 3 until all attributes have been weighted.
5. Obtain weights w; by normalizing W;.

A’, Aalto University



SWING: example

O Magazine A’'s measurement scales

— Alternative x° = (150’%”,145,150%,600 € )

year

— The first attribute to be changed from the worst to
the best level: a; - W; = 100 ay: Top speed [150, 250]

— The second attribute: a, - W, = 100 a,: Acceleration  [7, 14]

— The third attribute: a; - W3 = 30 as: COz emissions (120, 150]

— The fourth attribute: a, - W, = 20 e Il

— Normalized weights: w; = w, = 40% w; =
12%, Wy = 8%.

7.2.2019
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0 The mode of questioning explicitly (but only) considers the
least and most preferred levels of the attributes

O Assumes that the DM can directly numerically assess the strength of preference of
changes between these levels

O NOTE that we only have two preference relations: > and > ,

O For example preference statement W, = 100, W, = 20 is equal to v; (x7) —
v; (x) = 5[v, (x}) — v, (xD)], which assumes that there exist levels x?%, x4, x2°,
x)® so that (x? «= x7) ~g (7" — x7?) ~4 ... ~q (2] — x{°)
Q  Then vy (x7) — v (x7) = 5[vy (xP?) — v1 ()] = 5[va (1) — va (] if (102, x5, %3, %4 ) —

(xf,xz,xg,x4 ) ~a (1 X2, %3,x5) — (x4 ,xz,xg,xff)

A’, Aalto University



d Simple Multi-Attribute Rating Technique process:
1.  Select the least important attribute and give it a weight of 10 points.

2. Select the second least important attribute and give it a weight (=10 points) that
reflects its importance compared to the least important attribute.

3. Go through the remaining attributes in ascending order of importance and give
them weights that reflect their importance compared to the less important
attributes.

4. Normalize the weights.

O This process does not consider the measurement scales at all —
Interpretation of weights is questionable

A’, Aalto University



SMARTS = SMART using Swings

1.  Select the attribute corresponding to the least preferred change from
worst to best level and give it a weight of 10 points.

2. Go through the remaining attributes in ascending order of preference over
changing the attribute from the worst to the best level, and give them
weights that reflect their importance compared to the less preferred
changes.

3. Normalize the weights.

A’, Aalto University



SMARTS: example

0 Magazine A’'s measurement scales

— Alternative x° = (150’%”,145,150%,600 € )

year
— Least preferred change from the worst to the best
level: a, — W, =10 a,: Top speed [150, 250]
— The second least preferred change: a; - W5 = 20 o, Acceleration  [7, 14]
— The third least preferred change : a, - W, = 40 as: CO, emissions  [120, 150]
— The fourth least preferred change: a; - W; =40 a,: Maintenance  [400,600]

— Normalized weights: w; = w, = 36%, w3 =
18%, w, = 9%.

7.2.2019
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Empirical problems related to SWING &
SMARTS

O People tend to use only multiples of 10 when assessing the
weights, e.qg.,
— SWING: W; = W, = 100, W, = 30, W, = 20 » w; = w, = 0.40,w; = 0.12,w, = 0.08
— SMARTS: W, =W, =40,W; =20,W, =10 -» w; = w, = 0.36,w; = 0.18,w, = 0.09

[ SWING and SMARTS typically produce different weights

O Assessments may reflect only ordinal, not cardinal information

about the weights
— E.g., SMARTS weights W, = 10 and W; = 20 only imply that W,<W;, not that
Wy /W,=2

,, Aalto University
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L Additive value function describes the DM’s preferences if and only if the
attributes are mutually preferentially independent and each attribute is
difference independent of the others

U The only meaningful interpretation for attribute weight w;:

The improvement in overall value when attribute a; is changed from its worst
level to its best relative to similar changes in other attributes

O In trade-off weighting, attribute weights are elicited by specifying equally
preferred alternatives (or changes in alternatives), which differ from each
other on at least two attributes

O Use trade-off weighting whenever possible

A’, Aalto University
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d If the attributes are mutually preferentially independent and each
attribute is difference independent of the others, then there exists
an additive value function

V(x)=Xi=1 WinN(xi)

such that
Vix)=2V(y) eox =y
Vi) =VXD =2V V) e x«x) =z 0 <y)

O Decision recommendation: choose the alternative with the highest
overall value V(x)

A’, Aalto University



U The only meaningful interpretation for attribute weight w;:

The improvement in overall value when attribute a; is changed from its worst
level to its best relative to similar changes in other attributes

O Attribute weights cannot be interpreted without this interpretation
0 Changing the measurement scale changes the weights

O In trade-off weighting, attribute weights are elicited by specifying equally
preferred alternatives (or changes in alternatives), which differ from each
other on at least two attributes

O Use trade-off weighting whenever possible

A’, Aalto University



O Specifying equally preferred alternatives requires quite an attempt. Do
we need such an exhaustive representation of preferences to produce
defensible decision recommendations?

d Answer: Typically not, we can for example derive decision
recommendations based only on ordinal information— like SWING

without giving the points to the attributes
O But... the simplest of such methods have severe problems

0 Answer?2: Typically not, we learn how to

— Accommodate incomplete preference statements in the decision
model

— Generate robust decision recommendations that are compatible with
such statements

A’, Aalto University




O The DM is only asked to rank the attributes in terms of their
Importance (i.e., preferences over changing the attributes from the
worst to the best level, cf. SWING)

— R; = 1 for the most important attribute
— R; = n for the least important attribute

O This ranking is then converted into numerical weights such that
these weights are compatible with the ranking
— Wi>Wj@Ri<Rj

A’, Aalto University



Ordinal weighting methods

e.g. attribute 1 more

_ _ Important
0 Rank sum weights are proportional to the

opposite number of the ranks W, =2—-1+1=2

WiOC(Tl—Ri+1) W2:2—2+1:1

Q Rank exponent weights are relative to some  Normalize to get

power of (n — R; + 1) 5 1
w; < (n— R; +1)* 1=z "273

— Ifz>1(z<1), the power increases (decreases) the
weights of the most important attributes compared
to Rank sum weights.

,, Aalto University
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Ordinal weighting methods

O Rank reciprocal weights are proportional to the inverse of the ranks

1
.o —
W; Ri

O Centroid weights are in the center of the set of weights that are
compatible with the rank ordering
— Order the attributes such thatw; > w, = --- > w,,.

— Then, the extreme points of the compatible weight set are (1,0,0,0...), (*2, ¥2,0,0,...),
(1/3,1/3,1/3,0,..),... (1/n,...,1/n).

— The average of these extreme points is
_ 12" 1
YT o j=i R;

,, Aalto University
School of Science 14.2.2019

7




Example: centroid weights

2
Wi = — — W
on j=iRi 3

(0,0,1)
9 Rank orderi o \ (533)
ank ordering w; = w, = ws: \\ Wy = W
\
1/ 01 1\ 11 - w,
W1—§ 1+§+§ —1—8~061 wy = w, /"‘)‘6 - o
1/1 1\ 5 ‘ 400
vi=3(z+3) -0 ", i
1 1 1 0,1,0) W1 2 W2 2 W3
- —.—=—=~011
Ws=3'3g~"

,, Aalto University
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Ordinal weighting methods: example

Q Four attributes {aq, a,, as, a,} in descending order of importance — R, =
1,R, =2, R; =3,R, =4

| 2 ] a5
3 2 1 10

Rank sum 4
weights 0.4 0.3 0.2 0.1 1
Rank exp(z=2) 16 9 4 1 30
weights 0.53 0.30 0.13 0.03 1
Rank reciprocal 1 1/2 1/3 1/4 25/12
weights 0.48 0.24 0.16 0.12 1
Centroid 25/48 13/48 7/48 3/48 1
weights 0.52 0.27 0.15 0.06 1

O Different methods produce different weights!

,, Aalto University
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Ordinal weighting methods: example
(cont’d)

O Assume that the measurement scale of the most important
attribute a, is changed from [0€,1000€] to [0€,2000£].

O Because w; « v;(x}) — v1(x?), the weight of attribute a, should be
even larger.

O Yet,

— Ranking among the attributes remains the same — rank-based weights
remain the same

— The alternatives’ normalized scores on attribute a, become smaller —
attribute a; has a smaller impact on the decision recommendation
O Avoid using ordinal methods, which produce a "point estimate”
weight

,, Aalto University
School of Science 14.2.2019
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O Two modes of weighting

Hierarchical: all weights are elicited

and then multiplied vertically

o0 Problem: elicitation questions for the higher-
level attributes are difficult to interpret:

Wy =wytwy o (0 (x7)-v1(x7)) +(v2(x3)-v2(x3))

A’, Aalto University

— Avoid!

Non-hierarchical: weights are only
elicited for the twig-level attributes

Ideal car

wy; =0.22 w, =0.78
Economy Driving
I I
I | [ I
Price Expenses Acceleration Top speed
0.45 0.55 0.50 0.50
w; =0.22-045=0.10 w, =012 w3 = 0.39 w, =0.39
Ideal car
Economy Driving
I I
I | | |
Price Expenses Acceleration Top speed
wy; =0.10 w, = 0.12 w3 = 0.39 w, =0.39
0.22 0.78




Recap: elements of MAVT

O Elements of MAVT:
— Alternatives X = {x1,...,x™}
— Attributes A = {ay,...,a,}
— Attribute weightsw = [wy, ..., w,,] € R"
— Attribute-specific (normalized) values v € R™", v;; = v (x) € [01]

— Overall values of alternatives V(x/,w,v) = ¥, w;v;;, j=1,...m

,, Aalto University
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O Defining equally preferred alternatives / changes between
alternatives leads on a linear equation on the weights

— E.g., "All else being equal, a change 150 — 250 km/h in top speed is
equally preferred to a change 14 — 7 s in acceleration time” =

wyvY (250) + wyvd (14) + wavd (x3) + wyvd (x,) — V(150,14, x5 x4) =
w1 v (150) + wyovd (7) + wi vl (x3) + wyuvl (x4) V(150 14, x4 x4) =
w; vl (250) — wy v (150) = wyvd (7) — wyv) (14)

O Question: What if the DM finds it difficult or even impossible to define
such alternatives / changes?

— E.g., she can only state that a change 150 — 250 km/h in top speed is
preferred to a change 14 — 7 s in acceleration time?

A’, Aalto University



Incomplete preference statements

0 Set the performance levels of two
imaginary alternatives x and y such that a,: Top speed (km/h) [150, 250]
XFzy=> a,: Acceleration time (s) [7, 14]

N( )+ e+ N( ) -
w11 (X1 WnVUn (Xn as: CO, emissions (g/km) [120, 150]
N N
= W1l (Y1) + oWy (yn) a,: Maintenance costs (€/year) [400,600]

O For instance, a change 150 — 250 km/h in top speed is preferred to
a change 14 — 7 s in acceleration time:
w1vl (250) + wovl (14) + wavd (x3) + wavd (x,) — V(150,14, x5 x, ) =
w1vY (150) + wyvd (7) + wavd (x3) + wyv (x,) — V(150,14, x5 x4 )
S wp =Wy
O Incomplete preference statements result in linear inequalities
between the weights

,, Aalto University
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Incomplete preference statements:
example

O Consider attributes
— CO, emissions a3 € [120g,1509]
— Maintenance costs a, € [400€ ,600€]

1 Preferences are elicited with SMARTS:

— Q:”If the change 600€ — 400€ in maintenance costs is worth 10 points,
how valuable is change 150g — 120g in CO, emissions?”
— A:"Between 15 and 20 points”
1.5w,[vY (400) — v (600)] < w5 [vY (120) — v (150)] < 2w, [v¥ (400) — vV (600)]
= 15w, < w3z < 2w,

,, Aalto University
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Incomplete preference statements:
example

L Preferences are elicited with trade-off methods:

— Q: ”"Define an interval for x such that 600€ — 400€ in maintenance costs is
as valuable as 150 g — x g in CO, emissions.”

— A:"xis between 130 and 140 g”
a,: Top speed (km/h) [150, 250]

For x>140, the change in maintenance as Accelerationiime)(s) 7. 14]

costs Is more valuable az: CO, emissions (g/km) [120, 150]

For x<130, the change in COZ2 emissions
/s more valuable

ws v} — v (150)] < w,[vl (400) — vY (600)] < w;[vY — v} (150)]

= v (140)w; < w, < vY (130)w;

a4 Maintenance costs (€/year) [400,600]

1 2 . . - .
= W3 S W, < owy, if v is linear and decreasing.

