Decision making and problem solving Lecture 1

- Decision trees
- Elicitation of probabilities

Motivation

- You have just revised some key concepts of probability calculus
- Conditional probability
- Law of total probability
- Bayes' rule
- This time:
- How to build a probability-based model to support decision-making under uncertainty?
- How to elicitate the probabilities needed for these models?

Why probabilities for modeling uncertainty?

D Decisions are often made under uncertainty

- "How many train drivers should be trained, when future traffic is uncertain?"
- "Should I buy an old or a new car, given that I only need an operational one and want to minimize costs = purchase price, maintenance \& repair costs, selling price, etc.?"
- "Should I buy my first my apartment now or postpone the decision, given that future interest rates, mortgage costs, personal income and apartment prices are uncertain?"
Probability theory dominates the modeling of uncertainty in decision analysis
- Well established rules for computations, understandable
- Other models (e.g., evidence theory, fuzzy sets) exist, too

Conditional probabilities

- The probabilities of sequential, mutually exclusive and collectively exhaustive events can be represented if form of a tree
\square The probability of a sequence of events is obtained my multiplying the probabilities on the path
- $0.95 \times 0.95 \times 0.02=1.805 \%$
] The total probability of being late is 7.985%

What if...

- We are interested in financial aspects and assume that being late results in unwanted financial consequences (Cost 1)?
- numerical outcomes for states
- You had a possibility to influence the probability p (this metro train is on time | metro driver of this train is sick) by use of extra personnel (help) at a cost (Cost 2)?
- Now the event probabilities depend on your decision
A^{30}
Aalto University School of Science

Decision trees

Decision-making under uncertainty can be modeled by a decision tree

- Decision trees consist of
- Decision nodes (squares) - DM can choose which arc to follow
- Chance nodes (circles; cf. states of nature) - chance represented by probabilities dictates which arc will be followed (states of nature). The probabilities following a chance node must sum up to 1
- Consequence nodes (triangles; resulting consequences) - at the end of the tree; describe the consequence (e.g., profit, cost, revenue, utility) of following the path leading to this node
- Decisions and chance events are displayed in a logical temporal sequence from left to right

\square Only chance nodes whose results are known can precede a decision node
- Each chain of decisions and chance events represents a possible outcome

Solving a decision tree

- A decision tree is solved by starting from the leaves (consequence nodes) and going backward toward the root:
- At each chance node: compute the expected value at the node
- At each decision node: select the arc with the highest expected value

- The optimal strategy consists of the arcs selected at decision nodes
10.1.2019

Example: Decision tree (1/12)

- Your uncle is going to buy a tractor. He has two alternatives:

1. A new tractor ($17000 €$)
2. A used tractor ($14000 €$)

- The engine of the old tractor may be defect, which is hard to ascertain. Your uncle estimates a 15% probability for the defect.
- If the engine is defect, he has to buy a new tractor and gets $2000 €$ for the old one.
- Before buying the tractor, your uncle can take the old tractor to a garage for an evaluation, which costs $1500 €$.
- If the engine is OK, the garage can confirm it without exception.
- If the engine is defect, there is a 20% chance that the garage does not notice it.
- Your uncle maximizes expected monetary value

Example: Decision tree (2/12)

- Before making the buying decision and before you get to know the result of any uncertain event, you must decide upon taking the old tractor to a garage for an evaluation.
- The decision node 'evaluation' is placed leftmost in the tree

Example: Decision tree (3/12)

- If the old tractor is evaluated, your uncle receives the results of the evaluation

Example: Decision tree (4/12)

- The next step is to decide which tractor to buy

Example: Decision tree (5/12)

- ...But the engine of the old tractor can be defect

- Now all chance nodes and decisions are in chronological order such that in each node, we can follow the path to the left to find out what we know

Example: Decision tree (6/12)

- We next need the probabilities for all outcomes of the chance nodes

Remember: Law of total probability

If $E_{1}, \ldots, E_{\mathrm{n}}$ are mutually exclusive and $\mathrm{A}=\mathrm{U}_{i} E_{i}$, then

$$
\mathrm{P}(A)=\mathrm{P}\left(A \mid E_{1}\right) \mathrm{P}\left(E_{1}\right)+\ldots+\mathrm{P}\left(A \mid E_{n}\right) \mathrm{P}\left(E_{\mathrm{n}}\right)
$$

C Most frequent use of this law:

- Probabilities $\mathrm{P}(\mathrm{A} \mid \mathrm{B}), \mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\mathrm{c}}\right)$, and $\mathrm{P}(\mathrm{B})$ are known
- These can be used to compute $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})+\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\mathrm{c}}\right) \mathrm{P}\left(\mathrm{B}^{\mathrm{c}}\right)$

Remember: Bayes’ rule

Bayes' rule: $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$

- Follows from

1. The definition of conditional probability: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}, P(B \mid A)=\frac{P(B \cap A)}{P(A)}$,
2. Commutative laws: $P(B \cap A)=P(A \cap B)$.

Example: Bayes’ rule

A metro train is cancelled (event C) and we have not had the opportunity to call help. What is the probability that the driver originally allocated to drive the train is sick (event S)? What is $P(S \mid C)$?

Solution:

- $P(S)=0.05, P\left(S^{c}\right)=0.95, P(C \mid S)=0.95, P\left(C \mid S^{c}\right)=0.05$

Example: Decision tree (7/12)

- Solve all probabilities. You know that
- "Your uncle estimates a 15% probability for the defect." => P(Defect)=0.15
- "If the engine is OK, the garage can confirm it without exception." => P (result "OK" | No defect)=1
- "If the engine is defect, there is a 20 \% chance that the garage does not notice it." => P(result "OK" | Defect)=0.20

$$
\begin{aligned}
& P(\text { result "OK" })=P(\text { result "OK" } \mid \text { No defect }) \cdot P(\text { No defect })+P(\text { result "OK" } \mid \text { Defect }) \cdot P(\text { Defect }) \\
&= 1.0 \cdot 0.85+0.20 \cdot 0.15=0.88 \\
& P(\text { result "defect" })=1-P(\text { result "OK" })=0.12 \\
& P(\text { Defect } \mid \text { result "OK" })=\frac{P(\text { result "OK" } \mid \text { Defect }) \cdot P(\text { Defect })}{P(\text { result "OK") }}=\frac{0.20 \cdot 0.15}{0.88} \approx 0.034 \\
& P(\text { No defect } \mid \text { result "OK" })=1-0.034=0.966 \\
& P(\text { Defect } \mid \text { result "defect" })=\frac{P(\text { result "defect" } \mid \text { Defect }) \cdot P(\text { Defect })}{P(\text { result "defect" })}=\frac{0.80 \cdot 0.15}{0.12}=1.00 \\
& \text { Systems AI } P(\text { No Defect } \mid \text { result "defect" })=1-1=0
\end{aligned}
$$

Helsinki Un

Example: Decision tree (8/12)

- Compute monetary values for each end node
- Evaluation + new = $1500+17000=18500$
- Evaluation + old with defect $=1500+14000-2000+17000=30500$
- Evaluation + old without defect $=1500+14000=15500$
- No evaluation + new = 17000
- No evaluation + old with defect =14000-2000 + 17000=29000
- No evaluation + old without defect $=14000$

Example: Decision tree (9/12)

- We now have a decision tree presentation of the problem

Example: Decision tree (10/12)

- Starting from the right, compute expected monetary values for each decision
- Place the value of the better decision to the decision node

Example: Decision tree (11/12)

- Starting from the right, compute expected monetary values for each decision
- Place the value of the better decision to the decision node

Example: Decision tree (12/12)

- The optimal solution is to buy the old tractor without evaluating it

How much should we pay for the sample information by the garage?

- The expected monetary value was higher without evaluating the old tractor
- Determine evaluation cost c so that you are indifferent between

1. Not taking the old tractor for an evaluation ($\mathrm{EMV}=-16250 €$)
2. Taking the old tractor for an evaluation

] Indifference, when EMVs equal: $-16250=-14809-\mathrm{c}=>\mathrm{c}=1441 €$
$\square \quad$ Expected value of sample information $=$ Expected value with sample information Expected value without sample information $=-14809 €-(-16250 €)=1441 €$

Aalto University School of Science

Example: expected value of perfect information

- You are considering between three investment alternatives: high-risk stock, lowrisk stock, and savings account
- Savings account: certain payoff of $500 €$
\square Stocks:
- 200€ brokeragefee
- Payoffs depend on market conditions

	Up	Same	Down
High-risk	1700	300	-800
Low-risk	1200	400	100
Probability	0.5	0.3	0.1

Decision tree

Source: Clemen, R.T. (1996): Making Hard Decisions: An Introduction to Decision Analysis, 2nd edition, Duxbury Press, Belmont.

15 Aalto University School of Science

Example: investing in the stock market

- The expected monetary values (EMVs) for the different alternatives are
- HRS: 0.5•1500+0.3•100-0.2•1000=580
- LRS: 0.5•1000+0.3•200-0.2•100=540
- Savings Account: 500
\rightarrow It is optimal* to invest in high-risk stock

Source: Clemen, R.T. (1996): Making Hard Decisions: An Introduction to Decision Analysis, 2nd edition, Duxbury Press, Belmont.

Expected value of perfect information

\square How much could the expected value be expected to increase, if

- Additional information about the uncertainties was received before the decision
- The decision would be made according to this information?
- Note: this analysis is done before any information is obtained
\square Perfect information: certain information about how the uncertainties are resolved - "if we could choose after we know the state of the world"
Expected value of perfect information = Expected value with perfect information - Expected value without perfect information

Expected value of perfect information is computed through a reversed decision tree in which all chance nodes precede all decision nodes

Expected value of perfect information

Decision tree

Reversed decision tree: you know the state of the world when making the decision(s)

Expected value of perfect information \qquad $=1000 €-580 €=420 €$

Probability assessment

- Use a few minutes to answer ten probability assessment questions
- You have either questionnaire sheet A or B

Do not communicate with others

D Do not look up the answers on the internet

Estimation of probabilities

How to obtain the probabilities needed in decision models?

1. If possible, use objective data
2. If objective data is not available, obtain subjective probability estimates from experts through

- Betting approach
- Reference lottery
- Directjudgement

Estimation of probabilities: Betting approach

- Goal: to estimate the probability of event A
- E.g., A="GDP growth is above 3\% next year" or A="Sweden will join NATO within the next five years"

- Betting approach:

- Bet for A : win $\mathrm{X} €$ if A happens, lose $\mathrm{Y} €$ if not
- Expected monetaryvalue $X \cdot P(A)-Y \cdot[1-P(A)]$

- Bet against A: lose $\mathrm{X} €$ if A happens, win $\mathrm{Y} €$ if not
- Expected monetaryvalue $-X \cdot P(A)+Y \cdot[1-P(A)]$
- Adjust X and Y until the respondent is indifferent between betting for or against A
- Assuming risk-neutrality ${ }^{*}$, the expected monetary values of betting for or against A must be equal:
$X \cdot P(A)-Y \cdot[1-P(A)]=-X \cdot P(A)+Y \cdot[1-P(A)] \Rightarrow P(A)=\frac{Y}{X+Y}$

Estimation of probabilities: Reference lottery
 - Lottery:
 - Win X if A happens
 - Win Y if A does not happen
 - X is preferred to Y
 - Reference lottery:

- Win X with (known) probability p
- Win Y with (known) probability (1-p)
- Probability p can be visualized with, e.g., a wheel of fortune
- Adjust p until the respondent is indifferent between the two lotteries:

$$
X \cdot P(A)+Y \cdot[1-P(A)]=X \cdot p+Y \cdot[1-p] \Rightarrow P(A)=p
$$

[Here, the respondent's risk attitude does not affect the results (shown later)

Reference lottery: example

- Event A: "HIFK wins Jokerit"

The respondent chooses the reference lottery:

$$
10 \cdot P(A)<10 \cdot \frac{5}{6}
$$

The respondent chooses the lottery: $10 \cdot P(A)>10 \cdot \frac{1}{6}$

Chooses
the lottery:
$P(A)>\frac{1}{2}$
These four answers revealed to probability estimate of A to be in ($0.5,0.67$). Further questions should reveal the respondent's estimate for $P(A)$

Estimation of continuous probability distributions

- A continuous distribution can be approximated by estimating several event probabilities (X is preferred to Y)
- Example:
- Goal: to assess the distribution of the change in GDP (Δ GDP) in Finland next year
- Means: elicitation of probability p for five different reference lotteries

 Aalto University School of Science

Estimation of continuous probability distributions

- Often experts assess the descriptive statistics of the distribution directly, e.g.,
- The feasible range (min, max)
- Median f_{50} (i.e., $\left.\mathrm{P}\left(\mathrm{X}<\mathrm{f}_{50}\right)=0.5\right)$
- Other quantiles (e.g., $5 \%, 25 \%, 75 \%, 95 \%$)

In the previous example:

- "The 5% and 95% quantiles are $f_{5}=3 \%$ and $f_{95}=4 \%$ "
- "The change in GDP is just as likely to be positive as it is to be negative"
- "There is a 25% chance that the change in GDP is below - 1% "
- "There is a 25% chance that the change in GDP is above 1.5% "

Summary

D Decision trees are probability-based models to support decisionmaking under uncertainty

- Which decision alternative should I choose?
- How much would I be willing to pay for perfect information or (imperfect) sample information about how the uncertainties are resolved?
\square Subjective probability assessments often required
- Probability elicitation techniques require some effort

Decision making and problem solving Lecture 2

- Biases in probability assessment
- Expected Utility Theory (EUT)
- Assessment of utility functions

Last time

D Decision trees are a visual and easy way to model decisionmaking problems, which involve uncertainties
\square Paths of decisions and random events
\square Probabilities are used to model uncertainty
\square Data to estimate probabilities not necessarily available

We often need subjective judgements to estimate probabilities

Biases in probability assessment

- Subjective judgements by both "ordinary people" and "experts" are prone to numerous biases
- Cognitive bias: Systematic discrepancy between the 'correct' answer and the respondent's actual answer
- E.g., assessment of conditional probability differs from the correct value given by Bayes' rule
- Motivational biases: judgements are influenced by the desriability or undesirability of events
- E.g., overoptimism about success probabilities
- Strategic underestimation of failure probabilities

Some biases can be easy, some difficult to correct

Aalto University School of Science

Representativeness bias (cognitive)

- If x fits the description of A well, then $P(x \in A)$ is assumed to be large
The 'base rate' of A in the population (i.e., the probability of A) is not taken into account
\square Example: You see a very tall man in a bar. Is he more likely to be a professional basketball player or a teacher?

Representativeness bias

What is 'very tall'?

- 195 cm ?