,, Aalto University
School of Science
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Modeling iIncomplete informaation

U Incomplete information about attribute weights is modeled as set S
of feasible weights that are consistent with the DM’s preference
statements:

n
SQSO:{WERnlz w; =1w; =20 Vi}
i=1

,, Aalto University
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Modeling incomplete information

O Linear inequalities on weights can
correspond to

1. Weak ranking w; = w;
2. Strictrankingw; —w; = a

3. Ranking with multiples w; = aw;

(equivalent to incompletely defined
weight ratios w;/w; = a)

4. Intervalforma <w;<a+¢
5. Ranking of differences w; —w; = w;, — w;,

14.2.2019
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Overall value intervals

U Due to incompletely specified weights,
the alternatives’ overall values are

VA
Intervals: I I /V(xz)//

: il
V(ix,w,v) € [rur)elg V(x,w,v), max V(x,w, v)] (xh) V)
Value
intervals
3 Note: linear functions obtain their minima "
and maxima at an extreme point of S . 0.4 0.7
2
— Eg.,S={weS°cR?|04<w; <07}> 0.6 0.3
ext(S) = {(0.4,0.6),(0.7,0.3)} wp,=1-w,

,, Aalto University
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U Preference over interval-valued alternatives can be established through a
dominance relation

A Definition: x* dominates x/ in S, denoted x* > x/, iff

V(x*k,w,v)=V(x/,w,v) forallwe s
V(x*,w,v) >V(x/,w,v) forsomew € S

i.e., iff the overall value of x* is greater than or equal to that of x/ for all
feasible weights and strictly greater for some.

,, Aalto University
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Non-dominated alternatives

[ An alternative is non-dominated if no other alternative dominates it
O The set of non-dominated alternatives is
Xyp = {x* € X|2j suchthat x/ >¢ x*}

O Xyp contains all good decision recommendations

— l.e., alternatives compared to which no other alternative has at least as high
value for all feasible weights and strictly higher for some

,, Aalto University
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Non-dominated alternatives

x¥ is non-dominated if no other alternative has 4

higher value than x* for all feasible weights

VA
« Alternative x! dominates x3 /
ey
V(x3)
o Alternatives x! and x? are non-dominated

Value
intervals
1141
0.4 0.7
W»
0.6 0.3

wi=1—-w,

,, Aalto University
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Non-dominated vs. potentially optimal
alternatives

0 A non-dominated alternative is not necessarily N V.

optimal forany w € S ,
V(x1) V
— x1,x?% and x2 are all non-dominated
— Only x! and x? are potentially optimal in that they maximize V ; V(x?)
forsomew € S

—  Still, neither of them can be guaranteed to be better than x3

0.4 0.7

0.6 0.3

,, Aalto University
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Properties of dominance relation

_______________________________________________

Non-dominated

A Transitive | alternatives

— |If Adominates B and B
dominates C, then A dominates
C

O Asymmetric
— If A dominates B, then B does
not dominate A
Q Irreflexive

— A does not dominate itself Dominance relations
expressed with a directed

arc: B dominates D

,, Aalto University
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Computing dominance relations

Q If x*¥ dominates x/:
1 v(x*wv)=V(x/,w,v)forallwes
& Mrpelgl[V(ka v)-V(x/wv)|=0e Mrpeigl[Z?=1 wi (Vg — V) | =0
2. V(x*w,v)>V(x),w,v)for somew € S
e max|[V(x* w,v) - V(x/ wv)]>0e wgsx[z?ﬂ wi (Vg — ;) | >0

WES

d Dominance relations between two alternatives can thus be
established by comparing their minimum and maximum value
differences

,, Aalto University
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Computing dominance relations:
example

O Consider three cars with normalized attribute-specific values:
x! 0.7 0.5 1 1
x2 0.75 0.75 0.33 0.5

x3 0.87 0.95 0 0

O Incomplete preference statements have resulted in feasible set of

weights S:
S={weSs’cR*w; =w, =3wsz, wz=w, =01}

14.2.2019
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Computing dominance relations:

example

Values=[0.7 0.5 1 1; 0.75 0.75 0.33 0.5; 0O.87 0.895 0 0O]:
A=[0 -1 3 0;0 0 -1 1;0 0 O -1]1:

b=[0;0:-0.1]:

Beg=[1 -1 0 O0;1 1 1 17;

beg=[0:1]:

MinValueDiff=zeros (3,3);

MaxValueDiff=zero= (3, 3);

for i=1:3
for j=i+l:3

[wW,fval]=linprog( (Values=s (i, :)-Value=(j,:)) "', A, b, Aeg, beg);

MinValueDiff (i, j)=fval:;

[w, £fwval]=linprog((Values(j,:)-Values(i,:)) ",&, b, Aeq, bedq):

MaxValueDiff (i, j)=—Lfwval:

MinValueDiff(j,i)=-Ma=xValueDiff(i,j):

HaxValueDiff (j,i)=-MHinValueDiff(i,j):

if MinValueDiff(i,j)>=0 && MaxValueDiff(i,j)=>0
dizp(['ARlternative " numZstr(i) " dominates " numZstr(j)

eglseif MinValueDiff(j,i)>»=0 &£& HaxValueDiff(j,i)>0
disp(['"Alternative " num2str(j) ' dominates " numZstr (i)

end

end

end

1)

-1

Matlab function
linprog(f,A,b,Aeq,beq)
solves the optimization
problem:

min fTx such that
X

A-x<b
Aeq - x = beq

14.2.2019
27



Computing dominance relations:
example

O Minimum and maximum value differences

\I;VnEI? [V(xl,w,v) - V(XZ,W,U)] =-0.003<0 — Nelther Xl nor XZ
W&X[V(xl,w, v) — V(x? w,v)] =0.0338 >0 dominate the other

\TEIQ [V(x? w,v) = V(3w v)]=-0045<0
m&x[V(xz,W, v) —V(x3 w,v)] = -0.0163 <0

— x3 dominates x?

min[V (!, w,v) = V(x®,w, v)] = —0.048 <0 — Neither x nor x3
measx[V(xl,w, v) = V(x3,w,v)] =0.0175 >0 dominate the other

Q Xyp = {x, x3}

,, Aalto University
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Computing dominance relations:

example

L Note: because value differences are linear
in w, minimum and maximum value
differences are obtained at the extreme
points of set S:

wl=(0404010.1)
2 (20279 1 ~ (0.386,0.386,0.129,0.10
w= = 70170170110 ~( : y M r Ve )

s (3311Y_ 0.375,0.375,0.125,0.125
W—8181818 _( 1 v P )

W3

wl w?
v(x')-v(x*) 0.0204

v(x*)-v(x*) | -0.031
v(x')-v(*) | -0.0106

-0.0163

0.0338

0.0175

Aalto University
School of Science
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Additional information

O If information set S results in too many non-dominated alternatives, additional
preference statements (i.e., linear constraints) can be elicited

O New information set S’ c S preserves all dominance relations and usually
yields new ones — X, p stays the same or becomes smaller

X
S'c S, ri(S)nS' # o: N
HS) { Xxp(S) 2 Xup(S")

where ri(S) is the relative interior of S.
- ri(S) nS" # @: S is not entirely on the “border” of S

,, Aalto University
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Additional information: example

O No weight information

2 A A
S:SOZ{WEIRzl wi:1,wi20}
i=1 @
d Dominance relations ®
1. B dominates D ©
2. Cdominates D
© ®,
O Non-dominated alternatives © ®
— AB,CE @
w; =0 wy; =1
W2 1 WZ O

,, Aalto University
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Additional information: example (2/3)

O Ordinal weight information
S ={w € S%\w; = w,} 4 N

d Dominance relations ® — ®
1. B dominates D
_ ©
2. Cdominates D
3. E dominates D @ @
4. B dominates A
5. Cdominates A @ @
O Non-dominated alternatives . —_o_ _____ V; 05 Wy =1
1 = 1 — Y-
— B,C,E w, = 1 w, = 05 Wy = 0

,, Aalto University
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Additional information: example (3/3)

O More information
S={weSw, <w; <2w,}

O Dominance relations
1. B dominates D ® . ®
2. Cdominates D ©
3. E dominates D
4. B dominates A © ®)
5. Cdominates A /><
6. B dominatesC ®) ®@
7. Bdominates E G A I
w; =0 w; =05w, =067 w;=1
O Non-dominated alternatives: B w, =1 w,=05w,=033 w;=0

,, Aalto University
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Value intervals Contral values

Maximax
Maximin

Can value intervals be used in deriving
decision recommendations?

Some suggestions for “decision rules” from
literature:

« Maximax: choose the alternative with the
highest maximum overall value over the
feasible weights

e Maximin: choose the alternative with the

highest lowest overall value over the feasible i\ﬂlﬁms
weights s

e Central values: choose the alternative with the W, 0.4 0.7
highest sum of the maximum and minimum 0.6 0.3

values wi=1-w,

,, Aalto University
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...more decision rules Domain criterion

Minimax regret

« Minimax regret: choose the v, : A
alternative with the smallest maximum '
. V(x?

regret (= value difference compared to }//

any other alternative) 1/:

« Domain criterion: choose the %
alternative which is favored by the |
largest set of weights

,, Aalto University
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L DM asks 2 experts to compare fruit baskets (x;,X,) containing
apples x, and oranges X,

Q Linear attribute-specific value functions v, and v,

d DM: (2,0) >~ (0,1) and (0,2)>~(1,0)

O One orange is not preferred to 2 apples, one apple is not preferred to 2 oranges

O Fruit baskets (1,2) and (2,1) do not dominate each other

J What do the decision rules recommend?

A’, Aalto University



Expert 1: Expert 2:

x°=(0,0), x*=(2,4) xO:(o 0), x*:(4 2)
W 00) =703 () =22 W) = 2R () = 2
V(2,0)>V(0,1) < V(2,0)>V(0,1) &
§W1+0W2 20W1+%W2 2%(1—W1)<:>W12% %Wl > %Wz — l(l_ w,) e w, > %
V(0,2)2V(1,0) = V (0,2) 2V (1,0) &
EW :l(l—w)>lw < W 1 =1 > L <4
42 2 1—21 1—2 W2— _Wl_ZW1©W1_§



)(1 X2 X2
VIX)=w| —-=—" |+
(x) 1(2 4 ) 4
VL2 =w2-2 |+2=2
2 4) 4 2
V(2,1)=w, z 4 +1=§W1Jri
2. 4) 4 4" 4
,,,,,,,,,,,,, w2
0.6 o
21/15<1/6 f
6& ‘ 0.125 L.

> 04

0.3

0.2

V\ Y
1/6

(2,1) is the maximax solution
(1,2) is the maximin solution
1(2,1) is the minimax regret solution

0.1

0.

(2,1) is the domain criterion solution

2 0.25 0.3 0.35 0.4 0.45

Wy

0.5

V(x)=w1();1—)(22)+);2

V(1 2) =—%w1+1

o= 2/15<1/6
0125 " A

(1,2) is the maximax solution
0.3

(2,1) is the maximin solution

0.

N

- (1,2) is the minimax regret solution
(1,2) is the domain criterion solution

0.1

> 04r 1/6 “

0.65 0.7

Wy

0.5 0.55 0.6 0.75

0.8



O A common problem for all of the above decision rules: changing
the measurement scales [x°,x*] can change the recommendations

O Different attribute weightings w and w* represent value functions V
and V* — they cannot be compared

O IfV represents the DM’s preferences, so do all its positive affine transformations,
too

0 How to choose one of the value functions which all represent the same
preferences?

O Avoid using measures which compare overall values across
different value functions (i.e. attribute weightings)

A’, Aalto University



Rank (sensitivity) analysis

1 V (x?)

_/

U For any weights, the alternatives can
be ranked based on their overall

values \ Voo

1
O This ranking is not influenced by V(x)
normalization (i.e., positive affine W .
transformations of V) w. 04 0.7,
0.6 0.3
O How do the rankings of alternatives
change when attribute weights vary? ranks x x
minimum 1 1 1
maximum 3 2 3

,, Aalto University
School of Science 14.2.2019
40



Computation of rank intervals

The minimum ranking of xk is
r; (X)) =1+ min [{x' e X [V (x',w,v) >V (X*,w,v)}|

(w,v)eS

which is obtaiped as a solution to the mixed integer LP

min J
(w,v)eS Zl y
yigony 17

V(x!,wv) <V (XSwv)+y' M j=1...,m
y =1

Maximum rankings with a similar model

,, Aalto University
School of Science

14.2.2019
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Rank analysis — example (1/5)

O Academic ranking of world universities 2007
L 508 universities

O Additive multi-attribute model
O 6 attributes
d Attribute weights (denoted by w”) and scores
O Universities ranked based on overall values

,, Aalto University
School of Science

14.2.2019
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Rank analysis — example (2/5)

Criteria Indicator Code Weight

Quality of Education | Alummi of an institution winning Nobel Prizes and Fields Medals Ahimni 10%

!
Staff of an institution winning Nobel Prizes and Fields Medals Award 20%

Quality of Faculty
Highly cited researchers in 21 broad subject categories HiCi 20%
Articles published in Nature and Science* N&S 20%

Research Output

Articles in Science Citation Indes-expanded, Social Science Citation Index SCI 20%
Size of Institution  Academic performance with respect to the size of an institution Size 10%
Total 100%




Rank analysis —
example (3/5)

Scores (some of them)

,, Aalto University
School of Science

World Institution Score on|Score on | Score on|Score on| Score on|Score on| Total
Rank Alumni | Award HiCi N&S SCT Size Score

1 Harvard Univ 100 100 100 100 100 73 100
2 Stanford Unsv 42 78.7 86.1 696 703 65.7 73.7
3 Univ California - Berkelev 72.5 77.1 67.9 729 §9.2 52.6 71.9
4 Univ C:qmbridge 836 815 54 582 654 65.1 7.6
5 Massachusents [nst Tech (MIT) 74.6 80.6 65.9 654 61.7 534 70.0
6 California Inst Tech 553 69.1 84 676 50.3 100 66.4
7 Columbia Univ 76 65.7 36.5 43 §9.6 40.4 $3.2
8 Princeton Univ 62.3 80.4 393 429 465 389 59.5
2 Univ Chiczgo 70.8 80.2 50.8 428 541 413 8.4
10 Univ Oxford 60.3 579 46.3 523 654 447 56.4
11 Yale Univ 30.9 3.6 57.9 572 §3.2 48.9 55.9
12 Comell Univ 436 513 545 514 65.1 399 543
13 Univ Celifornia - Los Angeles 25.6 4238 574 491 759 35.5 52.6
14 Univ California - San Diego 16.6 34 583 355 646 46.6 504
15 Univ Pernsvivania 333 344 56.9 403 08 38.7 150
16 Unty Washington - Seatle 27 318 524 49 41 274 482
17 Univ Wiscon Em.’;ﬁ.w;,ms}.m 403 355 529 431 67.2 28.6 £8.0
18 Univ California _folow. Clickand hold t 0 6.8 54 537 598 46.7 46.8
19 Jokns Hoplkns Univ 481 278 413 509 679 247 6.1
2 Tokyo Univ 333 14.1 419 527 809 34 459
2 Univ ).[ichig:m - Ann Arbor 403 0 0.7 408 77.1 30.7 0
22 Kvote Univ 37.2 334 38.5 35.1 68.0 30.6 §3.1
2 Imgcxia] Col London 19.5 174 40.6 397 622 194 430
23 Univ Toronto 263 19.3 39.2 Atd 176 4.4 43.0
25 Uhiv Coﬂlong 288 122 385 429 632 138 4238
2 Univ [lknois - Urbana Champaign 39 36.6 44,5 6.4 57.6 26.2 £2.7
2 Swiss Fed Inst Tech - Zurich 37.7 356.3 355 99 184 50.5 39.9
28 Washington Univ - St. Louis 23.5 26 392 432 534 393 39.7
29 Northwestern Univ 204 189 46.9 342 57 3169 382
30 New York Univ 35.8 245 41.3 44 539 259 38.0
30 Rockefeller Univ 212 58.6 21.7 456 332 37.8 38.0
32 Duke Unrv 19.5 0 46.9 436 62 39.2 374
33 Univ Mnnesota - Twin Citles 333 1] 486 355 67 235 37.0
34 Univ Colorade - Boulder 15.6 0.8 329 388 457 30 36.6
35 Univ Cakifornia - $anta Barbara 0 353 426 362 427 351 358
36 Univ British Columbia 195 18.9 314 31 63.1 36.3 354
37 Umniv Maryland - Coll Park 243 20 40.6 312 533 259 350
38 Univ Texas - Austn 204 16.7 46.9 28 548 213 44
39 Univ Texas Southwestern Med Center 223 33.2 306 335 EH) E 338



Rank analysis — example (4/5)

Incomplete weight information

QRelative intervals: we{wesS, |1-a)w <w <(1+a)w }
4 For «=0.1,0.2,0.3
deg. o=0.2,w*=0.20: 0.16<w <0.24

Qincomplete ordinal: we{weS, |w >w, >0.02Vie{2,3,4,5} k e{1,6}}

Q Consistent with initial weights and lower bound b = 0.02

QOnly lower bound: we{we S, |w, >0.02Vi=1,...,6}

- - - 0
ONo weight information: wesS,
P sieottiscene

14.2.2019
45



Rank analysis — example

Harvard finiv

Stanford Univ

Univ California - Berkeley

Univ Cambridge

Massachusetts Inst Tech (MIT)
California Inst Te
Columbia U

Princeton Univ

Univ Chicago

Univ Oxford

Yale Univ
Comell Univ |

Univ California - Los Angele
Univ California - San Diego
Univ Pennsylvania

Univ Washington - Seattle
Univ Wisconsin - Madison
Univ California - San Francisco
Johns Hopkins Univ

ki icligam - Ao b = s 1.1, Different weighting would
ol London | — I likely yield a better ranking”

- 20 % interval

30 % interval

ty

Iversl

incompl. ordinal

Imperial Coll London

Univ Toronto

Univ Call London

Univ lllinois - Urbana Champaign
Swiss Fed Inst Tech - Zurich
Washington Univ - St. Louis

no information

Un

New York Univ
Rockefeller Univ
Duke Univ
Univ Minnesota - Twin Cities

Univ Colorado - Boulder

Univ California - Santa Barbara

Univ British Columbia

Univ Maryland - Coll Park

Univ Texas - Austin

Univ Texas Southwestern Med Center
Univ Paris 06

Vanderbilt Univ

Univ Utrecht

-
-
-
-
-
-
K
K
4
K

Score on | Score on | Score on | Score on | Score on | Score on

Institution Alumni | Award | HiCi | N&S | SCI | Size

Pennsylvania State Univ - Univ Park
Univ California - Davis
Univ California - Irvine

New York Univ 35.8 243 413 34.4 539 259

Univ Copenhagen
Rutgers State Univ - Mew Brunswick
Univ Manchester

Rockefeller Univ 21.2 (58.6)1qth 27.7 456 03.2)442nd7.8

Univ Pittsburgh - Pittsburgh
Univ Southern California
Univ Florida

TTTTTTTTTTT

Duke Univ 19.5 N 46.9 436 ki 39.2

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 311 321 331 341 351 361 371 381 391 401 411 421 431 441 451 461 471 481 491 50608

Ranking



Example: prioritization of innovation
ideas’

O 28 "innovation ideas” evaluated by several people on a scale from
1 — 7 with regard to novelty, feasibility and relevance
O Innovation ideas described by the 3 averages of these evaluations
L No preference information about the relative values of the
attributes

 "Which 10 innovation ideas should be selected for further
development?”
O Sets of ideas called portfolios

O The value of a portfolio is the sum of its constituent projects

,, Aalto University . . .
A SchoolofSeience — * KHnnola et al. (Technological Forecasting & Social Change, 2007) 1.2.2019



Example: prioritization of innovation
ideas

O Robust Portfolio Modeling” method was used to compute non-
dominated portfolios of 10 ideas and discriminate between
O Core ideas that belong to all non-dominated portfolios
O Borderline ideas that belong to some non-dominated portfolios
O Exterior ideas that do not belong to any non-dominated portfolio

O How do ranking intervals compare with this division?
O If the ranking of an idea cannot be worse than 10, is it a core project?
O If the ranking of an idea cannot be better than 11, is it an exterior project?

A’, Aalto University
School of Science . .. ] . 14.2.2019
* Liesio, Mild, Salo (European Journal of Operational Research, 2007) 48



QOO WN =

Ranking intervals vs. core, borderline

and exterior ideas

|

L
5] I |

 E— —— 1 1 T T 1 1 1 1 i i i i T 7  ——
#24 #18 #25 #3 #8 #4 H#7 #26 #12 #13 #2 #22 #5 #16 #1 #23 #6 #10 #15 #17 #28

Innovation idea

: : — 2
#11 #27 #9 #21 #14 #20 #19

Ranking intervals divide the innovation ideas into core, borderline and exterior ideas
among potentially optimal portfolios




Rationales for using incomplete
Information

O Limited time and effort can usually be devoted to preference
elicitation

0 Complete preference specification may not even be needed to reach
a decision

O DM'’s preferences may evolve during the analysis — iteration can be
helpful

O Experts / stakeholders may have conflicting preferences

O Take-it-or-leave-it solutions may be resented in group decision
settings — results based on incomplete information leave room for
negotiation

,, Aalto University
School of Science 14.2.2019
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0 Complete specification of attribute weights is often difficult
— Trade-off methods take time and effort
— SWING and SMARTS are prone to biases

U Incomplete preference statements can be modeled by linear inequalities on
the weights — alternatives’ overall values become intervals

L Preference over interval-valued alternatives can be established through
dominance relations

O Non-dominated alternatives are good decision recommendations

O Avoid methods which compare numerical values of different value functions

,, Aalto University
School of Science
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Aalto University
School of Science

Decision making and

problem solving —
Lecture 7

From EUT to MAUT

Axioms for preference relations

Assessing attribute-specific utility functions and attribute weights

Decision recommendations

MAVT vs. MAUT Liesi6, Punkka, Salo, Vilkkumaa




O Multiattribute value theory helps generate decision
recommendations, when
— Alternatives are evaluated w.r.t. multiple attributes
— Alternatives’ attribute-specific values are certain

0 What if the attribute-specific performances are uncertain?

— Planning a supply chain: minimize cost, minimize supply shortage,
minimize storage costs

— Building an investment portfolio: maximize return, minimize risk

— Multiattribute utility theory

A’, Aalto University



EUT

O Set of possible outcomes T:

— E.g.,revenue T = Reuros,demand T =
N

O Set of all possible lotteries L.:

— Alottery f € L associates a probability
f(t) € [0,1] with each possible outcome
teT

O Deterministic outcomes are modeled
as degenerate lotteries

A’, Aalto University

Lottery

Probability

. mass function
Decision tree

0.6 2M€ 0.6.t = 2M€
3 0.3,t = 1M€

IME F®O =017 = _osme
0.1 -0.5M€ 0, elsewhere

Degenerate lottery
Probability distribution
function

O 1 _(1t=1M€
1ME f®= {O, elsewhere

Decision tree



MAUT

d  Multidimensional set of outcomes
X:
X = X1 X eee X Xn
— E.g., X; =revenue (€), X, = market
share
O Set of all possible lotteries L.:

— Alottery f € L associates a
probability f(t) € [0,1] with each
possible outcome x = (x4,...,x,) €X

O Deterministic outcomes are
modelled as degenerate lotteries

A’, Aalto University

Lottery

0.6 (2ME€,10%) 0.6,
~0.3 _ ) 03
(IM€,20%) () =1, 1¢

0.1 0,

(-0.5ME€,40%)

Degenerate lottery

Decision tree PDF

(OF—ame20%) F©) = {

t =(20.1)
t =(1,02)
= (~05,0.4)

elsewhere

1,t=(10.2)
0, elsewhere



Aggregation of utilities

O Problem: How to measure the overall utility of alternative x =
(x11 X2y e xn)?
U(xq, X5, ... X) =2

O Question: Could the overall utility be obtained by a weighted sum of
the attribute-specific utilities?

n
U(x11 X2y xn) — E ] 1Wi ui(xi)?
i=

O Answer: Yes, if the attributes are
— Mutually preferentially independent and
— Additive independent (new)

,, Aalto University
School of Science 28.2.2019
5



O Definition: Attribute X is preferentially independent (PI) of the
other attributes Y, if the preference order of degenerate lotteries
that differ only in X does not depend on the levels of attributes Y

(x,y) = (x"\y)=>(x,y) = (x'y)foraly €Y

O Interpretation: Preference over the certain level of attribute X does
not depend on the certain levels of the other attributes, as long as
they stay the same

O Same as in MAVT

A’, Aalto University



Mutual preferential independence (old)

O Definition: Attributes A are mutually perferentially independent
(MP1), if any subset X of attributes A is preferentially independent
of the other attributes Y=A\X. l.e., for any degenerate lotteries:

(x,y) = (" y)=>(x,y) = (x',y) forally €.

O Interpretation: Preference over the certain levels of attributes X
does not depend on the certain levels of the other attributes, as
long as they stay the same

L Same as in MAVT

,, Aalto University
School of Science 28.2.2019
-




Additive iIndependence (new)

O Definition: Subset of attributes XcA is additive
iIndependent (Al), if the DM is indifferent between
lotteries | and Il for any (x,y),(x",y') € A

4 Example:

— Profitis Al if the DM is indifferent between 1 and 11

— However, she might prefer 11, because it does not include an
outcome where all attributes have very poor values. In this
case profit is not Al.

(x,y)
05 (¥

(x,y")

" y)

0.5

(20M€, 10%)
05 (IME€,2%)

05 (20me, 20%)

(1M€, 10%)

0.5

,, Aalto University
School of Science

28.2.2019
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Additive iIndependence (new)

d Example:
— Atourist is planning a downhill skiing weekend trip to the mountains
— 2 attributes: sunshine ( {sunny, cloudy} ) and snow conditions ( {good, poor})

— Additive independence holds, if she is indifferent between | and |1
— Inboth, there is a 50 % probability of getting sunshine
— In both, there is a 50 % probability of having good snow conditions

—  If the DM values sunshine and snow conditions independently of each other, then I and Il can be equally
preferred

0.5

(sunny, poor)
0.5 (cloudy,good)
0.5

(sunny, good)
(cloudy, poor)

0.5

,, Aalto University
School of Science 28.2.2019

9



Additive multiattribute utility function

O Theorem: The attributes are mutually preferentially
iIndependent and single attributes are additive
iIndependent iff preference relation > is represented by an
additive multi-attribute utility function

U=y wid ().

where v} (x?) =0, v} (x{) =1, and X1, w; =1, w; = 0.

Aalto Un
A” School of Sci 28.2.2019
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What if the MPI & Al do not hold?