I Assume all BB players are very tall
\square Based on 30 min of googling ${ }^{1}$, the share of Finnish men taller than 195 cm exceeds 0.3 \%
\square If BB players go the bar as often as teachers, it is more probable that the very tall man is a teacher, if the share of very tall men exceeds 0.31%

- 2018 students' responses: 80\% teacher, 20\% basketball player
- Your responses: 82\% teacher, 18 basketball player

Height	Males					
	$\begin{gathered} 20-29 \\ \text { years } \end{gathered}$	$\begin{array}{r} 30-39 \\ \text { years } \end{array}$	$\begin{gathered} 40-49 \\ \text { years } \end{gathered}$	$\begin{array}{r} 50-59 \\ \text { years } \end{array}$	$\begin{array}{r} 60-69 \\ \text { years } \end{array}$	$\begin{array}{r} 70-79 \\ \text { years } \end{array}$
$\begin{aligned} & \text { Percent under- } \\ & 4^{\prime} 10^{\prime \prime} \ldots . . . \text {. } \end{aligned}$	-	-	-	(B)	-	-
4'11"	-	-	-	(B)	(B)	-
5	(B)	-	-	(B)	(B)	-
5'1"	(B)	(B)	(B)	(B)	${ }^{1} 0.4$	(B)
$5{ }^{\prime} 2$ "	(B)	(B)	(B)	(B)	(B)	(B)
5'3'	(B)	${ }^{1} 3.1$	${ }^{1} 1.9$	(B)	${ }^{1} 2.3$	(B)
5'4"	3.7	${ }^{1} 4.4$	3.8	${ }^{1} 4.3$	4.4	5.8
5'5"	7.2	6.7	5.6	7.6	7.8	12.8
5'6"	11.6	13.1	9.8	12.2	14.7	23.0
5'7"	20.6	19.6	19.4	18.6	23.7	35.1
5'8"	33.1	32.2	30.3	30.3	37.7	47.7
$5{ }^{\prime} 9$ '	42.2	45.4	40.4	41.2	50.2	60.3
5'10"	58.6	58.1	54.4	54.3	65.2	75.2
5'11"	70.7	69.4	69.6	70.0	75.0	85.8
$6{ }^{\prime}$	79.9	78.5	79.1	81.2	84.3	91.0
$6^{\prime} 1{ }^{\prime \prime}$	89.0	89.0	87.4	91.6	93.6	94.9
6'2"	94.1	94.0	92.5	93.7	97.8	98.6
$6^{\prime} 3$ "	98.3	95.8	97.7	96.6	99.9	100.0
$6^{\prime} 4^{\prime \prime}$	100.0	97.6	99.0	99.5	100.0	100.0
$6^{\prime} 5$ "	100.0	99.4	99.4	99.6	100.0	100.0
6'6" \ldots.	100.0	99.5	99.9	100.0	100.0	100.0

Representativeness bias

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in antinuclear demonstrations. Please check the most likely alternative:
a. Linda is a bank teller.
b. Linda is a bank teller and active in the feminist movement.
Many choose b, although bca whereby $\mathrm{P}(\mathrm{b})<\mathrm{P}(\mathrm{a})$

- 2018 students' responses: 67% a, 33% b.
- Your responses: $74 \% \mathrm{a}, 26 \% \mathrm{~b}$.

Bank tellers

Bank tellers who are active in the feminist movement

Conservativism bias (cognitive)

\square When information about some uncertain event is obtained, people typically do not adjust their initial probability estimate about this event as much as they should based on Bayes' theorem.

- Example: Consider two bags X and Y. Bag X contains 30 white balls and 10 black balls, whereas bag Y contains 30 black balls and 10 white balls. Suppose that you select one of these bags at random, and randomly draw five balls one-by-one by replacing them in the bag after each draw. Suppose you get four white balls and one black. What is the probability that you selected bag X with mainly white balls?
\square Typically people answer something between 70-80\%. Yet, the correct probability is 27/28 $\approx 96 \%$.
- 2018 students' responses: mean response 59\%. The majority (57\%) answered 50\%.
\square Your responses: mean response 68\%. Many (32\%) answered 50\%.

55 Aalto University School of Science

Representativeness and conservativism bias - debiasing

Demonstrate the logic of joint and conditional probabilities and Bayes' rule
\square Split the task into an assessment of

- The base rates for the event (i.e., prior probability)
- E.g., what is the relative share of bank tellers in the population? What are the relative shares of teachers and pro basketball players?
- The likelihood of the data, given the event (i.e., conditional probabilities)
- E.g., what is the relative share of people active in the feminist movement? Is this share roughly the same among bank tellers as it is among the general population or higher/lower?
- What is the likelihood that a male teacher is taller than 195 cm ? How about a pro basketball player?

Aalto University School of Science

Availability bias (cognitive)

- People assess the probability of an event by the ease with which instances or occurences of this event can be brought to mind.
- Example: In a typical sample of English text, is it more likely that a word starts with the letter K or that K is the third letter?
- Most people think that words beginning with K are more likely, because it is easier to think of words that begin with " K " than words with "K" as the third letter
- Yet, there are twice as many words with K as the third letter
- 2018 students' responses: 13% first letter, 87% third letter.
- Your responses: 46% first letter, 54% third letter.
- Other examples:
- Due to media coverage, the number of violent crimes such as child murders seems to have increased
- Yet, compared to 2000's, 18 times as many children were killed per capita in 1950's and twice as many in 1990's

Availability bias - debiasing

\square Conduct probability training
\square Provide counterexamples
\square Provide statistics
\square Based on empirical evidence, availability bias is difficult to correct

Anchoring bias (cognitive)

When assessing probabilities, respondents sometimes consider some reference assessment
Often, the respondent is anchored to the reference assessment
Example: Is the percentage of African countries in the UN
A. Greater or less than 65? What is the exact percentage?

- Average answer: Less, 45\%.
- 2018 students' responses: Less, median 22%, mean 34%.
- Your responses: Less, median 40%, mean 48%.
B. Greater or less than 10 ? What is the exact percentage?
- Average answer: Greater, 25\%.
- 2018 students' responses: Greater, median 23\%, mean 27%.
- Your responses: Greater, median 20\%, mean 27\%.

Anchoring bias - debiasing

- Avoid providing anchors
\square Provide multiple and counteranchors
\square = if you have to provide an anchor, provide several which differ significantly from each other
Use different experts who use different anchors

Based on empirical evidence, anchoring bias is difficult to correct

Overconfidence (cognitive)

- People tend to assign overly narrow confidence intervals to their probability estimates

1. Martin Luther King's age at death 39 years
2. Length of the Nile River 6738 km
3. Number of Countries that are members of OPEC 13
4. Number of Books in the Old Testament 39
5. Diameter of the moon 3476 km
6. Weight of an empty Boeing 747176900 kg
7. Year of Wolfgang Amadeus Mozart's birth 1756
8. Gestation period of an Asian elephant 645 days
9. Air distance from London to Tokyo 9590 km
10. Depth of the deepest known point in the oceans 11033 m

Your responses:

I. If 3 or more of your intervals missed the correct value, you have demonstrated overconfidence

- 89\% of you did

Overconfidence - debiasing

- Provide probability training

Start with extreme estimates (low and high)
U Use fixed values instead of fixed probability elicitations:

- Do not say: "Give a value x such that the probability for a change in GDP lower than x is $0.05^{\prime \prime}$
- Do say: "What is the probability that the change in GDP is lower than -3\%?"

Based on empirical evidence, overconfidence is difficult to correct

Desirability / undesirability of events (motivational)

- People tend to believe that there is a less than 50% probability that negative outcomes will occur compared with peers
- I am less likely to develop a drinking problem
- Your responses: 20\% (25\% in 2018) more likely, 34\% (31\%) less likely, 46\% (44\%) equally likely
- People tend to believe that there is a greater than 50% probability that positive outcomes will occur compared with peers
- I am more likely to become a homeowner / have a starting salary of more than 3,500€
- Your responses on owning a home: 49% (44\%) more likely, 12% (13\%) less likely, 39% (44\%) equally likely
- Your responses on salary: 54\% (38 \%) more likely, 8\% (19\%) less likely, 38\% (44\%) equally likely

People tend to underestimate the probability of negative outcomes and overestimate the probability of positive outcomes

Desirability / undesirability of events debiasing

- Use multiple experts with alternative points of view
\square Place hypothetical bets against the desired event
\square "Make the respondent's money involved"
U Use decomposition and realistic assessment of partial probabilities - "Split the events"
- Yet, empirical evidence suggests that all motivational biases are difficult to correct

Further reading: Montibeller, G., and D. von Winterfeldt, 2015. Cognitive and Motivational Biases in Decision and Risk Analysis, Risk Analysis

Risky or not risky?

Which one would you choose:
a) Participate in a lottery, where you have a 50% chance of getting nothing and 50% chance of getting $10000 €$
b) Take $4000 €$

. Many choose the certain outcome of $4000 €$, although a)'s expected monetary gain is higher

Option b) involves less risk

How to compare risky alternatives?

[Last week

- We learned how to support decision-making under uncertainty, when the DM's objective is to maximize the expected monetary value
- Maximizing expected value is rational only if the DM is risk neutral, i.e., indifferent between
- obtaining x for sure and
- a gamble with uncertain payoff Y such that $x=E[Y]$
- Usually, DMs are risk averse = they prefer obtaining x for sure to a gamble with payoff Y such that $x=E[Y]$
- Next:

Expectation = 14500

- We learn how to accommodate the DM's risk attitude
(=preference over alternatives with uncertain outcomes) in decision models

Expected utility theory (EUT)

] John von Neumann and Oscar Morgenstern (1944) in Theory of Games and Economic Behavior:

- Axioms of rationality for preferences over alternatives with uncertain outcomes
- If the DM follows these axioms, she should prefer the alternative with the highest expected utility

- Elements of EUT

- Set of outcomes and lotteries
- Preference relation over the lotteries satisfying four axioms
- Representation of preference relation with expected utility

EUT: Sets of outcomes and lotteries

- Set of possible outcomes T :
- E.g., revenue T euros / demand T
- Set of all possible lotteries L :
- A lottery $f \in L$ associates a probability $f(t) \in[0,1]$ with each possible outcome $t \in T$
- Finite number of outcomes with a positive probability $f(t)>0$
- Probabilities sum up to one $\sum_{t} f(t)=1$
- Lotteries are thus discrete PMFs / decision trees with a single chance node
- Deterministic outcomes are modeled as degenerate lotteries

Lottery
Decision tree

$f(t)=\left\{\begin{array}{c}0.6, t=20000 \\ 0.3, t=10000 \\ 0.1, t=-5000 \\ 0, \text { elsewhere }\end{array}\right.$

Degenerate lottery

Decision tree PDF
$\bigcirc 10000 \quad f(t)=\left\{\begin{array}{l}1, t=10000 \\ 0, \text { elsewhere }\end{array}\right.$

EUT: Compound lotteries

- Compound lottery:
- Get lottery $f_{X} \in L$ with probability λ
- Get lottery $f_{Y} \in L$ with probability $1-\lambda$
\square Compound lottery can be modeled as lottery $f_{Z} \in L$:

$$
f_{Z}(t)=\lambda f_{X}(t)+(1-\lambda) f_{Y}(t) \forall t \in T \simeq f_{Z}=\lambda f_{X}+(1-\lambda) f_{Y}
$$

- Example:
- You have a 50-50 chance of getting a ticket to lottery $f_{X} \in L$ or to lottery $f_{Y} \in L$

Preference relation

- Let \geqslant be preference relation among lotteries in L
- Preference $f_{X} \geqslant f_{Y}: f_{X}$ at least as preferable as f_{Y}
- Strict preference $f_{X}>f_{Y}$ defined as $\neg\left(f_{Y} \geqslant f_{X}\right)$
- Indifference $f_{X} \sim f_{Y}$ defined as $f_{X} \geqslant f_{Y} \wedge f_{Y} \succcurlyeq f_{X}$

EUT axioms A1-A4 for preference relation

- A1: \succcurlyeq is complete
- For any $f_{X}, f_{Y} \in L$, either $f_{X} \succcurlyeq f_{Y}$ or $f_{Y} \succcurlyeq f_{X}$ or both
\square A2: \succcurlyeq is transitive
- If $f_{X} \succcurlyeq f_{Y}$ and $f_{Y} \succcurlyeq f_{Z}$, then $f_{X} \succcurlyeq f_{Z}$
- A3: Archimedean axiom
- If $f_{X}>f_{Y} \succ f_{Z}$, then $\exists \lambda, \mu \in(0,1)$ such that

$$
\lambda f_{X}+(1-\lambda) f_{Z}>f_{Y} \text { and } f_{Y}>\mu f_{X}+(1-\mu) f_{Z}
$$

\square A4: Independence axiom

- Let $\lambda \in(0,1)$. Then,

$$
f_{X}>f_{Y} \Leftrightarrow \lambda f_{X}+(1-\lambda) f_{Z}>\lambda f_{Y}+(1-\lambda) f_{Z}
$$

If the EUT axioms hold for the DM's preferences

- A3: Archimedean axiom
- Let $f_{X}>f_{Y} \succ f_{Z}$. Then exists $p \in(0,1)$ so that $f_{Y} \sim p f_{X}+(1-p) f_{Z}$
\square A4: Independence axiom
$-f_{X} \sim f_{Y} \Leftrightarrow \lambda f_{X}+(1-\lambda) f_{Z} \sim \lambda f_{Y}+(1-\lambda) f_{Z}$
- Any lottery (or outcome = a degenerate lottery) can be replaced by an equally preferred lottery; According to A3, such lotteries / outcomes exist

- NOTE: f_{Z} can be any lottery and can have several possible outcomes

Main result: Preference representation with Expected Utility

- \succcurlyeq satisfies axioms A1-A4 if and only if there exists a real-valued utility function $u(t)$ over the set of outcomes T such that

$$
f_{X} \succcurlyeq f_{Y} \Leftrightarrow \sum_{t \in T} f_{X}(t) u(t) \geq \sum_{t \in T} f_{Y}(t) u(t)
$$

\square Implication: a rational DM following axioms A1-A4 selects the alternative with the highest expected utility

$$
E[u(X)]=\sum_{t \in T} f_{X}(t) u(t)
$$

- A similar result can be obtained for continuous distributions:
- $f_{X} \geqslant f_{Y} \Leftrightarrow E[u(X)] \geq E[u(Y)]$, where $E[u(X)]=\int f_{X}(t) u(t) d t$

Computing expected utility

- Example: Joe's utility function for the number of apples is $u(1)=2, u(2)=5, u(3)=7$. Would he prefer
- Two apples for certain (X), or

$$
E[u(Y)]=0.5 u(1)+0.5 u(3)
$$

- A 50-50 gamble between 1 and 3 apples (Y)?

$$
=0.5 \cdot 2+0.5 \cdot 7=4.5
$$

- Example: Jane's utility function for money is $u(t)=$ t^{2}. Which alternative would she prefer?
- X: 50-50 gamble between 3 and 5M€

$$
\begin{aligned}
& E[u(X)]=0.5 u(3)+0.5 u(5) \\
& \quad=0.5 \cdot 9+0.5 \cdot 25=17
\end{aligned}
$$

- Y: A random amount of money from Uni(3,5) distribution
- What if her utility function was $u(t)=\frac{t^{2}-9}{25-9}$?

$$
\begin{gathered}
E[u(Y)]=\int_{3}^{5} f_{Y}(t) u(t) d t=\int_{3}^{5} \frac{1}{2} t^{2} d t \\
=\frac{1}{6} 5^{3}-\frac{1}{6} 3^{3}=16.33333
\end{gathered}
$$

Let's practice!

The utility function of Dr. Cuckoo is $u(t)=\sqrt{ } t$. Would he
a) Participate in a lottery A with 50-50 chance of getting either 0 or $400 €$?
b) Participate in a lottery B in which the probability of getting $900 €$ is 30% and getting $0 €$ is 70% ?
$u(0)=0, u(400)=20, u(900)=30$
a) $E[u(A)]=0.5 \cdot 0+0.5 \cdot 20=10$
b) $E[u(B)]=0.7 \cdot 0+0.3 \cdot 30=9$

NOTE! the expectation of lottery $\mathbf{A}=200 €$ is smaller than that of $B=270 €$

Uniqueness up to positive affine transformations

- DM's preferences: $X \geqslant Y$
- $E[u(X)]=p_{1} \geq 0.9 p_{2}+0.2\left(1-p_{2}\right)$

- v : Multiply each utility u by 100
- $E[v(X)]=100 p_{1}=100 E[u(X)] \geq$ $100 E[u(Y)]=90 p_{2}+20\left(1-p_{2}\right)=E[v(Y)]$

] w: Add 20 to all utilities v
- $E[w(X)]=120 p_{1}+20\left(1-p_{1}\right)=100 p_{1}+$ $20=E[v(X)]+20 \geq E[v(Y)]+20=$ $90 p_{2}+20\left(1-p_{2}\right)+20\left(1+p_{2}-p_{2}\right)=$ $110 p_{2}+40\left(1-p_{2}\right)=E[w(Y)]$

17.1.2019

Uniqueness up to positive affine transformations

- DM's preferences: $X \geqslant Y$
- $E[u(X)]=p_{1} \geq 0.9 p_{2}+0.2\left(1-p_{2}\right)$

- v: Multiply u by $\alpha>{ }_{E[v(X)]=\alpha p_{1}=}$ $\alpha E[u(X)] \geq \alpha E[u(Y)]=0.9 \alpha p_{2}+0.2 \alpha\left(1-p_{2}\right)=$ $E[v(Y)]$

\square w: Add β to all utilities v
- $E[w(X)]=(1+\beta) p_{1}+\beta\left(1-p_{1}\right)=\alpha p_{1}+\beta=$ $E[v(X)]+\beta \geq E[v(Y)]+\beta=0.9 \alpha p_{2}+$ $0.2 \alpha\left(1-p_{2}\right)+\beta\left(1+p_{2}-p_{2}\right)=(0.9 \alpha+$ $\beta) p_{2}+(0.2 \alpha+\beta)\left(1-p_{2}\right)=E[w(Y)]$

17.1.2019

Uniqueness up to positive affine transformations

\square Let $f_{X} \succcurlyeq f_{Y} \Leftrightarrow E[u(X)] \geq E[u(Y)]$. Then $E[\alpha u(X)+\beta]=\alpha E[u(X)]+\beta \geq$ $\alpha E[u(Y)]+\beta=E[\alpha u(Y)+\beta]$ for any $\alpha>0$
\square Two utility functions $u_{1}(t)$ and $u_{2}(t)=\alpha u_{1}(t)+\beta,(\alpha>0)$ establish the same preference order among any lotteries:

$$
E\left[u_{2}(X)\right]=E\left[\alpha u_{1}(X)+\beta\right]=\alpha E\left[u_{1}(X)\right]+\beta .
$$

\square Implications:

- Any linear utility function $u_{L}(t)=\alpha t+\beta,(\alpha>0)$ is a positive affine transformation of the identity function $u_{1}(t)=t \Rightarrow u_{L}(t)$ establishes the same preference order as expected value
- Utilities for two outcomes can be freely chosen:
- E.g., scale utilities represented by u_{1} such that and $u_{2}\left(t^{*}\right)=1$ and $u_{2}\left(t^{0}\right)=0$:

$$
u_{2}(t)=\frac{u_{1}(t)-u_{1}\left(t^{0}\right)}{u_{1}\left(t^{*}\right)-u_{1}\left(t^{0}\right)}=\frac{1}{u_{1}\left(t^{*}\right)-u_{1}\left(t^{0}\right)} u_{1}(t)-\frac{u_{1}\left(t^{0}\right)}{u_{1}\left(t^{*}\right)-u_{1}\left(t^{0}\right)}
$$

Summary

- Probability elicitation is prone to cognitive and motivational biases
- Some cognitive biases can be easy to correct, but...
- Some other cognitive biases and all motivational biases can be difficult to overcome

The DM's preferences over alternatives with uncertain outcomes can be described by a utility function

A rational DM (according to the four axioms of rationality) should choose the alternative with the highest expected utility
\square NOT necessarily the alternative with the highest utility of expectation

Decision making and problem solving ecture 3

- Modeling risk preferences
- Stochastic dominance

Motivation

\square Last time:

- Decisions should be based on expected value of the alternatives' outcomes (if and) only if the DM is risk neutral
- Under 4 axioms for the DM's preference relation between risky alternatives, there exists a real-valued function ("utility function") so that
- The DM should choose the alternative with the highest expected utility
- It is unique up to positive affine transformations -> we can normalize the utility function the way we want
\square This time:
- What is this utility function and how to model the DM's preferences with it?
- We learn how these preferences correspond to the DM's attitude towards risk

Assessment of utility functions

- Utility functions are assessed by asking the DM to choose between a simple lottery and a certain outcome (i.e., a degenerate lottery)
- X: Certain payoff t
- Y: Payoff $t^{+}\left(t^{-}\right)$with probability $\mathrm{p}(1-\mathrm{p})$
- General idea:

- Vary the parameters ($\mathrm{p}, \mathrm{t}, \mathrm{t}^{+}, t^{-}$) until the $\mathbf{D M}$ is indifferent between X and Y :

$$
E[u(X)]=E[u(Y)] \Leftrightarrow u(t)=p u\left(t^{+}\right)+(1-p) u\left(t^{-}\right)
$$

- Repeat until sufficiently many points for the utility function have been obtained
- Because u is unique up to positive affine transformations, u can be fixed at two points
- Usually, u is set at 1 at the most preferred level, and at 0 at the least preferred

Assessment: The certainty equivalence approach
 - The DM assesses t

Example: Assess utility function for the interval [-10,50] euros

- Normalization: we can fix $u(-10)=0$ and $u(50)=1$

$$
\begin{aligned}
& u(30) \\
& =0.5 u(-10)+0.5 u(50) \\
& =0.5 \cdot 0+0.5 \cdot 1=0.5
\end{aligned}
$$

$$
u(20)
$$

$$
u(40)
$$

$$
=0.5 u(-10)+0.5 u(30)
$$

$$
=0.5 u(30)+0.5 u(50)
$$

$$
=0.5 \cdot 0+0.5 \cdot 0.5=0.25
$$

$$
=0.5 \cdot 0.5+0.5 \cdot 1
$$

$$
=0.75
$$

Other approaches to utility assessment

[Probability equivalence:

- The DM assessesp

Gain equivalence:

- The DM assessest ${ }^{+}$
\square Loss equivalence:
- The DM assessest

\square Often in applications, the analyst chooses a family of utility functions and then asks the DM to compare lotteries to fix the parameter(s)
- E.g., the exponential utility function (parameter ρ)

$$
u(t)=1-e^{-\frac{t}{\rho}}, \rho>0
$$

Reference lottery revisited

- Assume that an expected utility maximizer with utility function u uses a reference lottery to assess the probability of event A
- She thus adjusts p such that she is indifferent between lottery X and reference lottery Y :

$$
E[u(X)]=E[u(Y)]
$$

$$
\Leftrightarrow P(A) u\left(t^{+}\right)+(1-P(A)) u\left(t^{-}\right)=p u\left(t^{+}\right)+(1-p) u\left(t^{-}\right)
$$

$$
\Leftrightarrow P(A)\left(u\left(t^{+}\right)-u\left(t^{-}\right)\right)=p\left(u\left(t^{+}\right)-u\left(t^{-}\right)\right)
$$

$$
\Leftrightarrow P(A)=p
$$

U Utility function u does not affect the result

Expected utility in decision trees

- Do everything in the usual way, but
- Chance node: compute the expected utility
- Decision node: select the alternative corresponding to maximum expected utility
- Cf. the umbrella example, in which 'some numbers' represented preferences

$\mathrm{EU}=1.07 \quad \mathrm{Up}(0.5)$	Profit 1500	Utility
		1.78
	100	1.10
	-1000	-0.71
$\text { Up }(0.5)$	1000	1.63
Low-Risk Same (0.3)	200	1.18
$\underbrace{\text { Stock }}_{\mathrm{EU}=1.35} \operatorname{Down}(0.2)$	-100	0.89
Savings Account	500	1.39
$\mathrm{EU}=1.39$		
$u(t)=2-e^{\frac{-t}{1000}}$		

Expected utility in Monte Carlo

- For each sample x_{1}, \ldots, x_{n} of random variable X, compute utility $u\left(x_{i}\right)$
- Mean of sample utilities $u\left(x_{1}\right), \ldots, u\left(x_{n}\right)$ provides an estimate for $E[u(X)]$

$\times \sqrt{ }$	$=2-\operatorname{EXP}(-\mathrm{F} 12 / 1000)$				
C	D	E	F	G	H
				Imean	
		Col.mean	Col.mear	Col.mean	
		0.502964	990.3014	1.580972	
	Sample	u	x	Utility	
	1	0.464077	954.9167	1.615156	
	2	0.704234	1268.308	1.718693	
	3	0.777865	1382.501	1.74905	
	4	0.534927	1043.831	1.647897	
	5	0.4426	927.8094	1.604581	
	6	0.916252	1690.147	1.815508	
	7	0.649453	1191.922	1.696363	
	8	0.65278	1196.418	1.697725	
	9	0.110887	389.0874	1.322325	
	10	0.189275	559.714	1.428628	
	11	0.902882	1649.073	1.807772	

EUT for normative decision support

E EUT is a normative theory: if the DM is rational, she should select the alternative with the highest expected utility

- Not descriptive or predictive: EUT does not describe or predict how people actually do select among alternatives with uncertain outcomes

The four axioms characterize properties that are required for rational decision support

- Cf. probability axioms describe a rational model for uncertainty
- The axioms are not assumptions about the DM's preferences

Question 1

Which of the below alternatives would you choose?

1. A sure gain of $1 \mathrm{M} €$
2. A gamble in which there is a

- 1% probability of getting nothing,
- 89% probability of getting $1 \mathrm{M} €$, and
- 10% probability of getting $5 \mathrm{M} €$
- Imagine that a rare disease is breaking out in a community and is expected to kill 600 people. Two different programs are available to deal with the threat.
- If Program A is adopted, 200 people will be saved
- If Program B is adopted, there's a 33\% probability that all 600 will be saved and a 67% probability that no one will be saved.
Which program will you choose?

1. Program A
2. Program B

Question 3

Which of the below alternatives would you choose?

1. A gamble in which there is a

- 89% probability of getting nothing and
- 11% probability of getting $1 \mathrm{M} €$

2. A gamble in which there is a

- 90% probability of getting nothing, and
- 10% probability of getting $5 \mathrm{M} €$

Question 4

- Imagine that a rare disease is breaking out in some community and is expected to kill 600 people. Two different programs are available to deal with the threat.
- If Program C is adopted, 400 of the 600 people will die,
- If Program D is adopted, there is a 33\% probability that nobody will die and a 67% probability that 600 people will die.
Which program will you choose?

1. Program C
2. Program D

Allais paradox

$\square \quad$ Which of the below alternatives would you choose?
A. A sure gain of $1 \mathrm{M} €$
B. A gamble in which there is a

- 1% probability of getting nothing,
- 89% probability of getting $1 \mathrm{M} €$, and
- 10% probability of getting 5M€
$\square \quad$ Which of the below alternatives would you choose?
C. A gamble in which there is a
- 89% probability of getting nothing and
- 11% probability of getting $1 \mathrm{M} €$
D. A gamble in which there is a
- 90% probability of getting nothing, and
- 10% probability of getting $5 \mathrm{M} €$

Most people choose A; hence
$E[u(A)]>E[u(B)]:$
$\mathrm{u}(1)>0.10 \mathrm{u}(5)+0.89 \mathrm{u}(1)+0.01 \mathrm{u}(0) \Rightarrow$

$$
0.11 u(1)>0.10 u(5)+0.01 u(0)
$$

Most people choose D; hence
$\mathrm{E}[\mathrm{u}(\mathrm{D})]>\mathrm{E}[\mathrm{u}(\mathrm{C})]$:
$0.10 u(5)+0.90 u(0)>0.11 u(1)+0.89 u(0) \Rightarrow$

$$
0.11 u(1)<0.10 u(5)+0.01 u(0)
$$

\square Actual choice behavior is not always consistent with EUT

Framing effect

- Most people choose A and D

People tend to be "risk-averse" about gains and "risk-seeking" about losses

Risk and risk preferences

- Risk: possibility of loss (or some other unpreferred outcome)
- Characterized by both the probability and magnitude of loss
- Risk preferences:
- How does the riskiness of a decision alternative affect its desirability?
- E.g., risk neutrality: choose the alternative with the highest expected (monetary) value, riskiness is not a factor
- Definition of risk preferences requires that outcomes T are quantitative and preferences among them monotonic
- E.g., profits, costs, lives saved etc.
- Here, we assume that more is preferred to less, i.e., $u(t)$ is increasing (and differentiable) for all t

Certainty equivalent in Expected Utility Theory

\square Definition: Certainty equivalent of a random variable X , denoted by $C E[X]$, is an outcome in T such that

$$
\begin{aligned}
& u(C E[X])=E[u(X)] \Leftrightarrow \\
& C E[X]=u^{-1}(E[u(X)])
\end{aligned}
$$

- IMPORTANT! $C E[X]$ is the certain outcome such that the DM is indifferent between alternatives X and $C E[X]$
- CE[X] depends on both the DM's utility function u (preferences) and the distribution of X (uncertainty)
- My CE for roulette may be different from yours
- My CE for roulette may be different from my CE for one-armed bandit

Certainty equivalent - Example

- Consider a decision alternative X with $f_{X}(3)=0.5$ and $f_{X}(5)=0.5$ and three DMs with the below utility functions
- Compute each DM's certainty equivalent for X

- The shape of the utility function seems to determine whether $\mathrm{CE}[\mathrm{X}]$ is below, above, or equal to $E[X]=4$

Convex and concave functions

- Definition: u is concave, if for any t_{1}, t_{2} :

$$
\lambda u\left(t_{1}\right)+(1-\lambda) u\left(t_{2}\right) \leq u\left(\lambda t_{1}+(1-\lambda) t_{2}\right) \forall \lambda \in[0,1]
$$

- A line drawn between any two points $u\left(t_{1}\right)$ and $u\left(t_{2}\right)$ is below (or equal to) $u(t)$
- $u^{\prime \prime}(t) \leq 0 \forall t \in T$, if the second derivative exists

D Definition: u is convex, if for any t_{1}, t_{2} :

$$
\lambda u\left(t_{1}\right)+(1-\lambda) u\left(t_{2}\right) \geq u\left(\lambda t_{1}+(1-\lambda) t_{2}\right) \forall \lambda \in[0,1]
$$

- A line drawn between any two points $u\left(t_{1}\right)$ and $u\left(t_{2}\right)$ is above (or equal to) $u(t)$
- $u^{\prime \prime}(t) \geq 0 \forall t \in T$, if the second derivative exists

Convex utility functions

- For any utility function $u, E[u(X)]=\sum f_{X}\left(t_{i}\right) u\left(t_{i}\right)$ for X with discrete set of outcomes $t_{i}, i=1, \ldots, n$
\square Note: $\sum f_{X}\left(t_{i}\right)=1$
\square Let u be convex. Then
- $\lambda u\left(t_{1}\right)+(1-\lambda) u\left(t_{2}\right) \geq u\left(\lambda t_{1}+(1-\lambda) t_{2}\right) \forall \lambda \in[0,1]$ (by def., previous slide)
\square And, specifically, by applying this definition several times,

$$
f_{X}\left(t_{1}\right) u\left(t_{1}\right)+\ldots+f_{X}\left(t_{n}\right) u\left(t_{n}\right)=E[U(X)] \geq u\left(\sum f_{X}\left(t_{i}\right) t_{i}\right)=U(E[X])
$$

- For convex u : Expected utility of X is higher than (expected) utility of $E(X)$

Jensen's inequality

- For any random variable X, if function u is
I. Convex, then $E[u(X)] \geq u(E[X])$
II. Concave, then $E[u(X)] \leq u(E[X])$
\Rightarrow

u concave	u convex
$\Rightarrow E[u(X)] \leq u(E[X])$	$\Rightarrow E[u(X)] \geq u(E[X])$
$\Leftrightarrow u^{-1}(E[u(X)]) \leq u^{-1}(u(E[X]))$	$\Leftrightarrow u^{-1}(E[u(X)]) \geq u^{-1}(u(E[X]))$
Allowed because is increasing	$\Leftrightarrow C E[X] \leq E[X]$

Risk attitudes in Expected Utility Theory

I. u is concave iff $C E[X] \leq E[X]$ for all X
II. u is convex iff $C E[X] \geq E[X]$ for all X
III. u is linear iff $\mathrm{CE}[\mathrm{X}]=\mathrm{E}[\mathrm{X}]$ for all X

\square A DM with a linear utility function is called risk neutral

- Indifferent between uncertain outcome X and a certain outcome equal to $\mathrm{E}[\mathrm{X}]$
\square A DM with a concave but not linear utility function is called risk averse
- Prefers a certain outcome smaller than E[X] to uncertain outcomeX
\square A DM with a convex but not linear utility function is called risk seeking
- Requires a certain outcome larger than E[X] to not choose uncertain outcome X

Risk premium in Expected Utility Theory

- Definition: Risk premium for random variable X is $\mathrm{RP}[X]=\mathrm{E}[X]-\mathrm{CE}[X]$
- $\quad R P[X]$ depends on both the DM's preferences (u) and the uncertainty in the decision alternative (distribution of X)
- $\mathrm{RP}[\mathrm{X}]$ is the premium that the DM requires on the expected value to change a certain outcome of CE[X] to an uncertain outcome X
I. $D M$ is risk neutral, iff $R P[X]=0$ for all X
II. DM is risk averse, iff $\operatorname{RP}[\mathrm{X}] \geq 0$ for all X
III. DM is risk seeking, iff $\mathrm{RP}[\mathrm{X}] \leq 0$ for all X

Computing CE and RP

1. Compute $\mathrm{E}[\mathrm{u}(\mathrm{X})]$ and $\mathrm{E}(\mathrm{X})$
2. Solve $u^{-1}(\cdot)$
3. Compute $C E[X]=u^{-1}(E[u(X)])$
4. Compute $\mathrm{RP}[X]=\mathrm{E}[X]-\mathrm{CE}[X]$

- Step 2: if $u^{-1}(\cdot)$ cannot be solved analytically, solve it numerically from $u(C E[X])=E[u(X)]$
- Trial and error
- Computer software

Example: Jane's $u(t)=t^{2}$ and her payoff is $Y \sim \operatorname{Uni}(3,5)$

1. $E[u(X)]=\int_{3}^{5} f_{Y}(t) u(t) d t=16.33$
2. $v=u(t)=t^{2} \Leftrightarrow t=u^{-1}(v)=\sqrt{v}$
3. $C E[X]=u^{-1}(16.33)=\sqrt{16.33}=4.04$
4. $R P[X]=4-4.04=-0.04$

Prospect theory

[. Expected Utility Theory assumes that people only care about the outcome in the absolute sense

- Yet, empirical evidence suggests that people tend to
- think of possible outcomes relative to a certain reference point (often the status quo),
- have different risk attitudes towards gains and losses with regard to the reference point,

- overweight extreme, but unlikely events, but underweight "average" events.
- Prospect theory seeks to accommodate these empirical findings:

Tversky, A. and D. Kahneman. "Advances in prospect theory: Cumulative representation of uncertainty." Journal of Risk and uncertainty 5.4 (1992): 297323.
] NOTE:

- EUT is a normative theory: tells what rational people should do
- Prospect theory is a descriptive theory: tries to describe what people tend to do in real life

Stochastic oomninance https://presemo.aalto.fi/stocdom/

Question: Which decision alternative would you choose?