O Definition: Attribute X € A is utility independent (Ul) if the preference order
between lotteries that have equal certain outcomes on attributes Y=A\X does
not depend on the level of these outcomes, i.e.,

&y) =& y)=&y) =& y)vy
O Example: If profit is Ul, then the DM should prefer | for
Assume DM prefers | any a
06 (2M€,10%)

0.3

(2ME, a%)

(1M€,10%) (1ME, a%)

(-0.5M€,10%) (-0.5M€, a%)

(1M€,10%) (1ME, a%)

However, for a small market share (a), the
DM may be more risk averse and choose 11
— profit is not Ul

,, Aalto University
School of Science 28.2.2019
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Mutual utility iIndependence

U Definition: Attributes A are mutually utility independent (MPI), if every

subset X c A is the utility independent of the other attributes Y=A\X i.e.,
Ey) =& y)=>&y) =& y)vy

(2ME, a%)

(1ME€, a%)

(-0.5ME, a%)

(M€, a%)

If DM prefers | for some a, she
should prefer | for all a AND

0.6 (b M€,15%)

0.3

(b M€,10%)

(b ME€,2%)

(b M€,10%)

If DM prefers | for some b, she
should prefer | for all b

,, Aalto University
School of Science

28.2.2019
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Other multi-attribute utility functions

O If attributes are mutually utility independent, then preferences are
represented by a multiplicative utility function:

n
L[ + kv ()] 1
U(x) = - -
O If each single attribute is utility independent, then preferences are

represented by a so-called multilinear utility function

O Al is the strongest of the three preference assumptions
— Let X cA.Then, XisAl = XisUIl = Xis Pl

,, Aalto University
School of Science 28.2.2019
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Assessing attribute-specific utility
functions

L Use the same techniques as with a unidimensional utility function
—  Certainty equivalent, probability equivalent, etc. & scale such that uf (x?) = 0, ul (x;) = 1.
— Also direct rating often applied in practice

O What about the other attributes?

— Fix them at the same level in every outcome I (x17,4€)
— Do not matter! — Usually not even explicitly
shown to the DM 0.5
I (50 apples, 4€)

-1 les, 4
05 (—10 apples, 4€)

U(x;,4) = 0.5U(50,4) + 0.5U(—10,4)
S wiug (%) + wou,(4) = 0.5w,u,(50) + 0.5w,u,(4) + 0.5w,u, (—10) + 0.5w,u, (4)
A Wiy (xl) - O-5W1u1 (50) + 0.5W1u1 (—10)
& u;(x;) = 0.5u,(50) + 0.5u,(—10)

,, Aalto University
School of Science 28.2.2019
14



Example: Choosing a software supplier

U Three attributes: cost, delay, quality

- Name ___

Cost [10,40] k€
2 Delay {1,2,...,30} days 30 1
3 Quality {fair, good, excellent} fair excellent

,, Aalto University
School of Science 28.2.2019
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Example: Choosing a software supplier

O Assessment of the attribute-specific utility ----

functions Cost [10,40] k€

— Quallty: Direct assessment 2 Delay {1,2,....30}days 30 1
0 uz(fair)=0, uz(good)=0.4, us(excellent)=1

— Cost: Linear decreasing utility function

w

Quality  {fair, good, exc.}  fair  exc.

0 ulxy) = 403_0x1
— Delay: Assessment with certainty equivalent (CE)
approach
Pb 22 15 10
05 30 days 0.5 22 days 05 15 days
u,(22) u,(15) u,(10)
= 0.5u,(1) + 0.5u,(30) = 0.5u,(1) + 0.5u,(22) = 0.5u,(1) + 0.5u,(22)
=05%x1+05%0 =05*x1+05%0.5 =05%x1+05%0.75

=05 =0.75 =0.875



Example: Choosing a software supplier

For delay, linear interpolation between

1 16

. 1 0.7143
specified values )
0.9861 17 0.6786
16 T T
3 0.9722 18 0.6429
0.9 il 4 0.9583 19 0.6071
0.8+ 1 5 0.9444 20 0.5714
0.7} 1 6 0.9306 21 0.5357
__ o6 U, (10) - 7 0.9167 22 0.5
[9V) —
X 05] — e i 8 0.9028 23 0.4375
[9V)
= o4l = 0.875 i 9 0.8889 24 0375
0.3} i 10 0.875 25 0.3125
0l | 11 0.85 26 0.25
o1l | 12 0.825 - 0.1875
O [ | [ | | J 13 0.8 28 0.125
0 5 10 15 20 25 30 14 0.775 29 0.0625
X5 15 0.75 30 0
,, Aalto University
A School of Science 28.2.2019
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Assessing attribute weights

O Attribute weights are elicited by constructing two equally preferred
degenerate lotteries
— E.g., ask the DM to establish a preference order for n hypothetical
alternatives specified so that (x{,...,x},..,x2), i =1,..,n.
— Assume that (x},x3,...,x3) = (x2, x5, ... x) = - = (2, x2, ..., x})
— Then, for each i=1,...,n-1 ask the DM to define x; € X; such that
ORI R
= U(ex 2y, o) = UG x?, i,
= Wit (X)) = Wigq
— n-1such comparisons + 1 normalization constraint = unique set of
weights

,, Aalto University
School of Science 28.2.2019
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Example: Choosing a software supplier

O Assessment of the attribute weights

— Assume preferences (40k€, 1 day, fair)>(10k€, 30 days, fair) =(40k€, 30 days, exc.)

— Choose delay x, € {1, ..., 30} such that (40, x5, x3)~(10,30, x3)

— Answer x, = 8 gives

wyu, (40) + wou, (8) + waus(x3) = wyuy (10) + wyu, (30) + waus(xs)
wou,(8) = wy
& w, - 0.9028 = w,
— Choose cost x; € [10,40] such that (x4, x,, fair)~(40, x,, excellent )
— Answer x; = 20 gives
wyu4 (20) + wyu, (x5) + wyug(fair) = wyu, (40) + wou, (x,) + wiug(excellent)

wi (20) = ws
S,

— Attribute weights: w = (%%%)

,, Aalto University
School of Science 28.2.2019
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MAUT: Decision recommendations

Q Consider m decision alternatives x/ = (x/,...,x}), j=1,..,m
where x/ is a random variable with PDF f_;(x)

O Alternatives are ranked by their expected (multiattribute) utilities

E[U()] = ) fu() U@ = ) f() Z wi; (x)

X€EA X€EA
— Integral for continuous random variables

4 In a decision tree, MAU is used just like unidimensional utility

,, Aalto University
School of Science 28.2.2019
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Example: Choosing a software supplier

O Consider three suppliers:

— Supplier 1: Expensive, fair quality, can deliver

without delay
x! = (35k€,1 day, fair)

— Supplier 2: Cheap, good quality, can deliver in 1

week
x? = (21k€,7 days, good)

— Supplier 3: Moderate price, good quality, 20%
chance of 1-week delay and 10% chance of 2-week
delay

x3 = (24k€, %3, good),
0.7, x = (24k€, 1 day, good)
3 (x) =< 0.2,x = (24k<€,8 days, good)
0.1, x = (24k€, 15 days, good)

0.7

0.

0.1

(35k€, 1, fair)

(21k€,7, good)

(24k€,1, good)

2(24k€,8, good)

(24k€, 15, good)

,, Aalto University
School of Science

28.2.2019
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Example: Choosing a software supplier

EEAEENEEEL.

0.17 1.00 0.00 0.46 0.46
xz 0.63 0.92 0.40 0.69 1 0.69
x3 (s1) 0.53 1.00 0.40 0.69 0.7 0.67
x3 (s5) 0.53 0.90 0.40 0.65 0.2
x3 (s3) 0.53 0.75 0.40 0.59 0.1
w 0.36 0.40 0.24

,, Aalto University
School of Science 28.2.2019
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O MAVT: Preference between alternatives with certain outcomes can be
represented by an additive multiattribute value function, iff the
attributes are

— Mutually preferentially independent
— Difference independent

O MAUT: Preference between lotteries with uncertain outcomes can be
represented by additive multiattribute utility function, iff the attributes
are

— Mutually preferentially independent
— Additive independent

A’, Aalto University




O Attribute-specific value functions are elicited by asking the DM
to specify equally preferred differences in attribute levels

— E.g., "Specify salary x such that you would be indifferent between change
1500€ — x€ and x€ — 2000€”

O Attribute-specific utility functions are elicited by asking the DM
to specify equally preferred lotteries

— E.g., "Specify salary x such that you would be indifferent between getting
x€ for certain and a 50-50 gamble between getting 1500€ or 2000€”

O Attribute weights are elicited similarly in MAVT and MAUT

A’, Aalto University



MAVT vs. MAUT

O In principal, the natural /

. . OBJECTS =——————33= NATURAL SCA ‘——>VALUIESCALE——->-l;ITlLITYSL'ALE
measurement scale is first ; s i

mapped to value scale and | e mee — >, > I
1 HH OFFICE OF DRIVING
then (if needed) to utility scale ; DISTANCES

by ——— (L) —_— ) — )

100, 100
FEESRE k —
10 20

0 20

Distance

O Yet, in practice the value
function is "hidden” in the utility
function

— E.g, if certainty equivalent of 50-50
gamble between 3k€ and 5k€ salary SET
Is 3.9k€, is this a sign of risk aversion Figure 7.2. The four steps needed to construct value and utility functions.
or decreasing marginal value of
salary?

Value

Utility

o

100
Distance Value

,, Aalto University
School of Science 28.2.2019
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O Multiattribute utility theory helps establish a preference relation
between alternatives with uncertain outcomes on multiple attributes

O Preference relation is represented by an additive utility function, iff the
attributes are mutually preferentially independent and additive
iIndependent

O Attribute-specific utility functions are elicited as in the unidimensional
case

O Attribute weights are elicited as in MAVT
O Decision recommendation: the alternative with highest expected utility
O Robust methods can also be used with MAUT

A’, Aalto University
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Decision making and

problem solving —
Lecture 8

» Multiple objective optimization (MOO)

» Pareto optimality (PO)

* Approaches to solving PO-solutions: weighted sum, weighted max-norm,
and value function methods
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Until this lecture

Xoa 1 — 1 1
0 Explicit set of alternatives X = T
{xL .. 6xm}, which are evaluated with . %6 = (x8, x5)
regard to n criteria ° o

1 Evaluations xij:X — R"

L Preference modeling
L Value functions

maxV(x/) =V xj,...,xj
ijX ( ) ( 1 TL)

- / V(xt) = (i (D), v (o))

()
® 7.3.2019

,, Aalto University
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O The decision alternatives cannot necessarily be listed

O Preference modeling can be time-consuming and difficult at the
early stages of the analysis

O Conditions required for the additive value function to represent
preferences do not necessarily hold or are difficult to validate

O We might want to see some results quickly to get a better
understanding of the problem at hand

A’, Aalto University



Multi-objective optimization: concepts

= 2
O Set of feasible solutions X ={(x1,x2) € R?|

X ={x € R"|g(x) <0} 3?2\“ : x,=21,x,21,x;,+x, <7}
d Objective functions N
f=U, . ) X->R"
U Preference modeling on trade-offs
between objectives X
— Value functions
max V(f (1)) = V(fi(x), ..., fu (1)) T ST

— Pareto approaches
v—max V(f(x)) = (f1(x), ..., fu(x))

— Interactive approaches (not covered)

f= {1 f2) = (xg + 2x5,—x5)

,, Aalto University
School of Science 7.3.2019
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I\/IuIti-objective ol 1Ele2ln e <)
optimization: concepts .
L x O.
 Objective functions f map the ___1 +_ _____ N
feasible solutions X to f(X) in the (1,13 ASUEER

solution space:

f(X)={y e R*|3x € X so that y
= f(x)}

0 = {(f.f2) € RY
faS—LfrS7—fu2f,2 1= f)}

Aalto Un
A” Scho IfS




O In multi-objective optimization (MOO), each objective is assumed
preferentially independent of the others

O Definition (cf. Lecture 5): Preference between two values of
objective function i does not depend on the values of the other
objective functions

—  Without loss of generality, we can assume all objectives to be
maximized

— MIN can be transformed to MAX: min f;(x) = — mg)?([—ﬁ(x)]
X

xeX

A’, Aalto University



Which feasible solution(s) to prefer?

O Selection of yt
cannot be
supported because

have higher f, and
f2

— Focus on
Pareto-optimal
solutions

f2

4

Better than y! on
both objectives

,, Aalto University
School of Science
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Pareto-optimality ‘.