1. X
2. Y

$$
F_{X}(t) \leq F_{Y}(t) \quad \forall t \in T
$$

First-degree Stochastic Dominance

Definition: X dominates Y in the sense of Firstdegree Stochastic Dominance (denoted $X \succcurlyeq_{\mathrm{FSD}} Y$), if

$$
F_{X}(t) \leq F_{Y}(t) \forall t \in T
$$

with strict inequality for some t.
Theorem: $X \geqslant_{F S D} Y$ if and only if
$E[u(X)] \geq E[u(Y)] \forall u \in U^{0}$,
where U^{0} is the set of all strictly increasing functions

Implication: If an alternative is strictly dominated in the sense of FSD, then any DM who prefers more to less should not choose it.

FSD: Mining example

- A mining company has an opportunity to bid on two separate parcels of land
\square Decisions to be made:
- Overall commitment of some \$500 million
- How much to bid?
- Bid alone or with partner?
- How to develop the site if the bid turns out successful?
- Large decision tree model built to obtain cumulative distribution functions of different strategies (= decision alternatives)

[^0]
FSD: Example (cont’d)

- Assume that the company prefers a larger net present value (NPV) to a smaller one
- Which strategies would you recommend?

55 Aalto University
Source: Hax and Wing (1977): "The use of decision analysis in a capital investment School of Science probelm" In Bell, Keeney, and Raiffa (eds.): Conflicting Objectives in Decisions, Wiley.

Second-degree Stochastic Dominance

- Theorem:
$E[u(X)] \geq E[u(Y)] \forall u \in U^{c c v} \Leftrightarrow \int_{-\infty}^{z}\left[F_{X}(t)-F_{Y}(t)\right] d t \leq 0 \quad \forall z \in T$,
where $U^{c c v}=\left\{u \in U^{0} \mid u\right.$ is concave $\}$.

D Definition: X dominates Y in the sense of Second-degree Stochastic Dominance (denoted $X \succcurlyeq_{\text {SSD }} Y$), if

$$
\int_{-\infty}^{z}\left[F_{X}(t)-F_{Y}(t)\right] d t \leq 0 \quad \forall z \in T
$$

with strict inequality for some z.
\square Implication: If an alternative is strictly dominated in the sense of SSD, then any riskaverse or risk neutral DM who prefers more to less should not choose it.

SSD: graphical interpretation

$$
\int_{-\infty}^{z}\left[F_{X}(t)-F_{Y}(t)\right] d t \leq 0 \quad \forall z \in T
$$

- Integral
$=$ the area between $F_{X}(t)$ and $F_{Y}(t)$ up to point z
$=$ the area between the $F_{X}(t)-F_{Y}(t)$ and the horizontal axis up to point z
\square If it is non-positive for all z, then $X \succcurlyeq_{\text {SSD }} Y$
- Here: $X \succcurlyeq_{\text {SSD }} Y$, because area \mathbf{A} is bigger than area \mathbf{B}, and \mathbf{A} is left of \mathbf{B}

Aalto University School of Science

SSD: Mining example revisited

- Assume that the mining company is either risk-averse or risk-neutral
- Which strategies would you recommend?

Properties of FSD and SSD

- Both FSD and SSD are transitive:
- If $X \succcurlyeq_{F S D} Y$ and $Y \succcurlyeq_{F S D} Z$, then $X \succcurlyeq_{F S D} Z$
- Why? Take anyt. Then, $F_{X}(t) \leq F_{Y}(t) \leq F_{Z}(t)$.
- If $\mathrm{X} \succcurlyeq_{\text {SSD }} \mathrm{Y}$ and $\mathrm{Y} \succcurlyeq_{\text {SSD }} \mathrm{Z}$, then $\mathrm{X} \succcurlyeq_{\text {SSD }} \mathrm{Z}$
- Why? Take any $u \in U^{c c v}$. Then, $E[u(X)]-E[u(Z)] \geq E[u(Y)]-E[u(Z)] \geq 0$.
\square FSD implies SSD:
- If X $\succcurlyeq_{\text {FSD }} Y$, then $X \succcurlyeq_{\text {SSD }} Y$.
- Why? Take any $u \in U^{c c v}$. Then, $u \in U^{0}$, and since $X \geqslant_{F S D} \mathrm{Y}$, we have $E[u(X)] \geq$ $E[u(Y)]$.
- Or consider the definitions of FSD and SSD: If $F_{X}(t) \leq F_{Y}(t) \forall t \in T$, then

$$
\int_{-\infty}^{z}\left[F_{X}(t)-F_{Y}(t)\right] d t \leq \int_{-\infty}^{z} 0 d t \leq 0 \forall z \in T
$$

Summary

- Utility function is elicited through specification of equally preferred lotteries
- Then: expected utilities equal
- The shape of the utility function determines the DM's risk attitude
- Linear utility function = risk neutral
- Concave utility function = risk averse
- Convex utility function = risk seeking
. Even if the utility function is not completely specified, decision recommendations may be implied by stochastic dominance
- If the DM prefers more to less, she should not choose an FSD dominated alternative
- If the DM is also risk averse, she should not choose an SSD dominated alternative

Decision making and problem solving Lecture 4

- Risk measures
- Multiattribute value theory
- Axioms for preference relations
- Elicitation of attribute-specific value functions

Motivation

\square Last time we learned how :

- To model the DM's preferences over risk by eliciting her utility function
- The shape (concave / linear / convex) of the utility function corresponds to the DM's risk attitude (risk averse / neutral / seeking)
- Decision recommendations may be implied by stochastic dominance even if the utility function is not (completely) specified:
- If the DM prefers more to less, she should not choose an FSD dominated alternative
- If the DM is also risk averse, she should not choose an SSD dominated alternative
\square This time (Part A):
- We take a look at risk measures and examine how they can be used to describe alternatives' risks

Risk measures

- Risk measure is a function that maps each decision alternative to a single number describing its risk
- E.g., variance $\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]$
- The higher the variance, the higher the risk
- Risk measures are not based on EUT, but can be used together with expected values to produce decision recommendations
- Risk constraint: Among alternatives whose risk is below some threshold, select the one with the highest expected value
- Risk minimization: Among alternatives whose expected value is above some threshold, select the one with minimum risk
- Efficient frontier: Select one of those alternative compared to which no other alternative yields higher expected value and smaller risk

Risk measures: Value-at-Risk (VaR)

- Value-at-Risk $\left(\operatorname{VaR}_{\alpha}[X]\right)$ is the outcome such that the probability of a worse or equal outcome is α :

$$
\int_{-\infty}^{\operatorname{VaR}_{\alpha}[X]} f_{X}(t) d t=F_{X}\left(\operatorname{VaR}_{\alpha}[X]\right)=\alpha .
$$

- Higher VaR means smaller risk
- Unless applied to a loss distribution

Common values for α : 1\%, 5\%, and 10\%
] Problem: the length/shape of the tail is not taken into account

Mining example revisited

- Assess $\mathrm{VaR}_{5 \%}$ for strategies 1 and 25

Risk measures: Conditional Value-atRisk (CVaR)
 - Conditional Value-at-Risk $\left(\mathrm{CVaR}_{\alpha}[X]\right)$ is the expected outcome given that the outcome is at most $\operatorname{VaR}_{\alpha}$:
 $$
\operatorname{CVaR}[X]=E\left[X \mid X \leq \operatorname{VaR}_{\alpha}[X]\right]
$$
 [Higher CVaR means smaller risk (unless applied to losses)

- Computation of $\operatorname{CVaR}[X]$ to discrete and continuous X :
$E\left[X \mid X \leq \operatorname{VaR}_{\alpha}[X]\right]=\sum_{t \leq \operatorname{VaR}_{\alpha}[X]} t \frac{f_{X}(t)}{\alpha}, \quad E\left[X \mid X \leq \operatorname{VaR}_{\alpha}[X]\right]=\int_{-\infty}^{\operatorname{VaR}_{\alpha}[X]} t \frac{f_{X}(t)}{\alpha} d t$.
- Note: $\alpha=P\left(X \leq \operatorname{VaR}_{\alpha}[X]\right) ;$ PMF/PDF $f_{X}(t)$ is scaled such that it sums/integrates up to 1 .

Computation of VaR and CVaR

- If the inverse CDF of X is well-defined, VaR can be obtained from

$$
\operatorname{VaR}_{\alpha}[X]=F_{X}^{-1}(\alpha)
$$

- In Excel: norm.inv, lognorm.inv, beta.inv, binom.inv etc
- In Matlab: norminv, logninv, betainv, binoinv etc
- CVaR can then be computed using the formulas on the previous slide
- \quad Sometimes an analytic solution can be obtained; if, e.g., $X \sim N\left(\mu, \sigma^{2}\right)$ and $\operatorname{VaR}_{\alpha}[X]=\beta$, then

$$
\mathrm{CVaR}_{\alpha}[X]=\mu-\sigma \frac{\phi\left(\frac{\beta-\mu}{\sigma}\right)}{\Phi\left(\frac{\beta-\mu}{\sigma}\right)^{\prime}}
$$

where ϕ and Φ are the standard normal PDF and CDF, respectively.

- Sometimes numerical integration is needed

Computation of VaR and CVaR

- With discrete random variables VaR and CVaR are not always well defined for small values of α
- Example:

t	-10	-5	1	10	20
$f_{x}(t)$	0.06	0.02	0.02	0.5	0.4

$-\operatorname{VaR}_{10 \%}[X]=1$
$-\operatorname{CVaR}_{10 \%}[X]=\frac{0.06(-10)+0.02(-5)+0.02(1)}{0.06+0.02+0.02}=-6.8$

- But what are $\operatorname{VaR}_{5 \%}[X], \operatorname{CVaR}_{5 \%}[X]$?

VaR and CVaR with Monte Carlo - Excel

VaR and CVaR with Monte Carlo Matlab

```
S=10^5; %Sample size 10,000
mu=1000;
sigma=500;
Sample=normrnd (mu, sigma, S,1);
VaR=prctile(Sample,10)
TailIndices=find (Sample<=VaR);
CVaR=mean(Sample(TailIndices)) sComputes the arithmetic mean among those
selements in the sample belor or equal to VaR
```


Risk measures and stochastic dominance

Theorem: $X \geqslant_{\text {FSD }} Y$ if and only if $\operatorname{VaR}_{\alpha}[X] \geq \operatorname{VaR}_{\alpha}[Y] \forall \alpha \in[0,1]$

Theorem: $X \geqslant_{\text {SSD }} Y$ if and only if $\mathrm{CVaR}_{\alpha}[X] \geq \mathrm{CVaR}_{\alpha}[Y] \forall \alpha \in[0,1]$

31.1.2019

11

EUT vs. Risk measures

- EUT provides a more comprehensive way to capture the DM's preferences over uncertain outcomes
With risk measures, one must answer questions such as
- Which measure to use?
- Which α to use in VaR and CVaR?
- How to combine EV and the value of a risk measure into an overall performance measure?

Yet, if answers to such questions are exogenously imposed, the use of risk measures can be easy

- E.g., laws, regulations, industry standard etc.

Motivation

\square Consider yourself choosing

Bergland Design- und Wellnesshotel ****** $^{\text {B }}$

6 people are looking right now
Booked 3 times in the last 24 hours
-. 94% of guest reviewers had their expectations of this property met or exceeded
accommodation for a (downhill) skiing vacation trip

Double Room -.
In high demand - only 2 rooms left!
$€ 3,290$
\square How do the accommodation alternatives differ from each other?

- What are the attributes that influence your decision?

Apartments A Casa Kristall $\star \star k \star$ 四 genius \%
Excellent
8.6

- Sölden-Show on map

02 km from center
2 people are looking right now
Booked 2 times in the last 24 hours
Grear Vatue today

Apartment $\mathbf{\bullet -}-30 \mathrm{~m}^{2}$
Price for 7 nights

See all 4 available apartments >

[^1]- Sölden - Show on map

Motivation

So far:

- We have considered decision-making situations in which the DM has one objective (e.g., maximize the expected value/ utility of a monetary payoff)
\square This time:
- We consider decision-making situations in which the DM has multiple objectives or, more precisely...
- Multiple attributes with regard to which the achievement of some fundamental objective is measured

Multiattribute value theory

- Ralph Keeney and Howard Raiffa (1976): Decisions with Multiple Objectives: Preferences and Value Tradeoffs
\square James Dyer and Rakesh Sarin (1979): Measurable multiattribute value functions, Operations Research Vol. 27, pp. 810-822
- Elements of MAVT
- A value tree consisting of objectives, attributes, and alternatives
- Preference relation over the alternatives' attribute-specific performances and differences thereof \& their representation with an attribute-specific value function
- Preference relation over the alternatives' overall performances and differences thereof \& their representation with a multiattribute value function

Value tree: objectives, attributes, and alternatives

- A value tree consists of
- A fundamental objective
- Possible lower-level objectives
- Attributes that measure the achievement of the objectives
- Alternatives whose attributespecific performances are being measured

Aalto University School of Science

Value tree: objectives, attributes and alternatives

- The attributes $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$ have measurement scales $\mathrm{X}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{n}$; e.g.,
- $\mathrm{X}_{1}=\{1000 € / \mathrm{month}, 6000 € / \mathrm{month}]$
- $\mathrm{X}_{2}=[2$ weeks/ year, 8 weeks/ year]
- $\mathrm{X}_{3}=[0$ days/ year, 200 days/ year]
- $\mathrm{X}_{4}=\{$ poor, fair, good, excellent $\}$
- Alternatives $x=\left(x_{1}, x_{2}, \ldots x_{n}\right)$ are characterized by their performance w.r.t. the attributes; e.g.,

- Banker=(6000€/month, 5 weeks/year, 40 days/year, fair) $\in X_{1} \times X_{2} \times X_{3} \times X_{4}$.