Definition. x*eX is Pareto-optimal if there does
not exist xeX such that

fi(x) = f;(x*) foralli € {1, ...,n}
fi(x) = f;(x*) forsomei € {1,...,n}

Set of all Pareto-optimal solutions: Xpq

Definition. Objective vector y f(X) is Pareto- X,
optimal, if there exists a Pareto-optimal x*eX s.t.
f(x*)=y

- Set of Pareto-optimal objective vectors: f(Xpp)

- Notation f(Xpp) = v—xg(axf(x)

,, Aalto University
School of Science 7.3.2019

8



Example: Markowitz model

O Optimal asset portfolio selection

— How to allocate funds to m assets based on
o0 Expected returns i3, i=1,...,m
o Covariances of returns o, i,j)=1,...,m

ij
d Set of feasible solutions

— Decision variables x,...,X,,
0 Allocate x;*100% of funds to j-th asset

— Portfoliox e X ={x e R™|x; > 0,X", x; = 1}

O Objective functions
1. Maximize expected return of portfolio f,(x) = »iL, 7;x;
2. Minimize variance (risk) of portfolio f;(x) =

1on m
S Li=1 Xj=10ijXi%;

v

risk f,

,, Aalto University
School of Science 7.3.2019
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Pareto-optimality in Markowitz model

O Portfolio x is Pareto-optimal, if no other
portfolio yields greater or equal expected
return with less risk

0 One possibility for computation:

- Choose d = max number of solutions computed
- Solve y, = maxf,, yy=minf,

- Forall k=2,...,d-1set p, s.t. w_,> 1> py and solve
(1-dimensional) quadratic programming problem

1 no -
l’;lel)r(lgzzl:l 271:1 0jXiX; such that Zi=1 riX; = Uy

- Discard solutions which are not PO
- Not attractive when n>2

return




Algorithms for solving Pareto-optimal
solutions (1/2)

U Exact algorithms
- Guaranteed to find all PO-solutions X,

- Only for certain problem types, e.g., Multi-Objective Mixed Integer Linear
Programming (MOMILP)

U Use of single-objective optimization algorithms

- Sequentially solve ordinary (i.e. 1-dimensional) optimization problems to obtain a
subset of all PO-solutions, Xpyog

- Performance guarantee: Xy5scXpo

o Solutions may not be “evenly” distributed in the sense that majority of the obtained solutions
can be very “close” to each other

- Methods:

o Weighted sum approach, weighted max-norm approach, e-constraint approach

,, Aalto University
School of Science
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Algorithms for solving Pareto-optimal
solutions (2/2)

O Approximation algorithms
- Obtain an approximation X5, of Xy in polynomial time

- Performance guarantee: For every X eXpg exists y eXpoa such that ||[f(X)-f(y)]|< e
- Only for very few problem types, e.g., MO knapsack problems

J Metaheuristics

- No performance guarantees
- Can handle problems with
* A large number of variables and constraints
* Non-linear or non-continuous objective functions/constraints
- Evolutionary algorithms (e.g., SPEA, NSGA)
- Stochastic search algorithms (simulated annealing)

,, Aalto University
School of Science 7.3.2019
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Example: Multiobjective integer linear
programming (MOILP)

O Ben is at an amusement park that offers 2 different rides:
O Tickets to ride 1 cost 2 €. Each ticket lets you take the ride twice
O Tickets to ride 2 are for one ride and cost 3 €

O Ben has 20 euros to spend on tickets to ride 1 (x,eN) and ride 2 (X,
N) — constraint 2x; + 3x, < 20

O Each time Ben takes ride 2, his grandfather cheers for him

O Ben maximizes the number of (i) rides taken and (ii) cheers —
objective functions f = (f1, f,) = (2x; + x5, %)

,, Aalto University
School of Science 7.3.2019
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FeaSible SOIUtiOﬂS X "Ben has 20 euros. He is

choosing the number of tickets to

T~ [ ride 1 (x, € N) and ride 2 (x, € N)
RS — Constraint 2x, + 3x, < 20"
6 = \\\
\\
AN 5 ® ® e N
[} ~
g ~<
é 4 - ° ° ° ® \o\
= TN O 2x 431, = 20
g 3+ ° o 'y ° ° o\\fl-l_ xz_
5 S o
j‘% 2 o @ © ° ® ° © \\
1 \\
><N 1k ° o ° ° ° . ® ° ° \\
~
~
() o o ° ® ° ° ° . ° [ \o\
~
1 l J I 1 1 [
0 2 4 6 8 10

X, = tickets valid for ride 1



Example: MOILP (cont’'d)

O Blue points are feasible solutions; the 7 PO solutions are circled

—7Tr r 1 1 1 1 T T 7T 71T T T T T 1 1

'2- number of cheers
w o
! !
: —h
E _~
4 :
" +
. -
,:‘ - -—-a-- o
4 :
i i

,, Aalto University
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Welghted sum approach

Q Algorithm f,r .
1. Generate A~UNI({2 € [01]"| X, 4; = 1}) ﬂl=(0-2,§ o .
2. Solve max Yicq1Ai fi(x) %ﬂ,osﬁ
3. Solution is Pareto-optimal \ T;

Repeat 1-3 until enough PO-solutions have been found

+ Easy to implement

— Cannot find all PO solutions if the problem is non-convex (if PO
solutions are not in the border of the convex hull of f(X))

,, Aalto University
School of Science 7.3.2019
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X5, = tickets valid for ride 2

max
x,X,EN
2x,+3x,<20

[241%1 + (A1 + 45)x; ]

|

4

6

X, = tickets valid for ride 1

1

[ ] L ]
\ !
8 10




/

/

/
/

max  [24.%; + (A, + 1,)%,]

x,X,EN
2x,+3%,<20
(%1, xz)_ = 1=
~_ (1,6) s (0.2,0.8) =
7 Y rareto- 1 [ 1
~ optimal maximize
6 ° G ~ 0.4x1 + xZ i
~

g St ~\\ S o A=(1/3,2/3) I
= N L
5 — . . o ° A == 0.5, 0.“5
g 4 G ~ g S N ( ))
§ 3r 1 ¢ t 7 7 \\ \\ (x1;x2):
ﬁélxl + x, constant (x1,%5) = ~ N (10,0) is
-_.% &_\ N. ¢ T (4 ) 4) IS 1 G ~ N ~ Pal’etO- )
”C\I L .\ ~ ~ | Pareto- \. ~ S optimal -
5 =~ < optimal (x4, %5) = NN

(e @ @ ® « ™ ] ] (7 ) 2) IS . ® @ —

~ . Pareto- -~
- 0 2 4 optimal 8 10 N

X, = tickets valid for ride 1

1



number of cheers

f

f(X) and Pareto-optimal solutions

7

6

5

solutions can be found with
the weighted sum approach -

@ |

I I | I |

Only 4 of the 7 Pareto-optima

12 14 16 18 20

f1 = number of rides taken



Welghted max-norm approach
f,1

O Idea: define a utopian vector of objective function values
and find a solution for which the distance from this utopian

vector is minimized .
QO Utopian vector: f* = [ff, ... fi . fi = i) Vx€X,i=1,. n n
O Distance is measured with weighted max-norm max A; d;,

1=1,..n
where d; is the between f;" and f;(x), and 4; > 0 is the
weight of objective i such that 37, 4; = 1.
O The solutions that minimize the distance of f(x) from f* are
found by solving:

fl

»
»

* A
minllf* - £CO s = min max 2, (£ = fi() Contours of [~ £ (9],

xX€X i=1,..,n

= xer)rrl,iAréRA stA(ff —fix) <A vi=1,..,n

when 4 =(0.9,0.1)"

,, Aalto University
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Weighted max-norm approach (2/2)

O Algorithm A'=(05,05)" )
1. Generate A~UNI({A € [01]"| X}, 4; = 1}) ,‘ f
2. Solve min||f* — fO) I ax f2“ o
3. At least one of the solutions of Step 2 is PO e o A*=(0.9,0.1)"
Repeat 1-3 until enough PO solutions have been o’ o
found °

+ Easy to implement
+ Can find all PO-solutions
— n additional constraints, one additional variable

,, Aalto University
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Example: MOILP (cont’'d)

Q Find a utopian vector f* A=0.1, A\,=0.9:
- max f;= 2x;+X, s.t. 2x,+3X%, < 20, X;,X, 20
o x=(10,0); f,=20

- maxf, =X, s.t. 2x,+3%, < 20, X;,X, = 0 rAnelﬂg A s.t
o x=(0, 20/3); f,=20/3 21—-02x; —0.1x, <A
- LetP=(21,7) 6.3—09x, <A
d Minimize the distance from the 2x; + 3x, < 20
utopian vector: x{,%, €N
rAneiﬂgA s.t.
21 —(2x1 +x,)) <A
He ,12(7(—?6;2) SZ)A) - Solution: A=1.3, x=(1,6) =
2x, + 3x, < 20,x1,%, €N x=(1,6), f=(8,6) is PO

,, Aalto University
School of Science 7.3.2019
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Example: MOILP revisited

1.A,=0.1; solution: {A=1.3, x=(1,6)} = T iJL[ — T T T T T T ®

- - i N R R N O J N O SN N I S N N S A A

2.1\,=0.2; 3 solutions x=(2,5), x=(3,4), T 2 U R R T R S NP S A
x=(4,4). Only x=(2,5), f=(9,5) and x=(4,4), * """"" e e

3.A,=0.35; x=(5,3); f=(13,3) is PO I S N S ,_
4.\,=0.4; 2 solutions x=(6,2) and x=(7,2);

BeseEg ST

sazoss e arnispo T O -

6.A,=0.70; 2 solutions x=(9,0) and xz(lOO)"""_

x=(10,0), f=(20,0) is PO I —

6 7

L--]
— o |—
i
=3
=
=
e
=
-
=
o
=
=
o e

=
=3
ay
=
s
-]
AU
@
g

,, Aalto University
School of Science 7.3.2019

23



Value function methods (1/2)

O Use value function V: R" - R to le
transform the MOO problem into a
single-objective problem

— E.g., the additive value function

V(f() = Ty wivi(fi(x))

d Theorem: Feasible solution x* with
the highest value V(x*) is Pareto-
optimal

V(T (X))

,, Aalto University
School of Science 7.3.2019
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O Consider the additive value function V(f(x)) = X, w;v;(f;(x))
with incomplete weight information w € § € §°

O Set of Pareto-optimal solutions Xp,= set of non-dominated
solutions with no weight information X (5°)

O Preference statements on weights decrease the set of feasible
weightsto S € S — focus on preferred PO-solutions Xyp (S) S
Xnp(S%) = Xpo

A’, Aalto University



Example: MOILP revisited

O Choose v,(fi(x))=f,(x)/C;*, normalization constants C,*=20, C,*=6
< wy (2x1 + x3)
20

V(f(x),w) = Z wiv (f (X)) = wyvg (f1(x)) + (1 - W1)172(f2(x)) = + (1 —wy)(x,/6)
i=1

1

Scatter plot

09 N
N 7

0.8

— --------- N S e e R B R 0.7}
G * ------- = 061
P b b R 05
S S 0.4
A s N 03F
e e QT

T S 0.2
AN S S S S S RS SR S S ’ 0.1t

I T T N N N AN T TN NN M A A , | , , ‘ , ‘ ,
6 7 8 8 w0 # 2 #B # B %6 7 B B9 A A 0o O.‘l 02 03 04 05 06 07 08 09 <24
h5 i




Example: Bridge repair program (1/7)

U Total of 313 bridges calling for repair

L Which bridges should be included in the repair program under the next three
years?

U Budget of 9,000,000€

U Program can contain maximum of 90 bridges
- Proxy for limited availability of equipment and personnel etc.

0 Program must repair the total sum of damages by at least 15,000 units

7.3.2019

School of Science . . ) g o
Projects with Robust Portfolio Modeling, Decision Support Systems 57

A” Aalto University P. Mild, J. Liesié and A. Salo (2015): Selecting Infrastructure Maintenance



Example: Bridge repair program (2/7)

O Set of feasible solutions X defined by linear constraints and binary
decision variables:

%312 ¢x; — 9000000]
X={xe{0133|gx) <0}, gx) = 23x —90

| 15000 - X313 d;x; |

- X; = adecision variable: x; =1 repair bridge
- X=[Xy,...,X313] IS @ repair program

- ¢; = repair cost of bridge j

- d; = sum of damages of bridge j

,, Aalto University
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Example: Bridge repair program (3/7)

O Six objective indexes measuring urgency for repair

1. Sum of Damages (“SumDam”)
Repair Index (“Repind”)
Functional Deficiencies (“FunDef”)
Average Daily Traffic (“ADTraf”)
Road Salt usage (“RSalt”)

Qutward Appearance (“OutwApp”)

S

0 All objectives additive over bridges: f;(x) = X313 vij Xj,

where vij IS the score of bridge j with regard to objective i:

,, Aalto University
School of Science 7.3.2019
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Example: Bridge repair program (4/7)

O A multi-objective zero-one linear programming (MOZOLP) problem
313 313

J J
e v ) )
j:]_ ]:1
 Pareto-optimal repair programs Xy, generated using the weighted
max-norm approach

min A
x€EX,AER

A= 2(fF - Zfiix]vl]) vi=1,..,6

,, Aalto University
School of Science 7.3.2019

30



Example: Bridge repair program (5/7)

O Additive value function applied for modeling preferences between the

objectives: V(x,w) = Xt wif;(x) = Xooy w; X355 v/ x

U Incomplete ordinal information about objective weights: {SumDam,Repind}
2{FunDef, ADTraf} = {RSalt,OutwApp}

S={weSw; =w; =w,,Vi=12;j =34,k =56}
L Non-dominated repair programs

Vix',w)=V(x,w)forallw e S
V(ix',w) >V(x,w) forsomew € S

Xyp(S) = {x € X|Ax' € X st {

Xpo = Xnp(S%) 2 Xnp(S)

,, Aalto University
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Example: Bridge repair program (6/7)

4 Ca. 10,000 non-dominated bridge repair programs
O Bridge-specific decision recommendations can be

obtained through a concept of core index: |
_ Hx € Xyp(S)|x; = 1}
Cl; = D| =
| Xnp (5)]
O Of the 313 bridges: H =

neuded e repa e

— 39 were included in all non-dominated repair programs
(CI=1)

— 112 were included in some but not all non-dominated E

programs (0<CI<1)

— 162 were included in none of the non-dominated programs
(CI1=0)

,, Aalto University
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Example: Bridge repair program (7/7)

BRIDEGES' SCORES

Bridge number and name Core Index | DamSum Repind FunDef  ADTraf Rsalt  OutwApp

U Bridges listed in
decreasing order of core
i n d i CeS 257 Villikkalan silta 0.81 1.97 1.96 5

1 1 1.8
1743 Huuman silta Il 0.76 1.64 1.53 5 5 1.8
H H H 730 Mlkian itainen risteyssilt 0.63 1.33 1.58 1.5 5 5 1
- Tentative but not binding s W || s wm w3 @
= - - 856 Ojaraitin alikulkukaytava | 0.54 1.46 1.46 1 5 5 1
p r I O r I ty I I St 2703 Grahnin alikulkukaytava 0.43 1.70 1.23 1 5 5 1
817 Petajasuon risteyssilta 0.39 1.52 1.37 1 5 5 1
725 Mustolan silta 0.29 1.98 1.93 2 1.8 1 4.2
- COStS an d Oth e r 2189 Reitunjoen silta 0.24 1.90 1.63 3 1.8 1 1.8
- - - 2606 Haukivuoren pohjoinen ylikulkusilta 0.15 1.84 2.09 15 2.6 1 1
C h aracte rl Stl CS d I S p I ayed 125 Telataipaleen silta 0.14 1.38 1.12 1 5 5 1.8
608 Jalkosalmen silta : 3 d 1

O The list was found useful
by the program managers

,, Aalto University
School of Science
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O MOO differs from MAVT in that

— Alternatives are not explicit but defined implicitly through constraints
— MOO problems are computationally much harder

O MOO problems are solved by

— Computing the set of all Pareto-optimal solutions — or at least a subset or
an approximation

— Introducing preference information about trade-offs between objectives to
support the selection of one of the PO-solutions

A’, Aalto University



Decision making and

problem solving —
Lecture 9




0 When alternatives are evaluated w.r.t. multiple attributes / criteria,
decision-making can be supported by methods of

— Multiattribute value theory (certain attribute-specific performances)
— Multiattribute utility theory (uncertain attribute-specific performances)

d MAVT and MAUT have a strong axiomatic basis

O Yet, other popular multicriteria methods exist

A’, Aalto University



Analytic Hierarchy Process (AHP)

O Thomas L. Saaty (1977, 1980)

O Enormously popular
— Thousands of reported applications
— Dedicated conferences and scientific journals

O Several decision support tools
— Expert Choice, WebHipre etc.

L Not based on the axiomatization of preferences — therefore remains
controversial

,, Aalto University
School of Science
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Problem structuring in AHP

U Objectives, sub-
objectives / criteria,
and alternatives
are represented as
a hierarchy of
elements (cf. value
tree)

Goal

Satisfaction with School

P

Learning

Friends

Vocational
Training

College Music

School
A

School
B

Preparation|| Classes

School
C

,, Aalto University
School of Science
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O For each objective / sub-objective, a local priority
vector is determined to reflect the relative
Importance of those elements placed immediately
below the objective / sub-objective

O Pairwise comparisons:

— For (sub-)objectives: "Which sub-objective /
criterion is more important for the attainment of the
objective? How much more important is it?”

— For alternatives: "Which alternative contributes
more to the attainment of the criterion? How much
more does it contribute?”

O Responses on a verbal scale correspond to
weight ratios

,, Aalto University
School of Science

Scale

Verbal statement 1-to-9 _ Balanced
Equally important 1 1.00
- 2 1.22
Slightly more important 3 1.50
- 4 1.86
Strongly more important 5 2.33
- 6 3.00
Very strongly more important 7 4.00
- 8 5.67
Extremely more important 9 9.00

T
1-to-9

Balanced

L L 1 L

0.1 0.2 0.3 0.4 0.5

w,_=1-w,

0.6

0.7

0.8

0.9



Pairwise comparison matrix
I N N A A T

O Weight ratios 7;; = %form a pairwise
]

Learning 1 3 1
comparison matrix A: Friends Sl I N I B
o oy School life 13 17 1 15 15 16
n
A = . . . Voc. training 1 1/3 5 1 1 1/3
— .. College prep. 1/3 5 5 1 1 3
Tn1 = Ur1n Thn .
Music classes 1/4 1 6 3 1/3 1
[ teanng || erenss | | schoollie
S I ol I S I N Music classes are strongly — very
1 3 % Al 11 A1 5 1 strongly more important than school life
B 3 1 3 B 1 1 1 B 15 1 15
2 1/3 1 1 1 1 1 5 1 Goal

Satisfaction with School

S Voo vanng B | cotegepren. B | musi ciasses [N
A B A B C A B C

Learning Friends School Vocational College Music
C Life Training Preparation|| ClI .
A 1 9 7 1 12 1 A 1 6 4 \%év.«>/
/‘77\\
B 19 1 5 B 2 1 2 B 16 1 13 —= N\ :
School School School
1/7 1/5 1 1 1/2 1 1/4 3 1 A B c




Incosistency In pairwise comparison
matrices

U Problem: pairwise comparisons are not necessarily consistent

4 E.g., if learning is slightly more importannt (3) than college
preparation, which is strongly more important (5) than school life, then
learning should be 3 x 5 times more important than school life ... but

this is impossible with the applied scale

— Weights need to be estimated

,, Aalto University
School of Science 21.3.2019
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| Leaning | W_

A B C

A 1 13 1/2 0.16
3
2

Local priority vector

B 1 3 059
O The local priority vector w (=estimated C 1/3 1 025

weights) is obtained by normalizing the
eigenvector corresponding to the largest [

eigenvalue of matrix A: Only one eigenvector with all real
AW = Apaxw, elements: (0.237, 0.896, 0.376) —
— 1 W normalized eigenvector w=(0.16,
Xrowp 0.59, 0.25).

»» A=[1 1/3 .5: 3 1 3; 2 1/3 11

w.

O Matlab:

— [v,lambda]=eig(A) returns the eigenvectors
and eigenvalues Of A 2.0000 0.3333 1.0000

> [v,1l]=eig(R)

= real(vi:,1))/sum(real(vi:,1))) v =

0.2370 + 0.0000%1 0.1185 + 0.20521 0.1185 - 0.2052i
0.8957 + 0.0000i §-0.8957 + 0.0000i -0.8957 + 0.0000i

ans = 0.3762 + 0.0000i | 0.1881 - 0.32581i 0.1881 + 0.3258i
,, Aalto University 0.1571 =
School of Science
0.5%936 . . .
3.0536 4+ 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.24493 0.0000 + 0.00001 -0.0268 + 0.40381  0.0000 + 0.00001

0.0000 + 0.00001

0.0000 + 0.00001

-0.0268 - 0.40381



Local priority vectors ="weights”
IR T | T T

A A C
A 1 1/3  1/2 0.16 A 1 1 1 0.33
B 3 1 3 0.59 B 1 1 1 0.33
2 1/3 1 0.25 C 1 1 1

o _---
-- -- Learning 0.32

Friends 1/4 1 7 3 1/5 1 0.14
A 1 5 1 0.45 A 1 9 7 0.77 Schoo life 13 17 1 15 15 16 0.03
B 1/5 1 1/5 0.09 B 19 1 5 0.05 Voc. Training 1 1/3 5 1 1 1/3 0.13
1 5 1 0.46 c 1ur 15 1 0.17 College prep. 1/3 5 5 1 1 3 0.24
-- -- Music classes  1/4 1 6 3 1/3 1 0.14
A Cc
1 1/2 1 0.25 A 1 6 4 0.69
B 2 1 2 0.50 B 16 1 1/3 0.09
1 1/2 1 0.25 C 1/4 3 1 0.22

21.3.2019
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Consistency checks

O The consistency of the pairwise
comparison matrix A is studied by
comparing the consistency index (Cl)
of A to the average consistency index
RI of a random pairwise comparison
matrix:

SR — R=—
= -1 ¢ RI

n-n-n-nn

058 090 112 124 132 141 145 149

0 Rule of thumb: if CR>0.10,
comparisons are so inconsistent that
they should be revised

,, Aalto University
School of Science

Three alternatives, n=3:

Learning: A,,4,= 3.05, CR = 0.04
Friends: 4,,,,,=3.00, CR =0

School life: 1,,,,,=3.00, CR =0

Voc. training A,,,4,= 3.40, CR = 0.34
College prep: A,qx=3.00, CR =0
Music classes: 1,,,,= 3.05, CR = 0.04

pcooooo

Six attributes, n=6:

O All attributes: 4,,,,,= 7.42, CR = 0.23

»» real (max (1))

ans =

3.05360 -0.0268 -0.0268

21.3.2019
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[ L[ F st lvrlce]mc

Learning i 4 3 1 3 4 0.32

Q The total (overall) priorities are wecceses 1 & 3w 1 ox
obtained recursively: _ coal
Satisfaction with School
n _ 0.32 : 0.0 13 . 0.14
Wk — E Wl WILC ) Learning Friends School Vocational || College Music
i=1 Life Training Preparation Clases
where 0.16\ 0T < STt
— w; Is the total priority of criterion i, = =
i - L. . . School School School
— wy is the local priority of criterion / A B C

alternative k with regard to criterion i,
— The sum is computed over all criteria i

|| toaming | w [N | Friends | w
B C B

. . . . . A A C
belqu Whlc_h criterion / alternative k is SRRl IERIEEER v
positioned in the hierarchy B 3 1 3 059 B 1 1 1 083
C 2 1/3 1 0.25 @ | A 1 1 0.33

P sieottiscene wy =X wiwh =0.32-0.16 + 0.14 - 0.33 +...



Total priorities

N IR | TN N S T

A A C Learning 0.32
A 1 1/3 172 0.16 A 1 1 1 0.33 Friends 1/4 1 7 3 1/5 1 0.14
B 3 1 3 0.59 B 1 1 1 0.33 Schoo life 1/3 1/7 1 1/5 1/5 1/6 | 0.03
2 1/3 0.25 1 1 1 0.33 Voc. Training 1 1/3 5 1 1 1/3 ] 0.13
-- -- College prep.  1/3 5 5 1 1 3 0.24
Music classes 1/4 1 6 3 1/3 1 0.14
A 1 5 1 0.45 A 1 9 7 0.77
B 1/5 1 1/5 0.09 B 1/9 1 5 0.05
1 5 1 0.46 c 1/7r 1/5 1 0.17 .mﬁ
-- -- 016 033 045 077 025 069 0.37
A c B | 0.59 0.33 0.09 0.05 0.50 0.09 0.38
1 12 1 0.25 A1 6 4 069 C|o025| 033 046 017 025 0.22 0.25
B 2 1 2 0.50 B 1/6 1 1/3 0.09
1 1/2 1 0.25 C 1/4 3 1 0.22 E'g"
wg=0.32*0.59+0.14*0.33+0.03*0.09+ I

0.13*0.05+0.24*0.50+0.14*0.09

12



Problems with AHP

0 Rank reversals: the introduction of an additional
alternative may change the relative ranking of the other

alternatives
- ample. | C | G
— Alternatives A and B are compared w.r.t. two "equally important” . 2
criteria C; and C, (W¢; = W, = 0.5) A 1 5
— Alis better than B:
—1><1+ x -~ 0517 —1><4+1><1~0483 ° : -
— Add C which is identical to A:
_ _1x1+1x5 0311 _1x4+1x1 0.379
Wa=We=576g 2 11" "> WBT27g 2711 7

— Now B is better than Al

,, Aalto University
School of Science 21.3.2019
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Methods based on outranking relations

O Basic question: is there enough preference information / evidence
to state that an alternative is at least as good as some other
alternative?

Q l.e., does an alternative outrank some other alternative?