Preference relation: attribute-specific performance

\square Let \geqslant be preference relation among performance levels a and b on a given attribute

Preference $a \geqslant b$: a at least as preferable as b
Strict preference $a>b$ defined as $\neg(b \geqslant a)$
Indifference $a \sim b$ defined as $a \succcurlyeq b \wedge b \geqslant a$

Axioms for preference relation

- A1: \geqslant is complete
- For any $a, b \in X$, either $a \succcurlyeq b$ or $b \succcurlyeq a$ or both
- A2: \geqslant is transitive
- If $a \succcurlyeq b$ and $b \succcurlyeq c$, then $a \succcurlyeq c$

Ordinal value function

Theorem: Let axioms A1-A2 hold. Then, there exists an ordinal value function $v_{i}(\cdot): X_{i} \rightarrow \mathbb{R}$ that represents preference relation \geqslant in the sense that

$$
v_{i}(a) \geq v_{i}(b) \Leftrightarrow a \geqslant b
$$

\square An ordinal value function does not describe strength of preference, i.e., it does not communicate much more an object is preferred to another

Ordinal value function

-Assume you have two mopeds A and B with top speeds of 30 and $35 \mathrm{~km} / \mathrm{h}$, respectively
\square You have two alternatives for upgrade

- Increase top speed of moped A to 40
- Increase top speed of moped B to 45
aYour prefer a higher top speed to a lower one
$\square 45>40>35>30$
$\square \mathrm{v}(45)=1, \mathrm{v}(40)=0.8, \mathrm{v}(35)=0.5, \mathrm{v}(30)=0.4$
$\square w(45)=0.9, w(40)=0.8, w(35)=0.6, w(30)=0.4$
\square Both v and w are ordinal value functions representing your preferences but they do not describe your preferences between the two upgrade alternatives

$$
\square \mathrm{v}(45)-\mathrm{v}(35)=0.5>\mathrm{v}(40)-\mathrm{v}(30)=0.4, \text { but } \mathrm{w}(45)-\mathrm{w}(35)=0.3<\mathrm{w}(40)-\mathrm{w}(30)=0.4
$$

Ordinal value function

Theorem: Ordinal value functions $v_{i}(\cdot)$ and $w_{i}(\cdot)$ represent the same preference relation \geqslant if and only if there exists a strictly increasing function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ such that $w_{i}(a)=\phi\left[v_{i}(\cdot)\right] \forall a \in A$.

Example: Let consultant $>$ professor $>$ janitor be Jim's preferences over these jobs and v (consultant) $=10>v$ (professor) $=8>v($ janitor $)=7$. Then v^{\prime} and $v^{\prime \prime}$ both represent the same preferences as ordinal value function v

		consultant	professor	janitor
	v	10	8	7
$\boldsymbol{A} \boldsymbol{A} \boldsymbol{y}$ Aaltouschool	v^{\prime}	20	16	14

The goal is to compare multi-attribute alternatives, wherefore ordinal value functions are not enough

- Let \succcurlyeq_{d} be preference relation among differences in performance levels on a given attribute
- Preference $(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow d)$: a change from b to a is at least as preferable as a change from d to c
- Strict preference $(a \leftarrow b) \succ_{d}(c \leftarrow d)$ defined as $\neg\left((c \leftarrow d) \succcurlyeq_{d}(a \leftarrow b)\right)$
- Indifference $(a \leftarrow b) \sim{ }_{d}(c \leftarrow d)$ defined as $(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow d) \wedge(c \leftarrow$ d) $\succcurlyeq_{d}(a \leftarrow b)$

Axioms for preference relation (cont'd)

\square A3: $\forall a, b, c \in X_{i}: a \succcurlyeq b \Leftrightarrow(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow c)$

- If a is preferred to b, then a change from b to a is preferred to no change
\square A4: $\forall a, b, c, d \in X_{i}:(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow d) \Leftrightarrow(d \leftarrow c) \succcurlyeq_{d}(b \leftarrow a)$
- E.g., if an increase in salary from $1500 €$ to $2000 €$ is preferred to an increase from $2000 €$ to $2500 €$, then a decrease from $2500 €$ to $2000 €$ is preferred to a decrease from $2000 €$ to $1500 €$
$\square \quad$ A5: $\forall a, b, c, d, e, f \in X_{i}:(a \leftarrow b) \succcurlyeq_{d}(d \leftarrow e) \wedge(b \leftarrow c) \succcurlyeq_{d}(e \leftarrow f) \Rightarrow(a \leftarrow c) \succcurlyeq_{d}(d \leftarrow f)$
- If two incremental changes are both preferred to some other two, then the overall change resulting from the finst two increments is also nreferred
- A6: $\forall b, c, d \in X_{i} \exists a \in X_{i}$ such that $(a \leftarrow b) \sim{ }_{d}(c \leftarrow d)$ and $\forall b, c \in X_{i} \exists a \in X_{i}$ such that $(b \leftarrow$ $a) \sim{ }_{d}(a \leftarrow c)$
- Equally preferred differences between attribute levels can always be constructed
- There is always an attribute level a between b and c such that a change from c to a is equally preferred to a change from a to b.
\square A7: The set (or sequence) $\left\{a_{n} \mid b>a_{n}\right.$ where $\left.\left(a_{n} \leftarrow a_{n-1}\right) \sim{ }_{d}\left(a_{1} \leftarrow a_{0}\right)\right\}$ is finite for any b in X_{i}
- The sequence of equally preferred differences over a fixed interval is finite
- "No b can be infinitely better than other performance levels"

Cardinal value function

Theorem: Let axioms A1-A7 hold. Then, there exists a cardinal value function $v_{i}(\cdot): X_{i} \rightarrow \mathbb{R}$ that represents preference relations \geqslant and \succcurlyeq_{d} in the sense that

$$
\begin{gathered}
v_{i}(a) \geq v_{i}(b) \Leftrightarrow a \succcurlyeq b \\
v_{i}(a)-v_{i}(b) \geq v_{i}(c)-v_{i}(d) \stackrel{\Leftrightarrow}{ }(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow d) .
\end{gathered}
$$

Note: A cardinal value function is unique up to positive affine transformations, i.e., $v_{i}(x)$ and $v_{i}^{\prime}(x)=\alpha v_{i}(x)+\beta, \alpha>0$ and represent the same preferences

Cardinal value function: positive affine transformations

Example: Let consultant $>$ professor $>$ janitor and (consultant \leftarrow professor) \succcurlyeq_{d} (professor \leftarrow janitor) be Jim's preferences and $v($ consultant $)=10>v$ (professor) $=8>v$ (janitor) $=7$.
Then v^{\prime} and $v^{\prime \prime}$ both represent same preferences as cardinal value function v

	consultant	professor	janitor
v	10	8	7
$v^{\prime}=2 v$	20	16	14
$v^{\prime \prime}=v^{\prime}-10$	10	6	4

Attribute-specific value functions

- A value function maps the attribute-specific measurement scale onto a numerical scale in accordance with the DM's preferences
- Value and utility:
- Value is a measure of preference under certainty
- Utility is a measure of preference under uncertainty

Aalto University School of Science

Elicitation of value functions

\square Phases:

- Define the measurement scale $X_{i}=\left[a_{i}^{0}, a_{i}^{*}\right]\left(\right.$ or $\left.\left[a_{i}^{*}, a_{i}^{0}\right]\right)$
- Ask a series of eliciation questions
- Check that the value function gives realistic results

Elicitation of value functions: Indifference methods

\square Bisection method:

- Ask the DM to assess level $x_{0.5} \in\left[a_{i}^{0}, a_{i}^{*}\right]$ such that she is indifferent between change $x_{0.5} \leftarrow a^{0}$ and change $a^{*} \leftarrow x_{0.5}$.
- Then, ask her to assess levels $x_{0.25}$ and $x_{0.75}$ such that she is indifferent between
- changes $x_{0.25} \leftarrow a^{0}$ and $x_{0.5} \leftarrow x_{0.25}$, and
- changes $x_{0.75} \leftarrow x_{0.5}$ and $a^{*} \leftarrow x_{0.75}$.
- Continue until sufficiently many points have been obtained
- Use, e.g, linear interpolation between elicited points if needed
- The value function can be obtained by fixing $v_{i}\left(a_{i}^{0}\right)$ and $v_{i}\left(a_{i}^{*}\right)$ at, e.g., 0 and 1

Elicitation of value functions: Indifference methods

- Example of the bisection method

- Attribute a_{3} : Traveling days per year
- Measurement scale $\left[a_{3}^{*}, a_{3}^{0}\right]$, where $a_{3}^{*}=0$ and $a_{3}^{0}=200$; fix $v_{3}\left(a_{3}^{0}\right)=0$ and $v_{3}\left(a_{3}^{*}\right)=1$
- "What would be the number $x_{0.5}$ of traveling days such that you would be indifferent between a decrease from 200 to $x_{0.5}$ days a year and a decrease from $x_{0.5}$ to zero days a year?" (Answer e.g., "130")
- "What would be the number $x_{0.25}$ of traveling days such that you would be indifferent between a decreasefrom 200 to $x_{0.25}$ days a year and a decrease from $x_{0.25}$ to 130 days a year?" (Answer e.g., "170")
- "What would be the number $x_{0.75}$ of traveling days such that you would be indifferent between a decrease from 130 to $x_{0.75}$ days a year and a decrease from $x_{0.75}$ to zero days a year?" (Answer e.g., "80")

$$
\begin{gathered}
v_{3}(170)-v_{3}(200)=v_{3}(130)-v_{3}(170) \Rightarrow \\
v_{3}(170)=\frac{v_{3}(130)+v_{3}(200)}{2}=0.25
\end{gathered}
$$

$$
\begin{gathered}
v_{3}(80)-v_{3}(130)=v_{3}(0)-v_{3}(80) \Rightarrow \\
v_{3}(80)=\frac{v_{3}(0)+v_{3}(130)}{2}=0.75
\end{gathered}
$$

5 Aalto University School of Science

Elicitation of value functions: Indifference methods

- Sequence of equally preferred differences:
- \quad Set $x_{0} \in\left(a_{i}^{0}, a_{i}^{*}\right)$
- Ask the DM to assess level $x_{1} \in\left(x_{0}, a_{i}^{*}\right]$ such that he is indifferent between changes $x_{0} \leftarrow a_{i}^{0}$ and $x_{1} \leftarrow x_{0}$
- $\quad v_{i}\left(x_{0}\right)-v_{i}\left(a_{i}^{0}\right)=v_{i}\left(x_{1}\right)-v_{i}\left(x_{0}\right) \Rightarrow v_{i}\left(x_{1}\right)=2 v_{i}\left(x_{0}\right)$
- Then, ask him to assess level $x_{2} \in\left(x_{1}, a_{i}^{*}\right]$ such that he is indifferent between change $x_{1} \leftarrow x_{0}$ and $x_{2} \leftarrow x_{1}$
- $v_{i}\left(x_{1}\right)-v_{i}\left(x_{0}\right)=v_{i}\left(x_{2}\right)-v_{i}\left(x_{1}\right) \Rightarrow v_{i}\left(x_{2}\right)=3 v_{i}\left(x_{0}\right)$
- Continue until $x_{N}=a_{i}^{*}$ and solve the system of linear equations
- $v_{i}\left(x_{0}\right)=\frac{v_{i}\left(x_{N}\right)}{N+1}=\frac{1}{N+1} \Rightarrow v_{i}\left(x_{1}\right)=\frac{2}{N+1}$ etc.
- If $x_{N}>a_{i}^{*}$ (see the exercises!)
- Change a_{i}^{*} to x_{N} and interpolate, or
- Interpolate to get $v_{i}\left(a_{i}^{*}\right)-v_{i}\left(a_{i}^{0}\right)$

Example:
$\left[a_{i}^{0}, a_{i}^{*}\right]=[1000,6000], x_{0}=1500$
$x_{1}=2500, x_{2}=4000, x_{3}=6000=a_{i}^{*} \Rightarrow$
$v_{i}(1500)=\frac{1}{4}, v_{i}(2500)=\frac{1}{2}, v_{i}(4000)=\frac{3}{4}$.

Elicitation of value functions: Indifference methods

Indifference methods are likely to result in a cardinal value function that captures the DM's preferences

- Therefore, they should be used whenever possible

Yet: indifference methods cannot be used when the measurement scale is discrete

- E.g., Fit with interest: $\mathrm{X}_{4}=\{$ poor, fair, good, excellent $\}$
- Cf. Axiom A6

Elicitation of value functions: direct methods

- Direct rating
- Ask the DM to directly attach a value to each attribute level
- E.g. "Assume that the value of poor fit with interests is 0 and the value of excellent fit with interests is 1 . What is the value of fair fit with interests? How about good fit?"
- Class rating
- Divide the measurement scale into classes and ask the DM to attach a value to these classes
- Ratio evaluation
- Take one attribute level as a reference point and ask the DM to compare the other levels to this
- E.g., "How many times more valuable is $1000 €$ than $900 €$?"
- Direct methods should be avoided whenever possible
- Usually do not result in a cardinal value function

Next time: Aggregation of values

- Problem: How to measure the overall value of alternative $x=$ $\left(x_{1}, x_{2}, \ldots x_{n}\right) ?$

$$
V\left(x_{1}, x_{2}, \ldots x_{n}\right)=?
$$

Question: Could the overall value be obtained by aggregating attribute-specific values?

$$
V\left(x_{1}, x_{2}, \ldots x_{n}\right)=f\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) ?
$$

- Answer: Yes, if the attributes are
- Mutually preferentially independent and
- Difference independent

Summary

- Under certain axioms, the DM's preferences over changes on a measurement scale can be captured by a cardinal (measurable) value function
- "I prefer a change from 0 euros to 10 euros to a change from 10 euros to 22 euros"
- Elicitation of the attribute-specific value functions
- Use indifference methods if possible

Decision making and problem solving Lecture 5

- Preferential and difference independence
- Aggregation of values with an additive value function
- Interpretation and elicitation of attribute weights
- Trade-off methods
- SWING, SMART(S)

Last time

G Given certain axioms, a DM's preferences about a single attribute can be represented by a cardinal value function $v_{i}\left(x_{i}\right)$ such that

$$
\begin{gathered}
v_{i}\left(x_{i}\right) \geq v_{i}\left(y_{i}\right) \Leftrightarrow x_{i} \succcurlyeq y_{i} \\
v_{i}\left(x_{i}\right)-v_{i}\left(x_{i}^{\prime}\right) \geq v_{i}\left(y_{i}\right)-v_{i}\left(y_{i}^{\prime}\right) \stackrel{\Leftrightarrow}{\prime}\left(x_{i} \leftarrow x_{i}^{\prime}\right) \succcurlyeq_{d}\left(y_{i} \leftarrow y_{i}^{\prime}\right) .
\end{gathered}
$$

\square Attribute-specific value functions are obtained by

- Defining measurement scales $\left[x_{i}^{0}, x_{i}^{*}\right]$
- Asking a series of elicitation questions through, e.g.,

1. Bisection method
2. Equally preferred differences
3. Giving a functional form; e.g., $v_{i}\left(x_{i}\right)$ is linear and increasing
\square Result: shape of the value function
Value functions can be normalized such that $v_{i}\left(x_{i}^{0}\right)=0$ and $v_{i}\left(x_{i}^{*}\right)=1$.
Aalto University School of Science

This time

- How to measure the overall value of multi-attribute alternative $x=$ $\left(x_{1}, x_{2}, \ldots x_{n}\right)$?

$$
V\left(x_{1}, x_{2}, \ldots x_{n}\right)=?
$$

\square Could the overall value be obtained by aggregating attribute-specific values?

$$
V\left(x_{1}, x_{2}, \ldots x_{n}\right)=f\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right)=\sum_{i=1}^{n} w_{i} v_{i}^{N}\left(x_{i}\right) ?
$$

- Answer: Yes, if the attributes are
- Mutually preferentially independent and
- Difference independent
… But how to interpret and elicit attribute weights w_{i} ?

Preferential independence

Definition: Attribute X is preferentially independent of the other attributes \boldsymbol{Y}, if for all $x, x^{\prime} \in X$

$$
\left(x, \boldsymbol{y}^{\prime}\right) \succcurlyeq\left(x^{\prime}, \boldsymbol{y}^{\prime}\right) \Rightarrow(x, \boldsymbol{y}) \succcurlyeq\left(x^{\prime}, \boldsymbol{y}\right) \text { for all } \boldsymbol{y} \in \boldsymbol{Y}
$$

I Interpretation: Preference over the level of attribute X does not depend on the levels of the other attributes, as long as they stay the same

- "All other things \mathbf{Y} being equal (no matter what they are), an alternative with performance level x w.r.t. X is preferred to an alternative with level $\mathrm{x}^{\prime} \in \mathrm{X}^{\prime \prime}$

Last time

\square Consider yourself choosing accommodation for a (downhill) skiing vacation trip
\square How do the accommodation alternatives differ from each other?