,, Aalto University
School of Science 21.3.2019
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Indifference and preference thresholds divide
the measurement scale into three parts

Q If the difference between the criterion-specific
performances of A and B is below a pre-
defined indifference threshold, then A and
B are "equally good” w.r.t. this criterion

Q If the difference between the criterion-specific
performances of A and B is above a pre-
defined preference threshold, then Ais

preferred to B w.r.t this criterion

O Between indifference and preference
thresholds, the DM is uncertain about

preference

A

A I ) I
Aand B jUncertain | A preferred
equally 1preference | toB
preferred

»
»

0 0 o Difference
in cost
between A
and B
Indifference Preference
threshold threshold

,, Aalto University
School of Science
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PROMETHEE | & I

U In PROMETHEE methods, the degree
to which alternative k is preferred to |
IS

n
2 w; Fi(k,1) = 0,
i=1

where

—  w; is the weight of criterion i

—  Fi(k, 1) =1, ifkis preferred to | w.r.t. criterion i,

—  F;(k,1) =0, if the DM is indifferent between k
and | w.r.t. criterion i, or | is preferred to k

-  Fi(k,1) € (0,1), if preference between k and |
w.r.t. criterion i is uncertain

,, Aalto University
School of Science

F. 4 Aand B | _ [
Ll equally jUncertain | A preferred
preferred | preference | toB
1 |- b----mm -
[
[
[
[
I
I
0 >
0 00 O Difference
in cost
_ between A
Indifference and B
threshold
Preference
threshold
21.3.2019
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PROMETHEE | & I

0 PROMETHEE I: k is preferred to k', if / fgjﬂfﬁ?ii{;m K’
Z w;F(k, 1) > Z " WD)
l+k l 1 l#kr l 1

> Z wiFy(Lie) < ) Z wiF (L k")
Ik bemd j=1 £kt demd j=1 There is less

™~ evidence

- . inst k than k
O PROMETHEE II: k is preferred to K, if againsticthan

P = 3wl D= FQRT> DN IR D = K] = Free ()

\ The "net evidence” for /

k is larger than for k’

,, Aalto University
School of Science 21.3.2019
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PROMETHEE: Example”
_ T

e e e Em mm e =

10%
X2 0.5M€ 20%
X3 0 30%
Indiff. threshold 0 10% 0 5
0
Pref. threshold 0.5M€ 20% 10% 20%
Weight \
F11 :
Revenue F; | Market share Weighted I
F, F, =W, F,+W,F, i b
x1, x2 1 0 1 :
X2, x1 0 0 0 :
x, x3 1 0 1 I
0 I >
X3, xt 0 1 1 0 0.5ME€ —
X2, x3 1 0 1
X3, X2 0 0 0



PROMETHEE I|: Example

d PROMETHEE I:

BN
0

x1 x2
x2, x1
x1 x3
x3, x1
X2, x3

X3, x2

1

S »r O +» O

0
0
1
0
0

1
0
1
1
1
0

x1 is preferred to x?2, if
2 2
Z'_ (Fi(x,x2) + Fi(x1,x3)) > Z'_ (Fi(x?,x1) + F;(x%,x3))

, =1+1=2 , =0+1=1
> (RERDHRERD) <) (RO +RED)
=0+1=1 =1+0=1

x1 is not preferred to x? due to the latter condition
x2 is not preferred to x* due to both conditions

x1 is preferred to x3

x2 is not preferred to x3 and vice versa

 Note: preferences are not transitive

x1 > x3~x2 5 x1 > x2

A”

Aalto University
School of Science

21.3.2019
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PROMETHEE I: Example (Cont’d)

U PROMETHEE I is also prone to rank

reversals: o
— Then,

Z (F(x x3))>z (F(x xl)) XL 3

X

w

X

'_\
P BB O - P
(> & b O P OO
P H» = P

Z (F(x xl))<z (F(x x3)) Xz’xi
=1 =1

— x1 is no longer preferred to x3

21.3.2019
20
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PROMETHEE II: Example

A The "net flow” of alternative x/
Fee(9) = ) [Ry(ed, x%) = By (¥, 29)]
k+j

— Fpet(XH)=(1-0+1-1)=1
— Fpet(x®*)=(0-1)+(1-0)=0
— Fpe(x*)=1-D+0-1)=-1

—)x1>x2>x3

X1, x2
x2, x1
XL, X3
x3, x1
X2, X3

X3, X2

1 0

o r O K+ O

o O » O O

O P P P O Bk

,, Aalto University
School of Science
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PROMETHEE II: Example (Cont’d)

O PROMETHEE Il is also prone to rank reversals

Add two altrenatives that are equal to x3 in both criteria
Then, x? becomes the most preferred:
FreexH =(1-0+3x(1-1)=1
Free(x*)=(0-1)+3x(1-0)=2
Free(x*>)=(1-1)+0-1)=-1

Add two alternatives that are equal to x! in both criteria.

Then, x? becomes the least preferred:
Fpee(x'*)=(1-0)+(1-1)+2x(0-0)=1
Fpee(x*)=3x(0-1)+(1-0)=-2
Free(x®)=3x(1-D+(0-1)=-1
Remove x2. Then, x! and x2 are equally preferred.
Fnet(xl) — Fnet(xg) =1-1D=0

- R
xtLx2 1 0

o r O K+ O

0
0
1
0
0

1
0
1
1
1
0

A!

, Aalto University
School of Science
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0 AHP and outranking methods are commonly used for supporting
multiattribute decision-making

O Unlike MAVT (and MAUT), these methods do not build on the
axiomatization of preferences —
— Rank reversals
— Preferences are not necessarily transitive

O Elicitation of model parameters can be difficult

— Weights have no clear interpretation

— In outranking methods, statement "l prefer 2€ to 1€” and "l prefer 3€ to 1€” are both
modeled with the same number (1); to make a difference, indifference and
preference thresholds need to be carefully selected

A’, Aalto University



Decision making and

problem solving —
Lecture 10

oup technique
. Votlng
 MAVT for group decisions




O Thus far we have assumed that
— Objectives, attributes/criteria, and decision alternatives are given

— There is a single decision maker

O This time we’ll learn
— How a group of experts / DMs can be used to generate objectives,
attributes, and/or decision alternatives
— How to aggregate the views and preferences of the group members into a
single decision recommendation

,, Aalto University
School of Science



ldea generation and evaluation

techniques

4 Goals:
— Generate topics / ideas / decision alternatives
— Evaluate these topics / ideas / alternatives
— Agree on a prioritization of the topics / ideas / alternatives

4 Methods:
— Brainstorming
— Nominal group technique
— Delphi method
— ...and variants of the above

,, Aalto University
School of Science 28.3.2019
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Brainstorming

L Goal: to generate a large number of possible solutions for a problem

O Participants: Facilitator, recorder, and max 8-12 panel members

— Step 1 Prior notification: time for individual idea generation

— Step 2 Session for idea generation: all ideas are listed, spotaneous ideas are encouraged, no
criticism is allowed

— Step 3 Review and evaluation: a list of ideas is sent to the panel members for further study

O Principles:
— Focus on quantity
—  Withhold criticism
— Welcome unusual ideas
— Combine and improve ideas

,, Aalto University
School of Science 28.3.2019
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+ Alarge number of ideas can be generated in a short period of time
+ Simple — no expertise or knowledge required from the facilitator

- Blocking: during the process, participants may forget their ideas or
not share them because they no longer find them relevant

- Collaborative fixation: Exchanging ideas in a group may decrease
the novelty and variety of ideas

A’, Aalto University



Nominal group technique

L Goal: to generate a large number of possible solutions for a problem and
decide on a solution

O Participants: Faciliator, recorder, and max 6-12 panel members

Step 1: Silent generation of ideas — group work not allowed

Step 2: Round-robin sharing of ideas. Facilitator lists all ideas on a flip chart, no comments at this
point.

Step 3: Group discussion to facilitate common understanding of the presented ideas. No ideas are
eliminated, judgment and criticism are avoided.

Step 4: Ranking of the ideas (by, e.g., voting)

A!

, Aalto University

School of Science 28.3.2019
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Nominal group technique

+ Alarge number of ideas can be generated in a short period of time
+ Silent generation of ideas decreases blocking
+ Round-robin process ensures equal participation

- Not suitable for settings where consensus is required
- Can be time-consuming

,, Aalto University
School of Science 28.3.2019
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L Goal: To obtain quantitative estimates about some future events (e.g.,

estimated probabilities, impacts, and time spans of negative trends for
Finland)

L Participants: Faciliator and a panel of experts
O Principles:

— Anonymous participation

—  Structured gathering of information through questionnaires: numerical estimates and arguments
to support these estimates

— Iterative process: participants comment on each other’s estimates and are encouraged to revise
their own estimates in light of such comments

— Role of the facilitator: sends out the questionnaires, organizes the information, identifies
common and conflicting viewpoints, works toward synthesis

,, Aalto University
School of Science



Example: Decision analysis based real
world conflict analysis tools

O Workshop organized by the Finnish Operations Research Society
(FORS) Monday 5.10.2015

O Goal: to practice DA-based conflict analysis tools that Crisis
Management Initiative (CMI) uses regularly in its operations:
— Trend identification,
— Data collection,
— Visualization,
— Root-cause analysis.

,, Aalto University
School of Science 28.3.2019
9



Example cont’d

O Prior to the workshop,
each participant was
asked to

— List 3-5 negative trends for

Finland (title and brief
description)

— Provide time-spans for the
impacts of these trends
(<10 years, 10-20 years,
>20 years)

Trend identification exercise: Negative
trends for Finland

Megative trend is a, possibly escalating, course of events that would lead to harmful
consequences. Please provide three to five negative trends that can have harmful impacts en the
development of Finland. There are no limitations regarding the scope of the trend; it can be either
broad or specific trend.

These trends can be related to
demographics,

economic situation,

welfare of citizens,
environment,

political situation

or other topics.

Give a short title for each trend and a longer explanation of why this trend can be harmful.

OBJECTIVES OF THE WORKSHOP. READING THIS MAY HELP YOU TO SUGGEST RELEVANT
TRENDS:

The objective of this workshop is to evaluate and discuss these trends. This includes evaluation of
(i) the probabilities that these trends cause significant harmful impacts, and (ii) the magnitudes of
these impacts. The next step would be to use this information to design policy actions that can
help to mitigate these trends and to adapt to them.

*Required

Trend 1 (title) *

Trend 1 (explanation) *



Example cont’d

O Trends listed by the
participants were organized
by the workshop facilitators

— Similar trends combined
— Marginal trends eliminated

O Afinal list of 21 trends was
emailed to the participants
prior to the workshop

Trend evaluation exercise
Trends, time-scales and explanations.

1.) Urbanization (10-20 years)

A worsening economic situation can send people to seek employment in urban areas, leaving
much of the Finnish rural areas depopulated. As these rural areas already have functioning
infrastructure, this causes inefficiency.

2.) Bifurcation of Finns and political radicalization (<10)

Tough economic times combined with other crises can create rifts between Finns. In many
political issues, there seems to be an increased tendency to polarize the matter, creating only two
sides with little discourse. For example, worker's unions vs. employers, urban vs. rural,
pro-immigration vs. anti-immigration.

3.) The "welfare trap” (<10)

The social security system can discourage the unemployed to accept low-paying part-time work.
This can lead to the situation where individuals would rather receive constant benefits rather than
risk losing or decreasing their income by taking a job.

4.) Passive political system (<10)

In the past years, the government has shown an inability to react with speed and decisiveness to
many issues facing Finland today. Delayed preventive actions can cause crisis situations to
escalate.

5.) Sccially excluded youth (10-20)

During a recession, getting a job and joining society as a productive member can be challenging,
especially for young people applying for schooling or work. To maintain social stability and ensure
future economic success, the youth should be integrated into society, or else there is a risk they

become permanent outsiders.

6.) The Retirement Bomb (20+)
The current pension system might be unable to handle the aging population. The number of
employed may be too low to pay for pensions.

7.) Brain drain (10-20)
Talented and educated people who are dissatisfied with the current situation in Finland might
emigrate to find more suitable conditions to work in



Example cont’d

O At the workshop, each
participant was asked to
evaluate

—  The probability of each
trend being realized (scale
0-5)

—  The impact that the trends
would have upon
realization (scale 0-5)

Prioritization

‘You are asked to evaluate each trend with respect to (1) the probability of the trend realizing in
significant negative consequences and (2) the impact the trend would have upon realization

In both dimensicns we use a scale of 0 to 5. For the probabilities, 0 means close to impossible and
5 means next to certain. For the impacts, 0 means close to no significant negative impact and 5
means a very significant negative impact

Probability of each trend realizing in significant negative consequences *

Tick your best guess for each. 0 means close to impossible and 5 means next to certain

0 1 2 3 4 5

1.) Urbanization

2.) Bifurcation of

Finns and political
radicalization

3.) The "welfare )
trap” P

Impacts that the trends would have upon realization *
Tick your best guess for each. O

ieans close to no significant negative impact and 5 means a very

1.) Urbanization

2.) Bifurcation of
Finns and political
radicalization

3.) The "welfare
trap”

4.) Passive
political system

12



Example cont’d

O The participants were
also asked to assess
Cross-impacts among
trends

— Which other trends does
this trend enhance?

Cross-impact analysis

Some of the trends enhance another trends. In this exercise you are asked to identify for each trend
0 to 3 other trends that it strongly enhances.