- What are the attributes that influence your decision?

Bergland Design- und Wellnesshotel $\star \star \hbar \star \hbar \star$
Q Sölden - Show on map
Wonderful 9
Location 9.4
$\square 550 \mathrm{~m}$ from center
6 people are looking right now
Booked 3 times in the last 24 hours

- 94% of guest reviewers had their expectations of this property met or exceeded

Price for 7 nights
Double Room -.
In high demand - only 2 rooms left!
$€ 3,290$

Aparments A Casa Kristall ***** geniss \%

Excellent
8.6

P Sölden - Show on map
2 km from center
2 people are looking right now
Booked 2 times in the last 24 hours
Great Value Today

Apartment $\mathbf{\bullet -}-30 \mathrm{~m}^{2}$
Price for 7 nights
$€ 830$
In high demand - there's only 1 like it!
includes taxes and charges
See all 4 available apartments >

Das Central - Alpine . Luxury . Life ******
Wonderful
P Sölden - Show on map

Preferential independence: example 1

- Attribute X is preferentially independent of the other attributes \boldsymbol{Y}, if for all $x, x^{\prime} \in X$

$$
\left(x, \boldsymbol{y}^{\prime}\right) \succcurlyeq\left(x^{\prime}, \boldsymbol{y}^{\prime}\right) \Rightarrow(x, \boldsymbol{y}) \succcurlyeq\left(x^{\prime}, \boldsymbol{y}\right) \text { for all } \boldsymbol{y} \in \boldsymbol{Y}
$$

- 2 Attributes
- $\mathrm{X}=\{1, \ldots, 500\}$ number of reviews
- $\mathrm{Y}=[1,10]$ average of reviews

Is X preferentially independent of Y ?
\square No: $(500,10) \succcurlyeq(5,10)$, but $(500,1)<(5,1)$
Is Y preferentially independent of X ?
\square Yes (if higher average is preferred independently of \#reviews, as long there are equally many reviews): $(500,10) \succcurlyeq(500,9) \Rightarrow(x, 10) \succcurlyeq(x, 9)$ for any x

Preferential independence: example 2

Consider choosing a meal using two attributes:

1. Food $\in\{$ beef, fish $\}$
2. Wine $\in\{r e d$, white $\}$

- Preferences:

1. Beef is preferred to fish (no matter what the wine is):

- (beef, red) \geqslant (fish, red)
- (beef, white) \geqslant (fish, white)

2. White wine is preferred with fish and red wine with beef

- (fish, white) \geqslant (fish, red)
- (beef, red) \geqslant (beef, white)
- Food is preferentially independent of wine
- Beef is preferred to fish, no matter what the wine is: $\left(x, y^{\prime}\right) \succcurlyeq\left(x^{\prime}, \boldsymbol{y}^{\prime}\right) \Rightarrow(x, y) \succcurlyeq\left(x^{\prime}, \boldsymbol{y}\right)$ for all $\mathrm{y} \in \mathrm{Y}$
\square Wine is not preferentially independent of food
\square Attribute-specific valuation of wine is not meaningful from the meal's perspective

Mutual preferential independence

D Definition: Attributes A are mutually perferentially independent, if any subset of attributes $\mathbf{X} \subset A$ is preferentially independent of the other attributes $\mathbf{Y}=A \mid X$. I.e., for any $\mathbf{X} \subset A, Y=A \mid X$:

$$
\left(x, y^{\prime}\right) \succcurlyeq\left(x^{\prime}, y^{\prime}\right) \Rightarrow(x, y) \succcurlyeq\left(x^{\prime}, y\right) \text { for all } y \in Y
$$

Interpretation: Preference over the levels of attributes \boldsymbol{X} does not depend on the levels of the other attributes, as long as they stay the same

Mutual preferential independence: example

- Consider choosing a meal using three attributes:

1. Food \in \{beef, fish $\}$
2. Side dish \in \{potato, rice $\}$
3. Wine $\in\{r e d$, white $\}$

- Preferences:

1. All other things being equal, red \succcurlyeq white, beef \succcurlyeq fish, potato \succcurlyeq rice
2. Full meals:

- (beef, rice, red) \geqslant (beef, potato, white)
- (fish, potato, white) \succcurlyeq (fish, rice, red)

Each attribute is preferentially independent of the other two, but the attributes are not mutually preferentially independent:
$\left(\boldsymbol{y}^{\prime}\right.$, potato, white $) \succcurlyeq\left(\boldsymbol{y}^{\prime}\right.$, rice, red $) \nRightarrow(y$, potato, white $) \succcurlyeq(y$, rice, red $)$

Mutual pref. independence: example 2

- Choosing a car w.r.t. attributes $A=\left\{t o p\right.$ speed, price, CO_{2} emissions\}
- Attributes defined on continuous scales
\square Are all A 's subsets (X) preferentially independent of the other attributes ($\mathrm{Y}=\mathrm{A} \mid \mathrm{X}$)?
Each single attribute is preferentially independent of the other attributes, because
\square Lower price is preferred to higher price independent of other attributes (if other attributes are equal)
- Higher top speed is preferred to lower
\square Smaller emissions are preferred to bigger ones

Mutual pref. independence: example 2

\square Is $\mathrm{X}=\left\{\right.$ price, CO_{2} emissions $\}$ pref. independent of $\mathrm{Y}=\{$ top speed $\}$?
\square Consider two cars which differ in price (e.g., 30000 e, 25000 e) and emissions $(150 \mathrm{~g} / \mathrm{km}, 200 \mathrm{~g} / \mathrm{km}$) so that one of the alternatives is better in emissions and the other in price. Set the same top speed for the alternatives (e.g. $230 \mathrm{~km} / \mathrm{h}$). Which one is better?

- DM says ($230 \mathrm{~km} / \mathrm{h}, 30000 \mathrm{e}, 150 \mathrm{~g} / \mathrm{km}$) $>(230 \mathrm{~km} / \mathrm{h}, 25000 \mathrm{e}, 200 \mathrm{~g} / \mathrm{km})$
- = when top speed is $230 \mathrm{~km} / \mathrm{h}$, she is willing to pay extra $5000 €$ on top of $25000 €$ for this emission reduction
- Change the top speed. Is the first car still preferred to the second? e.g. does (150 $\mathbf{k m} / \mathrm{h}, 30000 \mathrm{e}, 150 \mathrm{~g} / \mathbf{k m}) \succ(150 \mathrm{~km} / \mathrm{h}, 25000 \mathrm{e}, \mathbf{2 0 0} \mathbf{~ g} / \mathbf{k m})$ hold?
- "No matter what the top speed is, ($30000 \mathrm{e}, 150 \mathrm{~g} / \mathrm{km}$) $>(25000 \mathrm{e}, 200 \mathrm{~g} / \mathrm{km}$)"
\square Consider other prices and emissions; does your preference hold for all top speeds?
\square If varying the top speed does not influence preference between alternatives, then \{price, CO_{2} emissions\} is preference independent of \{top speed\}

Aalto University

Difference independence

Definition: Attribute X is difference independent of the other attributes Y if for all $x, x^{\prime} \in \mathrm{X}$

$$
\left(x, \boldsymbol{y}^{\prime}\right) \leftarrow\left(x^{\prime}, \boldsymbol{y}^{\prime}\right) \sim{ }_{d}(x, \boldsymbol{y}) \leftarrow\left(x^{\prime}, \boldsymbol{y}\right) \text { for all } \boldsymbol{y} \in \boldsymbol{Y}
$$

Interpretation: The preference over a change in attribute X does not depend on the levels of the other attributes \mathbf{Y}, as long as they stay the same

Difference independence: example

Is $\{$ top speed $\}$ difference independent of the other attributes $\{$ price, CO_{2} emissions\}?

- Construct \mathbf{y} and \mathbf{y}^{\prime} from any two levels of price and CO_{2} emissions; $\mathbf{y}=(25000 \mathrm{e}$, $150 \mathrm{~g} / \mathrm{km}$) and $\mathbf{y}^{\prime}=(30000 \mathrm{e}, 200 \mathrm{~g} / \mathrm{km})$
- Consider any two levels of top speed; $\mathrm{x}^{\prime}=200 \mathrm{~km} / \mathrm{h}, \mathrm{x}=250 \mathrm{~km} / \mathrm{h}$
- Does ($250 \mathrm{~km} / \mathrm{h}, 30000 \mathrm{e}, 200 \mathrm{~g} / \mathrm{km}$) $\leftarrow(200 \mathrm{~km} / \mathrm{h}, 30000 \mathrm{e}, 200 \mathrm{~g} / \mathrm{km}) \sim_{\mathrm{d}}(250$ $\mathrm{km} / \mathrm{h}, 25000 \mathrm{e}, 150 \mathrm{~g} / \mathrm{km}) \leftarrow(200 \mathrm{~km} / \mathrm{h}, 25000 \mathrm{e}, 150 \mathrm{~g} / \mathrm{km})$ hold?
\square If yes (for all $x, x^{\prime}, \boldsymbol{y}, \boldsymbol{y}^{\prime}$), then difference independence holds
\square That is, does the value of increased top speed depend on the levels of other attributes or not?
\square Is the "amount of" value added by a fixed change in top speed independent of the other attributes?

Difference independence: example of implication

\square We are choosing downhill skiing accommodation with regard to 6 attributes, which include cost per night (in €) and possibility to go to sauna (binary)
\square We think that (170 e, sauna, $\left.x_{3}, x_{4}, \ldots\right) \sim\left(145 e\right.$, no sauna, $\left.x_{3}, x_{4}, \ldots\right)$ with some $\mathrm{x}_{3}, \ldots, \mathrm{x}_{6}=$ we would pay an additional $25 €$ on top of $145 €$ for the sauna, with some $\mathrm{X}_{3}, \ldots, \mathrm{X}_{6}$
\square Then, if difference independence holds (for each attribute): $\left(145 \mathrm{e}\right.$, no sauna, $\left.\mathrm{x}_{3}, \mathrm{x}_{4}, \ldots\right) \leftarrow\left(170 \mathrm{e}\right.$, no sauna, $\left.\mathrm{x}_{3}, \mathrm{x}_{4}, \ldots\right) \sim_{\mathrm{d}}$ (170 e, sauna, $\left.x_{3}, x_{4}, \quad \ldots\right) \leftarrow\left(170 e\right.$ e, no sauna, $\left.x_{3}, x_{4}, \ldots\right)$ for any $\mathbf{x}_{3}, \ldots, \mathbf{x}_{6}$

- For any $x_{3}, \ldots, x_{6}=$ 'No matter how close to nearest ski lifts, no matter how fancy the breakfast, how bad the reviews, etc."

Implication: "the improvement needed in an attribute to compensate a loss in another attribute does not depend on the levels of other attributes"

Additive value function

Theorem: If all attributes are mutually preferentially independent and each attribute is difference independent of the others, then there exists an additive value function

$$
V(x)=V\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} v_{i}\left(x_{i}\right)
$$

which represents preference relations $\succcurlyeq_{,} \succcurlyeq_{d}$ in the sense that

$$
\begin{gathered}
V(x) \geq V(y) \Leftrightarrow x \geqslant y \\
V(x)-V\left(x^{\prime}\right) \geq V(y)-V\left(y^{\prime}\right) \Leftrightarrow\left(x \leftarrow x^{\prime}\right) \succcurlyeq_{d}\left(y \leftarrow y^{\prime}\right)
\end{gathered}
$$

Note: The additive value function is unique up to positive affine transformations, i.e., $\mathrm{V}(\mathrm{x})$ and $\mathrm{V}^{\prime}(\mathrm{x})=\alpha \mathrm{V}(\mathrm{x})+\beta, \alpha>0$ represent the same preferences

But where are the attribute weights

w_{i} ?

Theorem: If all attributes are (...) , then there exists an additive value function

$$
V(x)=V\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} v_{i}\left(x_{i}\right)
$$

\square Slide 3: Could the overall value be obtained by aggregating attribute-specific values?

$$
V\left(x_{1}, x_{2}, \ldots x_{n}\right)=f\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right)=\sum_{i=1}^{n} w_{i} v_{i}^{N}\left(x_{i}\right) ?
$$

Normalized form of the additive value function $v(x)=V\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} v_{i}\left(x_{i}\right)$
 \square Denote

- $\quad x_{i}^{0}=$ Least preferred level w.r.t to attribute i
- $\quad x_{i}^{*}=$ Most preferred level w.r.t to attribute i
\square Then,

$$
\begin{aligned}
& V(x)=V(x)-V\left(x^{0}\right)+V\left(x^{0}\right) \\
& =\sum_{i=1}^{n} v_{i}\left(x_{i}\right)-\sum_{i=1}^{n} v_{i}\left(x_{i}^{0}\right)+V\left(x^{0}\right)=\sum_{i=1}^{n}\left[v_{i}\left(x_{i}\right)-v_{i}\left(x_{i}^{0}\right)\right]+V\left(x^{0}\right) \\
& =\sum_{i=1}^{n} \underbrace{\left.v_{i}\left(x_{i}^{*}\right)-v_{i}\left(x_{i}^{0}\right)\right]}_{W_{i}>0} \frac{v_{i}\left(x_{i}\right)-v_{i}\left(x_{i}^{0}\right)}{v_{i}\left(x_{i}^{*}\right)-v_{i}\left(x_{i}^{0}\right)}+V\left(x^{0}\right) \\
& =\sum_{i=1}^{n} W_{i}[\underbrace{\frac{1}{v_{i}\left(x_{i}^{*}\right)-v_{i}\left(x_{i}^{0}\right)}}_{\alpha_{i}>0} v_{i}\left(x_{i}\right)+\underbrace{\frac{-v_{i}\left(x_{i}^{0}\right)}{v_{i}\left(x_{i}^{*}\right)-v_{i}\left(x_{i}^{0}\right)}}_{\beta_{i}}]+V\left(x^{0}\right) \ldots
\end{aligned}
$$

Normalized form of the additive value function (cont'd)

$$
\begin{aligned}
& \ldots=\sum_{i=1}^{n} W_{i} \underbrace{\left[\alpha_{i} v_{i}\left(x_{i}\right)+\beta_{i}\right]}+V\left(x^{0}\right) \quad \text { Normalized attribute- } \\
& v_{i}^{N} \in[0,1] \longleftarrow \\
& =\sum_{i=1}^{n}[\left(\sum_{i=1}^{n} W_{i}\right) \cdot \underbrace{\frac{W_{i}}{\sum_{i=1}^{n} W_{i}}}_{=w_{i}>0, \sum_{i=1}^{n} w_{i}=1} \cdot v_{i}^{N}\left(x_{i}\right)]+V\left(x^{0}\right) \\
& =\underbrace{\left(\sum_{i=1}^{n} W_{i}\right)}_{\chi>0} \underbrace{\sum_{i=1}^{n} w_{i} v_{i}^{N}\left(x_{i}\right)}_{V^{N}(x)}+\underbrace{V\left(x^{0}\right)}_{\delta} \\
& =\chi V^{N}(x)+\delta \\
& \text { Normalized additive value function } \\
& V^{N}(x)=\sum_{i=1}^{n} w_{i} v_{i}^{N}\left(x_{i}\right) \in[0,1]
\end{aligned}
$$

$V(x)=\chi V^{N}(x)+\delta$ is a positive affine transformation of $V^{N}(x)$; they represent the same preferences!

Interpretation of attribute weights

\square By definition, $w_{i}=\frac{W_{i}}{\sum_{i=1}^{n} W_{i}}=\frac{v_{i}\left(x_{i}^{*}\right)-v_{i}\left(x_{i}^{0}\right)}{\sum_{i=1}^{n}\left(v_{i}\left(x_{i}^{*}\right)-v_{i}\left(x_{i}^{0}\right)\right)} \propto v_{i}\left(x_{i}^{*}\right)-v_{i}\left(x_{i}^{0}\right)$
\square Attribute weight w_{i} reflects the increase in overall value when the performance level on attribute a_{i} is changed from the worst level to the best - relative to similar changes in other attributes
\square Weights thus reflect trade-offs between attributes; not their absolute "importance"
\square Elicitation of attribute weights without this interpretation is not meaningful

- Do not ask: "What is more important: environment or economy?"
- Do ask: "How much is society willing to pay to save an insect species?"

Interpretation of attribute weights

- Correct interpretation and hence application of the weights may lead to 'resistance'
\square Let the least preferred and the most preferred levels in
- cost savings be $0 €$ and $1 \mathrm{~B} €$ ("money")
- the number of insect species saved from extinction in Finland be 0 and 1 ("environmental aspects")
- Environmental aspects are likely to receive a small weight, as for example weighting ($0.5,0.5$) would mean that we equally prefer saving $1 \mathrm{~B} €$ and saving 1 species
- Cf. Let the least preferred and the most preferred levels in
- cost savings be $0 €$ and 1 B $€$
- the number of insect species saved from extinction in Finland be 0 and 100

Conditions

What if the conditions (mutual preferential independence and difference independence) do not hold?

- Reconsider the attribute ranges $\left[a_{i}^{0}, a_{i}^{*}\right]$; conditions are more likely fulfilled when the ranges are small
- Reconsider the attributes; are you using the right measures?

Even if the conditions do not hold, additive value function is often used to obtain approximate results

Example (Ewing et al. 2006*): military value of an installation

- "How to realign US Army units and which bases to close in order to operate more cost-efficiently?"
- Many attributes, including "total heavy maneuver area" $\left(\mathrm{x}_{1}\right)$ and "largest contiguous area" (x_{2}; a measure of heavy maneuver area quality)
- "Total heavy maneuver area" is not difference independent of the other attributes x_{2} $\cup y^{\prime \prime}$ because (1000 ha, 100 ha, $\left.\mathbf{y}^{\prime \prime}\right) \leftarrow\left(100 \mathrm{ha}, 100 \mathrm{ha}, \mathbf{y}^{\prime \prime}\right) \sim_{\text {d }}$ (1000 ha, 10 ha, $\mathbf{y}^{\prime \prime}$) $\leftarrow\left(100 \mathrm{ha}, 10 \mathrm{ha}, \mathbf{y}^{\prime \prime}\right)$ as the ncrease from 100 to 1000 ha in total area is found quite useless, if total area consists of over 100 small isolated pieces of land Aalto University School of Science
* Ewing, Tarantino, Parnell (2006): Use of Decision Analysis in the Army Base Realignment and Closure (BRAC) 2005 Military Value Analysis. Decision Analysis 3, 33-49

Example (Ewing et al. 2006*): military value of an installation

\square Solution: unite the two attributes x_{1} and x_{2} into one attribute "heavy maneuver area"

- Then $(1000 \mathrm{ha}, 100 \mathrm{ha}, \mathbf{Y}) \leftarrow(100 \mathrm{ha}, 100 \mathrm{ha}, \mathbf{Y})\rangle_{\mathrm{d}}(1000 \mathrm{ha}, 10 \mathrm{ha}, \mathbf{Y}) \leftarrow(100$ ha, 10 ha, \mathbf{Y}) does not violate required difference independence conditions $\left(x, \boldsymbol{y}^{\prime}\right) \leftarrow\left(x^{\prime}, \boldsymbol{y}^{\prime}\right) \sim_{d}(x, \boldsymbol{y}) \leftarrow\left(x^{\prime}, \boldsymbol{y}\right)$ for all $\boldsymbol{y} \in \boldsymbol{Y}$, because x_{2} is no longer an element of \mathbf{y} or \mathbf{y}^{\prime}
- BUT we need to elicit preferences between different 'pairs' $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$

	Total heavy maneuver area $(1,000 \mathrm{~s}$ acres $)$			
Largest contiguous area $(1,000 \mathrm{~s}$ acres $)$	≤ 10	>10 and ≤ 50	>50 and ≤ 100	>100
≤ 10	0.1	0.2	1.4	2.0
>10 and ≤ 50		3.2	4.3	5.2
>50 and ≤ 100			6.1	7.6
>100			10.0	

Aalto University School of Science

Elicitation of attribute weights

\square Attribute weights are derived from the DM's preference statements
\square Approaches to eliciting attribute weights:

- Trade-off weighting
- "Lighter" techniques: SWING, SMART(S), and ordinal methods

Trade-off weighting

- The DM is asked to

1. Set the performance levels of two imaginary alternatives x and y such that they are equally preferred ($\mathrm{x} \sim \mathrm{y}$):

$$
w_{1} v_{1}^{N}\left(x_{1}\right)+\cdots+w_{n} v_{n}^{N}\left(x_{n}\right)=w_{1} v_{1}^{N}\left(y_{1}\right)+\cdots+w_{n} v_{n}^{N}\left(y_{n}\right), \text { or }
$$

2. Set the performance levels of four imaginary alternatives x, x^{\prime}, y, and y^{\prime} such that changes $\mathrm{x} \leftarrow \mathrm{x}^{\prime}$ and $\mathrm{y} \leftarrow \mathrm{y}^{\prime}$ are equally preferred $\left(x \leftarrow x^{\prime} \sim{ }_{d} y \leftarrow y^{\prime}\right)$:

$$
w_{1}\left(v_{1}^{N}\left(x_{1}\right)-v_{1}^{N}\left(x_{1}^{\prime}\right)\right)+\cdots+w_{n}\left(v_{n}^{N}\left(x_{n}\right)-v_{n}^{N}\left(x_{n}^{\prime}\right)\right)=w_{1}\left(v_{1}^{N}\left(y_{1}\right)-v_{1}^{N}\left(y_{1}^{\prime}\right)\right)+\cdots+w_{n}\left(v_{n}^{N}\left(y_{n}\right)-v_{n}^{N}\left(y_{n}^{\prime}\right)\right)
$$

Trade-off weighting

$\square n-1$ pairs of equally preferred alternatives/changes $\rightarrow n-1$ linear constraints + 1 normalization constraint
\square If the pairs are suitably selected (no linear dependencies), the system of n linear constraints has a unique solution

- E.g., select a reference attribute and compare the other attributes against it
- E.g., compare the "most important" attribute to the second most important, the second most important to the third most important etc

Trade-off weighting: example (1/7)

- Consider two magazines A and B reporting a comparison of cars x^{1}, x^{2}, and x^{3}, based on the same expert appraisal, using the same attributes:

	$a_{1}:$ Top speed km / h	$a_{2}:$ Acceleration $0-100 \mathrm{~km} / \mathrm{h}$	$a_{3}: \mathrm{CO}_{2}$ emissions g / km	$a_{4}:$ Maintenance costs $€ /$ year
x^{1}	$192 \mathrm{~km} / \mathrm{h}$	12.0 s	$120 \mathrm{~g} / \mathrm{km}$	$400 € /$ year
x^{2}	$200 \mathrm{~km} / \mathrm{h}$	10.4 s	$140 \mathrm{~g} / \mathrm{km}$	$500 € /$ year
x^{3}	$220 \mathrm{~km} / \mathrm{h}$	8.2 s	$150 \mathrm{~g} / \mathrm{km}$	$600 € /$ year

Trade-off weighting: example (2/7)

- Consider changing top speed (reference attribute) from 150 to $\mathbf{2 5 0} \mathbf{~ k m} / \mathbf{h}$. All other things being equal, what would be an equally preferred change in
- Acceleration time? Expert's answer: from 14 to 7 s \Rightarrow

$$
w_{1}\left(v_{1}^{N}(250)-v_{1}^{N}(150)\right)=w_{2}\left(v_{2}^{N}(7)-v_{2}^{N}(14)\right) \Rightarrow \frac{w_{1}}{w_{2}}=\frac{v_{2}^{N}(7)-v_{2}^{N}(14)}{v_{1}^{N}(250)-v_{1}^{N}(150)}
$$

- CO_{2} emissions? Expert's answer: from 100 to $0 \mathbf{~ g} / \mathbf{k m} \Rightarrow$

$$
w_{1}\left(v_{1}^{N}(250)-v_{1}^{N}(150)\right)=w_{3}\left(v_{3}^{N}(0)-v_{3}^{N}(100)\right) \Rightarrow \frac{w_{1}}{w_{3}}=\frac{v_{3}^{N}(0)-v_{3}^{N}(100)}{v_{1}^{N}(250)-v_{1}^{N}(150)}
$$

- Maintenance costs? Expert's answer: from 800 to o €/year \Rightarrow

$$
w_{1}\left(v_{1}^{N}(250)-v_{1}^{N}(150)\right)=w_{4}\left(v_{4}^{N}(0)-v_{4}^{N}(800)\right) \Rightarrow \frac{w_{1}}{w_{4}}=\frac{v_{4}^{N}(0)-v_{4}^{N}(800)}{v_{1}^{N}(250)-v_{1}^{N}(150)}
$$

Trade-off weighting: example (3/7)

Attribute-specific value functions according to the expert:

Trade-off weighting: example (4/7)

. Magazine A uses the following measurement scales:

Attribute	Measurement scale	v_{i}^{N}
$a_{1}:$ Top speed $(\mathrm{km} / \mathrm{h})$	$[150,250]$	$v_{1}^{N}(180)=0.5, v_{1}^{N}(192)=0.7, v_{1}^{N}(200)=0.75, v_{1}^{N}(220)=0.87$
$a_{2}:$ Acceleration time (s)	$[7,14]$	$v_{2}^{N}(12)=0.5, v_{2}^{N}(10.4)=0.75, v_{2}^{N}(8.2)=0.95$
$a_{3}: \mathrm{CO}_{2}$ emissions $(\mathrm{g} / \mathrm{km})$	$[120,150]$	$5-x_{3} / 30$
$a_{4}:$ Maintenance costs $(€ /$ year $)$	$[400,600]$	$3-x_{4} / 200$

$-\frac{w_{1}}{w_{2}}=\frac{v_{2}^{N}(7)-v_{2}^{N}(14)}{v_{1}^{N}(250)-v_{1}^{N}(150)}=1$
$-\frac{w_{1}}{w_{3}}=\frac{\left.v_{3}^{N}(0)-\right)_{3}^{N}(100)}{v_{1}^{N}(250)-v_{1}^{N}(150)}=\frac{\frac{100}{30}\left(v_{3}^{N}(120)-v_{3}^{N}(150)\right)}{1}=\frac{10}{3}$
$-\quad \frac{w_{1}}{w_{4}}=\frac{v_{4}^{N}(0)-v_{4}^{N}(800)}{v_{1}^{N}(250)-v_{1}^{N}(150)}=\frac{\frac{800}{200}\left(v_{3}^{N}(400)-v_{3}^{N}(600)\right)}{1}=4$

- The three equalities and $\sum_{i=1}^{4} w_{i}=1$ give $w_{1}=w_{2}=0.39, w_{3}=0.12, w_{4}=0.10$.

Trade-off weighting: example (5/7)

- Magazine A reports the alternatives' attribute-specific values multiplied by 10 (i.e., scaled to interval $[0,10]$) and the attribute weights:

	$v_{1}:$ Top speed	$v_{2}:$ Acceleration	$v_{3}: \mathbf{C O}_{2}$	$v_{4}:$ Maintenance	Overall value
x^{1}	7	5	10	10	6.86
x^{2}	7.5	7.5	3.3	5	6.76
\boldsymbol{x}^{3}	8.7	9.5	0	0	$\mathbf{7 . 1 4}$
Weights w_{i}	39%	39%	12%	10%	

- Possible (mis)interpretations / "headlines":
- "Only power matters - minor emphasis on costs and environment"
- "Car x^{3} terrible w.r.t. CO_{2} emissions and maintenance costs - yet, it's the expert's choice!"
- "No significant differences in top speed - differences are in CO_{2} emissions and maintenance costs"

Trade-off weighting: example (6/7)

- Magazine B uses the following measurement scales:

| Attribute | M. scale | v_{i}^{N} |
| :--- | :--- | :---: | :---: |
| $a_{1}:$ Top speed | $[192,220]$ | $v_{1}^{N}(150)=-4.12, v_{1}^{N}(180)=-1.18, v_{1}^{N}(192)=0, v_{1}^{N}(200)=0.29, v_{1}^{N}(220)=1, v_{1}^{N}(250)=1.76$ |
| $a_{2}:$ Acceleration | $[8.2,12]$ | $v_{2}^{N}(14)=-1.11, v_{2}^{N}(12)=0, v_{2}^{N}(10.4)=0.56, v_{2}^{N}(8.2)=1, v_{2}^{N}(7)=1.11$ |
| $a_{3}: \mathrm{CO}_{2}$ emissions | $[0,250]$ | $1-x_{3} / 250$ |
| $a_{4}:$ Maintenance | $[0,1000]$ | $1-x_{4} / 1000$ |

$-\quad w_{1}\left(v_{1}^{N}(250)-v_{1}^{N}(150)\right)=w_{2}\left(v_{2}^{N}(7)-v_{2}^{N}(14)\right) \Rightarrow \frac{w_{1}}{w_{2}}=\frac{v_{2}^{N}(7)-v_{2}^{N}(14)}{v_{1}^{N}(250)-v_{1}^{N}(150)}=\frac{1.11+1.11}{1.76+4.12}=0.378$
$-\quad \frac{w_{1}}{w_{3}}=\frac{v_{3}^{N}(0)-v_{3}^{N}(100)}{v_{1}^{N}(250)-v_{1}^{N}(150)}=\frac{1-\frac{150}{250}}{1.76+4.12}=0.068$
$-\quad \frac{w_{1}}{w_{4}}=\frac{v_{4}^{N}(0)-v_{4}^{N}(800)}{v_{1}^{N}(250)-v_{1}^{N}(150)}=\frac{1-\frac{200}{1000}}{1.76+4.12}=0.136$
(- The three equalities and $\sum_{i=1}^{4} w_{i}=1$ give $w_{1}=0.039, w_{2}=0.103, w_{3}=0.572, w_{4}=0.286$.

Trade-off weighting: example (7/7)

- Magazine B reports the alternatives' attribute-specific values multiplied by 10 (i.e., scaled to interval $[0,10]$) and the attribute weights:

	v_{1} : Top speed	$v_{2}:$ Acceleration	$v_{3}: \mathbf{C O}_{2}$	$v_{4}:$ Maintenance	Overall value
x^{1}	0	0	5.2	6	4.7
x^{2}	2.9	5.6	4.4	5	4.6
$\boldsymbol{x}^{\mathbf{3}}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{4}$	$\mathbf{4}$	4.9
Weights w_{i}	3.9%	10.3%	57.2%	28.6%	

] Possible (mis)interpretations:

- "Emphasis on costs and environmental issues"
- " x^{3} wins only on the least important attributes - yet, it's the expert's choice!"
- "Car x^{1} terrible w.r.t. top speed and acceleration time"

Trade-off weighting

\square Weights reflect value differences over the measurement scales \rightarrow changing the measurement scales changes the weights

The attribute-specific values used in trade-off weighting take the measurement scales explicitly into account \rightarrow weights represent the DM's preferences regardless of the measurement scales

- Trade-off weighting has a solid theoretical foundation and requires thinking; use whenever possible

SWING

\square Swing-weighting process:

1. Consider alternative $x^{0}=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$ (each attribute on the worst level).
2. Choose the attribute a_{j} that you would first like to change to its most preferred level x_{j}^{*} (i.e., the attribute for which such a change is the most valuable). Give that attribute a (non-normalized) weight $W_{j}=100$.
3. Consider x^{0} again. Choose the next attribute a_{k} that you would like to change to its most preferred level. Give it weight $W_{j} \in(0,100]$ that reflects this improvement relative to the first one.
4. Repeat step 3 until all attributes have been weighted.
5. Obtain weights w_{j} by normalizing W_{j}.

SWING: example

- Magazine A's measurement scales
- Alternative $x^{0}=\left(150 \frac{\mathrm{~km}}{\mathrm{~h}}, 14 \mathrm{~s}, 150 \frac{\mathrm{~g}}{\mathrm{~km}}, 600 \frac{€}{\text { year }}\right)$
- The first attribute to be changed from the worst to the best level: $a_{1} \rightarrow W_{1}=100$
- The second attribute: $a_{2} \rightarrow W_{2}=100$
- The third attribute: $a_{3} \rightarrow W_{3}=30$
- The fourth attribute: $a_{4} \rightarrow W_{4}=20$

Attribute	Measurement scale
$a_{1}:$ Top speed	$[150,250]$
$a_{2}:$ Acceleration	$[7,14]$
$a_{3}: \mathrm{CO}_{2}$ emissions	$[120,150]$
$a_{4}:$ Maintenance	$[400,600]$

- Normalized weights: $w_{1}=w_{2}=40 \% \quad w_{3}=$ $12 \%, w_{4}=8 \%$.