1.) Urbanization

Choose 0-3 trends that this trend impacts strongly
[0 2.) Bifurcation of Finns and political radicalization
[ 3.) The “welfare trap”

[ 4.) Passive political system

2.) Bifurcation of Finns and political radicalization
-hoose 0-3 trends that this trend impacts strongly

[ 1.) urbanization

[ 3.) The “welfare trap”

[7] 4.) Passive political system

21.) Economic stagnation

Choose 0-3 trends that this trend impacts strongly
[F] 1.) Urbanization

[F] 2.) Bifurcation of Finns and political radicalization
[[] 3.) The “welfare trap”

[F] 4.) Passive political system

,, Aalto University
School of Science
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Example cont’d

O Visualizations on
the probability
and impact
assessments
were shown to
the participants
to facilitate
discussion

3.8

3.6+

3.4

Impact

3.04

2.8+

2.6

2.4+

Russia’s
actions

(12)

Eating and
drinking habits

Increased political
tension in EU

(10)

Climate
change

®

Categories

O Societal

O Political

O Environmental
O Economic

The retirement
bomb

25

3.0
Probability

T
3.5

T1
4.0



The welfare

Example cont'd L= | [z

j/_ Specialization, digitalization, and

automation driving inequality

=
®
O Cross-impacts = ‘ © O,

mpa =
were visualized, unemployment —
too Fossile fuels 2

stagnation

Climate
change

The retirement
bomb

Cuts on
education

Bifurgation of Finns and

Increasing @
government debt
political radicalization

Refugees and immigration @k

Russia’s
actions

Increased political N e N @
tension in EU g 19\"'1 2

Showing links with more mentions than 12.87




Example cont’d

O Goal of such analysis:
— Tocreate a shared understanding of the problem
— To identify possible points of disagreement

L Next steps:
— Possible revision of estimates in light of the discussion
— The determination of policy actions to help mitigate / adapt to the most important negative
trends
— Agreement on which policy actions to pursue
— The implementation of these policy actions

,, Aalto University
School of Science 28.3.2019
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Aggregation of preferences

O Consider N alternatives Xy, ..., Xy

d Consider K decision makers DM,,... DM, with different
preferences about the alternatives

O How to aggregate the DMs’ preferences into a group choice?
— Voting
— MAVT

,, Aalto University
School of Science 28.3.2019
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O Each voter casts one vote to his/her most preferred candidate
O The candidate with the most votes wins

O Plurality voting with runoff:

The winner must get over 50% of the votes

If this condition is not met, alternatives with the least votes are eliminated
Voting is continued until the condition is met

E.g., Finnish presidential election: in the second round only two candidates
remain

A’, Aalto University



Plurality voting

O Suppose, there are three alternatives A, B, C, and 9 voters
e 4thinkthat A>B>C
« 3thinkthat B>C>A
e 2thinkthat C>B>A

Plurality voting Run-off
4 votes for A C eliminated
3 votes for B
2 votes for C 4 votes for A

3+2 = 5 votes for B

[ > Als the winner > Bisthe winner

,, Aalto University
School of Science 28.3.2019
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Example: Finnish Presidential elections

 Organized every 6 six years

* Plurality voting with runoff

e 2 most voted candidates to the 2" round, unless some candidate
receives over 50 % of votes already on the 15t round

e 7-11 candidates in 1994-2018

e Some candidates can have moderate support, but strong opposition
* |l.e,, they are ranked 15t by some, but last or close to last by many other voters

,, Aalto University
School of Science 28.3.2019
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Polls just before the 15t election round suggest
that candidate F is the strongest, but a 2" will be
needed. The battle for the 2"9 position will be tight

Candidates' support in polls 0-4 months before the 1st election round

70.0%

60.0%

50.0% e candidate A
= candidate B

o 40.0% e candidate C
E === candidate D
3 30.0% e candidate E
e candidate F

20.0% == candidate G
e candidate H

10.0%

0.0% Lo
. g 28.3.2019
Time -

-4 months just before 15t election round l




« Based on polls, D and H are battling for the second position
« Supporters of A,B,C,E,F,G: who to vote?

« Supporters of F could vote against an unwanted 2" round competitor (D or H)
» Supporters A,B,C,E,G could vote against or for Dor H

* Your preferences are given on the piece of paper provided to
you

ranking of D: 2; ranking of F: 1; ranking of g: 3; vote according to preferences

=F>D>G
Go to https://presemo.aalto.fi/votingexample/ and vote!

A’, Aalto University




Do voters actually vote tactically?

Candidates' support in polls and on the 1st election round

|
|
70.0% I
|
|
60.0%
|
|
50.0% | e candidate A
I == candidate B
o 40.0% ’\I e candidate C
£ I s candidate D
]
< 30.0% | e candidate E
| = candidate F
I — i
20.0% candidate G
e andidate H
10.0%
0.0%
|
,, Railv v
A School 1st round results 28.3.2019
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L All voters rank-order the alternatives

O Each pair of alternatives is compared - the one with more votes is
the winner

d If an alternative wins all its one-to-one comparisons, it is the
Condorcet winner

O There might not be a Condorcet winner — some other rule must be
applied, e.qg.,

— Copeland’s method: the winner is the alternative with the most wins in one-to-one
comparisons

— Eliminate the alternative(s) with the least votes and recompute

A’, Aalto University



Condorcet - example

O 33 voters and alternatives A, B, C
e 17 voters: A>B>C
 1voter: A>C>B
e 15voters: B>C>A
 Ovoters: C>B>A, C>A>B, B>A>C

[ A is the Condorcet winner, because it wins both one-on-one
comparisons

e 17+1=18>15 out of 33 favor A over B and 18 favor A over C

,, Aalto University
School of Science 28.3.2019
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Condorcet completion

O There might not be a Condorcet winner

— Copeland’s completion method: the winner is the alternative with the most wins in
one-to-one comparisons

5 voters and 5 alternatives A, B, C, D, E ‘A BCDE WINS

- 1voter: A>B>C>D>E A 2 2 3 3 2

- 1voter: A>D>E>C>B

- (2 yoters: D>EpB>C>A 2+1= 322

- oter: C3¥B>A3D>E C 3 2 2 2 1
D wins more one-on-one comparisons D2 3 3 5 3
than other alternatives EI2 330 ?

,, Aalto University
School of Science 28.3.2019
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Condorcet completion

UAnother possibility for Condorcet completion: Eliminate the one
with least wins and recompute results

QFirst C is eliminated AB Q D E| wins
 B,D,E lose one win A 2 i 3 3 2
B3 322 X 1
B and E with one win are elimitated c1+3-—2 2 9 1
e Aand D remain DI|?2 3 1 5 \3\ 5
LA wins D by 3 votes to 2 E[2 3 0 > 1

,, Aalto University
School of Science 28.3.2019
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O Each voter gives
— n-1 points to the most preferred alternative,
— n-2 points to the second most preferred,

— 0 points to the least preferred alternative

O The alternative with the highest total number of points wins

4 state that A>B > C A:4.2+3-0+2:0= 8points
3statethatB>C >A B:4-1+3-2+2-1=12 points
2 statethat C>B > A C:4-0+3-1+2:2=7 points

,, Aalto University
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Approval voting

O Each voter casts one vote for each alternative he/she approves

U The alternative with the highest number of votes is the winner

DM, DM, DM; DM, DM; DMy DM, DM; DM, | total

BlX = = X = X = X =|4
X X X X X X - X - [ thewinner
« = B S - X = K| 2

4 “If you want to vote against some, cast your votes to all others”

,, Aalto University
School of Science 28.3.2019
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Problems with voting: The Condorcet

paradox (1/2)

1 Consider the following rank-orderings of three alternatives

| owi | Dw2 | DM3_|
A 1 3 2
B 2 1 3
3 2 1

1 Paired comparisons:
— A'is preferred to B by 2 out of 3 voters
— B s preferred to C by 2 out of 3 voters
— Cis preferred to A by 2 out of 3 voters

,, Aalto University
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Problems with voting: The Condorcet
paradox (2/2)

. DM1 DM2 DM3
0 Three voting orders: M T AT AT
1.  (A-B) — Awins, (A-C) — C is the winner 5 X . 3
2. (B-C) — B wins, (B-A) — Ais the winner 3 ) L

3. (A-C) — Cwins, (C-B) — B is the winner

The outcome depends on the order in which votes are cast!

O No matter what the outcome is, the majority of voters would prefer some
other alternative:
— IfCwins, 2 out of 3 voters would change it to B
— ...But B would be changed to A by 2 out of 3 voters
— ...And then A would be changed to C by 2 out of 3 voters...
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Problems with voting: tactical voting

d DM, knows the preferences of the other
voters and the voting order (A-B, winner-C)

4 If DM, and DM;; vote according to their true
preferences, then the favourite of DM, (A)
cannot win:

O 1stround: A gets 2 votes
O 2" round: AlosestoC
O Could DM, avoid the selection of C, her

worst outcome?
U 1stround: vote for B; B wins 2-1
O 27 round: vote for B; B wins 2-1

| ow1 | ov2 | DM3_
A 1 3 2
B 2 1 3
3 2 1
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O Assume that the preferences of DM, are represented by a
complete and transitive weak preference order R;:

DM, thinks that X is at least as good asy < X R;y

d What is the social choice function f that determines the collective
preference R=f(R,...,Ry) of a group of K decision-makers?

— Voting procedures are examples of social choice functions
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Requirements on the social choice
function

1. Universality: For any set of R, the social choice function should yield a
unigue and complete preference ordering R for the group

2. Independence of irrelevant alternatives: The group’s preference between
two alternatives (x and y) does not change if we remove an alternative from
the analysis or add an alternative to the analysis.

3. Pareto principle: If all group members prefer x to y, the group should prefer
Xtoy

4. Non-dictatorship: There is no DM, suchthat xR,y = xRy
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The big problem with voting: Arrow’s
theorem

There is no complete and transitive social
choice function f such that conditions 1-4
would always be satisfied.
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Arrow’s theorem —an example

Q Borda criterion: | DM, | DM, | DM, | DM, | DM | Total |
X1 3 3 1 2 1 10
X, 2 2 3 1 3 Alternative X,
X3 1 1 2 0 0 4 Isthe winner!
X, 0 0 0 3 2 5

O Suppose that the DMs’ preferences do not change. A ballot between
alternatives 1 and 2 gives

| DM, | DM, | DM, | DM, | DM | Total |
X, 1 1 0 1 0

X, 0 0 1 0 1

Alternative x,
IS the winner!

O Independence of irrelevant alternatives is not satisfied!
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Theorem (Harsanyi 1955, Keeney 1975):

Let v,(-) be a cardinal value function describing the preferences of DM,. There
exists a K-dimensional differentiable (ordinal) function V&() with positive partial
derivatives describing group preferences >, in the definition space such that

a >,b < VC[v,(a),...,vk(a)] = VC[vy(b),...,vk(b)]

and conditions 1-4 are satisfied.

Note: Voting procedures use only ordinal information (i.e., rank ordering) about
the DMs’ preferences — strength of preference should be considered, too
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MAVT In group decision support

d From MAVT, we already know how to
combine cardinal value functions into an

overall value function: W,

|
V2’ (x)

Wz1 | Wyo

V£V1 (x1) ”évz (x1)

DM,

VE(X)=Xkos WiV () Wy 2 0, X5, Wy = 1,

d This can be done for multiattribute
cardinal value functions as well:

VE(x)=Xk=1 Wi X1 Wi (x;)
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MAVT In group decision support

O Weights W;, W, measure the value difference
between the worst and best achievement

levels x9, x* for DM, and DM, respectively w VE(x) w
1 | 2

I
O How to compare these value differences — V3 (x)
i.e., how to make trade-offs between people? " W1z W21’_l_‘sz

O “Compared to my preference for apples over oranges,
how strong is yours?”

Q Group weights W; = W,= 0.5 would mean
that the value differences are equally
valuable, but...

779’1 (x1) Vévz (x1)

DM,

d Who gets to define x0 and x*?
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MAVT for group decision support

d Example: for both DMs, v/'s are linear, DM, has preferences
(1,0)~(0,2) and DM, (2,0)~(0,1)
Q Let x°=(0,0), x*=(2,4) for both DMs, and W,=W,=0.5
- Then v ,N=0.5x,, v,,N=0.25x, for both k=1,2

DM, DM,
o (1,0~(0,2) =V,N(1,0=V,N(0,2)= o (2,0~(0,1) = V,N(2,0)= V,N(0,1)=
0.5wy;=0.5w,, = W,;=0.25w,,=
Wy,=W,;,=0.5 w,;=0.2, w,,=0.8
o V,;N(1,0)=0.25, V;N(0,1)=0.125 o V,N(1,0)=0.1, V,N(0,1)=0.2

0 V&(1,0)=0.5%0.25+0.5%0.1=0.175 > V6(0,1)=0.1625
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MAVT for group decision support

O Interpretation of the result

- For DM, (1,0)«—(0,1) is an improvement. The ”group” values this more than
the value of change (0,1)«—(1,0) for DM,

d Let x°=(0,0), x*=(4,2) for both DMs, and W,=W, =0.5
- V6(1,0)=0.1625 < V¢(0,1)=0.175

O Interpretation of the result
- (0,1)«(1,0) - which is an improvement for DM, - is now more valuable for
the group than change (1,0)«(0,1)
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O Techniques for involving a group of experts or DMs can be helpful for
— Problem identification and definition,
— Generating objectives, attributes, and alternatives,
— Defining common terminology

4 Individual preferences can be easily aggregated into a group
preference through voting procedures, but...
— Arrow’s impossibility theorem states that no "good” voting procedure exists

O MAVT provides a sound method for aggregating preferences, but...
— The determination of group weights = interpersonal comparisons can be difficult
— Aim at a joint model e.g. by exploiting incomplete preference information
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