About SWING weighting

The mode of questioning explicitly (but only) considers the least and most preferred levels of the attributes
\square Assumes that the DM can directly numerically assess the strength of preference of changes between these levels
\square NOTE that we only have two preference relations: $\succcurlyeq^{\text {and }} \succcurlyeq_{d}$
\square For example preference statement $W_{1}=100, W_{4}=20$ is equal to $v_{1}\left(x_{1}^{*}\right)-$ $v_{1}\left(x_{1}^{0}\right)=5\left[v_{4}\left(x_{4}^{*}\right)-v_{4}\left(x_{4}^{0}\right)\right]$, which assumes that there exist levels $x_{1}^{0.2}, x_{1}^{0.4}, x_{1}^{0.6}$, $x_{1}^{0.8}$ so that $\left(x_{1}^{0.2} \leftarrow x_{1}^{0}\right) \sim_{d}\left(x_{1}^{0.4} \leftarrow x_{1}^{0.2}\right) \sim_{d} \ldots \sim_{d}\left(x_{1}^{*} \leftarrow x_{1}^{0.8}\right)$

- Then $v_{1}\left(x_{1}^{*}\right)-v_{1}\left(x_{1}^{0}\right)=5\left[v_{1}\left(x_{1}^{0.2}\right)-v_{1}\left(x_{1}^{0}\right)\right]=5\left[v_{4}\left(x_{4}^{*}\right)-v_{4}\left(x_{4}^{0}\right)\right]$ if $\left(x_{1}^{0.2}, x_{2}, x_{3}, x_{4}\right) \leftarrow$ $\left(x_{1}^{0}, x_{2}, x_{3}, x_{4}\right) \sim_{d}\left(x_{1}, x_{2}, x_{3}, x_{4}^{*}\right) \leftarrow\left(x_{1}, x_{2}, x_{3}, x_{4}^{0}\right)$

SMART

\square Simple Multi-Attribute Rating Technique process:

1. Select the least important attribute and give it a weight of 10 points.
2. Select the second least important attribute and give it a weight (≥ 10 points) that reflects its importance compared to the least important attribute.
3. Go through the remaining attributes in ascending order of importance and give them weights that reflect their importance compared to the less important attributes.
4. Normalize the weights.
\square This process does not consider the measurement scales at all \rightarrow interpretation of weights is questionable

Aalto University School of Science

SMARTS

SMARTS = SMART using Swings

1. Select the attribute corresponding to the least preferred change from worst to best level and give it a weight of 10 points.
2. Go through the remaining attributes in ascending order of preference over changing the attribute from the worst to the best level, and give them weights that reflect their importance compared to the less preferred changes.
3. Normalize the weights.

Aalto University

SMARTS: example

- Magazine A's measurement scales
- Alternative $x^{0}=\left(150 \frac{\mathrm{~km}}{\mathrm{~h}}, 14 \mathrm{~s}, 150 \frac{\mathrm{~g}}{\mathrm{~km}}, 600 \frac{€}{\text { year }}\right)$
- Least preferred change from the worst to the best level: $a_{4} \rightarrow W_{4}=10$
- The second least preferred change: $a_{3} \rightarrow W_{3}=20$
- The third least preferred change : $a_{2} \rightarrow W_{2}=40$
- The fourth least preferred change: $a_{1} \rightarrow W_{1}=40$

Attribute	Measurement scale
$a_{1}:$ Top speed	$[150,250]$
$a_{2}:$ Acceleration	$[7,14]$
$a_{3}: \mathrm{CO}_{2}$ emissions	$[120,150]$
$a_{4}:$ Maintenance	$[400,600]$

- Normalized weights: $w_{1}=w_{2}=36 \%, w_{3}=$ $18 \%, w_{4}=9 \%$.

Empirical problems related to SWING \& SMARTS

- People tend to use only multiples of 10 when assessing the weights, e.g.,
- SWING: $W_{1}=W_{2}=100, W_{3}=30, W_{4}=20 \rightarrow w_{1}=w_{2}=0.40, w_{3}=0.12, w_{4}=0.08$
- SMARTS: $W_{1}=W_{2}=40, W_{3}=20, W_{4}=10 \rightarrow w_{1}=w_{2}=0.36, w_{3}=0.18, w_{4}=0.09$
\square SWING and SMARTS typically produce different weights
] Assessments may reflect only ordinal, not cardinal information about the weights
- E.g., SMARTS weights $W_{4}=10$ and $W_{3}=20$ only imply that $W_{4}<W_{3}$, not that $W_{3} / W_{4}=2$

Summary

[Additive value function describes the DM's preferences if and only if the attributes are mutually preferentially independent and each attribute is difference independent of the others
The only meaningful interpretation for attribute weight w_{i} :

The improvement in overall value when attribute a_{i} is changed from its worst level to its best relative to similar changes in other attributes

- In trade-off weighting, attribute weights are elicited by specifying equally preferred alternatives (or changes in alternatives), which differ from each other on at least two attributes
- Use trade-off weighting whenever possible

Decision making and problem solving ecture 6

- Ordinal weighting methods
- Incomplete preference statements
- Modeling incomplete information
- Dominance and non-dominated alternatives
- Computing dominance relations
- Decision rules

Last time

- If the attributes are mutually preferentially independent and each attribute is difference independent of the others, then there exists an additive value function

$$
V(x)=\sum_{i=1}^{n} w_{i} v_{i}^{N}\left(x_{i}\right)
$$

such that

$$
\begin{gathered}
V(x) \geq V(y) \Leftrightarrow x \succcurlyeq y \\
V(x)-V\left(x^{\prime}\right) \geq V(y)-V\left(y^{\prime}\right) \Leftrightarrow\left(x \leftarrow x^{\prime}\right) \succcurlyeq_{d}\left(y \leftarrow y^{\prime}\right) .
\end{gathered}
$$

Decision recommendation: choose the alternative with the highest overall value $V(x)$

Last time

[. The only meaningful interpretation for attribute weight w_{i} :

The improvement in overall value when attribute a_{i} is changed from its worst level to its best relative to similar changes in other attributes

- Attribute weights cannot be interpreted without this interpretation
- Changing the measurement scale changes the weights
- In trade-off weighting, attribute weights are elicited by specifying equally preferred alternatives (or changes in alternatives), which differ from each other on at least two attributes
- Use trade-off weighting whenever possible

This time

- Specifying equally preferred alternatives requires quite an attempt. Do we need such an exhaustive representation of preferences to produce defensible decision recommendations?
- Answer: Typically not, we can for example derive decision recommendations based only on ordinal information- like SWING without giving the points to the attributes
- But...the simplest of such methods have severe problems

A Answer2: Typically not, we learn how to

- Accommodate incomplete preference statements in the decision model
- Generate robust decision recommendations that are compatible with such statements

Ordinal weighting methods

The DM is only asked to rank the attributes in terms of their importance (i.e., preferences over changing the attributes from the worst to the best level, cf. SWING)

- $R_{j}=1$ for the most important attribute
- $R_{j}=n$ for the least important attribute

This ranking is then converted into numerical weights such that these weights are compatible with the ranking

- $w_{i}>w_{j} \Leftrightarrow R_{i}<R_{j}$

Ordinal weighting methods

Rank sum weights are proportional to the opposite number of the ranks

$$
w_{i} \propto\left(n-R_{i}+1\right)
$$

e.g. attribute 1 more important
$W_{1}=2-1+1=2$
$W_{2}=2-2+1=1$
Rank exponent weights are relative to some power of $\left(n-R_{i}+1\right)$

$$
w_{i} \propto\left(n-R_{i}+1\right)^{z}
$$

Normalize to get

$$
w_{1}=\frac{2}{3}, w_{2}=\frac{1}{3}
$$

- If $\mathrm{z}>1(\mathrm{z}<1)$, the power increases (decreases) the weights of the most important attributes compared to Rank sum weights.

Ordinal weighting methods

- Rank reciprocal weights are proportional to the inverse of the ranks

$$
w_{i} \propto \frac{1}{R_{i}}
$$

\square Centroid weights are in the center of the set of weights that are compatible with the rank ordering

- Order the attributes such that $w_{1} \geq w_{2} \geq \cdots \geq w_{n}$.
- Then, the extreme points of the compatible weight set are (1,0,0,0..), (1/2, $1 / 2,0,0, \ldots)$), (1/3, $1 / 3,1 / 3,0, \ldots), \ldots(1 / n, \ldots, 1 / n)$.
- The average of these extreme points is

$$
w_{i}=\frac{1}{n} \sum_{j=i}^{n} \frac{1}{R_{i}}
$$

Example: centroid weights

$$
w_{i}=\frac{1}{n} \sum_{j=i}^{n} \frac{1}{R_{i}}
$$

- Rank ordering $w_{1} \geq w_{2} \geq w_{3}$:

$$
\begin{gathered}
w_{1}=\frac{1}{3}\left(1+\frac{1}{2}+\frac{1}{3}\right)=\frac{11}{18} \approx 0.61 \\
w_{2}=\frac{1}{3}\left(\frac{1}{2}+\frac{1}{3}\right)=\frac{5}{18} \approx 0.28 \\
w_{3}=\frac{1}{3} \cdot \frac{1}{3}=\frac{1}{9} \approx 0.11
\end{gathered}
$$

Ordinal weighting methods: example

- Four attributes $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ in descending order of importance $\rightarrow R_{1}=$ $1, R_{2}=2, R_{3}=3, R_{4}=4$.

	a_{1}	a_{2}	a_{3}	a_{4}	\sum
Rank sum	4	3	2	1	10
weights	0.4	0.3	0.2	0.1	1
Rank $\exp (z=2)$	16	9	4	1	30
weights	0.53	0.30	0.13	0.03	1
Rank reciprocal	1	$1 / 2$	$1 / 3$	$1 / 4$	$25 / 12$
weights	0.48	0.24	0.16	0.12	1
Centroid	$25 / 48$	$13 / 48$	$7 / 48$	$3 / 48$	1
weights	0.52	0.27	0.15	0.06	1

D Different methods produce different weights!

Ordinal weighting methods: example (cont'd)

- Assume that the measurement scale of the most important attribute a_{1} is changed from $[0 €, 1000 €]$ to $[0 €, 2000 €]$.
\square Because $w_{1} \propto v_{1}\left(x_{1}^{*}\right)-v_{1}\left(x_{1}^{0}\right)$, the weight of attribute a_{1} should be even larger.
\square Yet,
- Ranking among the attributes remains the same \rightarrow rank-based weights remain the same
- The alternatives' normalized scores on attribute a_{1} become smaller \rightarrow attribute a_{1} has a smaller impact on the decision recommendation
\square Avoid using ordinal methods, which produce a "point estimate" weight

Weighting in value trees

\square Two modes of weighting

- Hierarchical: all weights are elicited and then multiplied vertically
- Problem: elicitation questions for the higherlevel attributes are difficult to interpret: $\widetilde{w}_{1}=w_{1}+w_{2} \propto\left(v_{1}\left(x_{1}^{*}\right)-v_{1}\left(x_{1}^{0}\right)\right)+\left(v_{2}\left(x_{2}^{*}\right)-v_{2}\left(x_{2}^{0}\right)\right)$
\rightarrow Avoid!
- Non-hierarchical: weights are only elicited for the twig-level attributes

Aalto University School of Science

Recap: elements of MAVT

- Elements of MAVT:
- Alternatives $X=\left\{x^{1}, \ldots, x^{m}\right\}$
- Attributes $A=\left\{a_{1}, \ldots, a_{n}\right\}$
- Attribute weights $w=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{n}$
- Attribute-specific (normalized) values $v \in \mathbb{R}^{m \times n}, v_{j i}=v_{i}^{N}\left(x_{i}^{j}\right) \in[0,1]$
- Overall values of alternatives $V\left(x^{j}, w, v\right)=\sum_{i=1}^{n} w_{i} v_{j i}, j=1, \ldots, m$

Recap: Elicitation of attribute weights

- Defining equally preferred alternatives / changes between alternatives leads on a linear equation on the weights
- E.g., "All else being equal, a change $150 \rightarrow 250 \mathrm{~km} / \mathrm{h}$ in top speed is equally preferred to a change $14 \rightarrow 7 \mathrm{~s}$ in acceleration time" \Rightarrow

$$
\begin{gathered}
w_{1} v_{1}^{N}(250)+w_{2} v_{2}^{N}(14)+w_{3} v_{3}^{N}\left(x_{3}\right)+w_{4} v_{4}^{N}\left(x_{4}\right)-V\left(150,14, x_{3}, x_{4}\right)= \\
w_{1} v_{1}^{N}(150)+w_{2} v_{2}^{N}(7)+w_{3} v_{3}^{N}\left(x_{3}\right)+w_{4} v_{4}^{N}\left(x_{4}\right)-V\left(150,14, x_{3}, x_{4}\right) \Leftrightarrow \\
w_{1} v_{1}^{N}(250)-w_{1} v_{1}^{N}(150)=w_{2} v_{2}^{N}(7)-w_{2} v_{2}^{N}(14)
\end{gathered}
$$

\square Question: What if the DM finds it difficult or even impossible to define such alternatives / changes?

- E.g., she can only state that a change $150 \rightarrow 250 \mathrm{~km} / \mathrm{h}$ in top speed is preferred to a change $14 \rightarrow 7 \mathrm{~s}$ in acceleration time?

Incomplete preference statements

- Set the performance levels of two imaginary alternatives x and y such that $x \geqslant y \Rightarrow$

$$
\begin{aligned}
& w_{1} v_{1}^{N}\left(x_{1}\right)+\cdots+w_{n} v_{n}^{N}\left(x_{n}\right) \\
& \geq w_{1} v_{1}^{N}\left(y_{1}\right)+\cdots+w_{n} v_{n}^{N}\left(y_{n}\right) .
\end{aligned}
$$

Attribute	Measurement scale
$a_{1}:$ Top speed $(\mathrm{km} / \mathrm{h})$	$[150,250]$
$a_{2}:$ Acceleration time (s)	$[7,14]$
$a_{3}: \mathrm{CO}_{2}$ emissions $(\mathrm{g} / \mathrm{km})$	$[120,150]$
$a_{4}:$ Maintenance costs $(€ /$ year $)$	$[400,600]$

- For instance, a change $150 \rightarrow 250 \mathrm{~km} / \mathrm{h}$ in top speed is preferred to a change $14 \rightarrow 7 \mathrm{~s}$ in acceleration time:

$$
\begin{gathered}
w_{1} v_{1}^{N}(250)+w_{2} v_{2}^{N}(14)+w_{3} v_{3}^{N}\left(x_{3}\right)+w_{4} v_{4}^{N}\left(x_{4}\right)-V\left(150,14, x_{3}, x_{4}\right) \geq \\
w_{1} v_{1}^{N}(150)+w_{2} v_{2}^{N}(7)+w_{3} v_{3}^{N}\left(x_{3}\right)+w_{4} v_{4}^{N}\left(x_{4}\right)-V\left(150,14, x_{3}, x_{4}\right) \\
\Leftrightarrow w_{1} \geq w_{2}
\end{gathered}
$$

\square Incomplete preference statements result in linear inequalities between the weights

Incomplete preference statements: example

\square Consider attributes

- CO_{2} emissions $a_{3} \in[120 \mathrm{~g}, 150 \mathrm{~g}]$
- Maintenance costs $a_{4} \in[400 €, 600 €]$
\square Preferences are elicited with SMARTS:
- Q: "If the change $600 € \rightarrow 400 €$ in maintenance costs is worth 10 points, how valuable is change $150 \mathrm{~g} \rightarrow 120 \mathrm{~g}$ in CO_{2} emissions?"
- A: "Between 15 and 20 points"

$$
\begin{aligned}
1.5 w_{4}\left[v_{4}^{N}(400)-v_{4}^{N}(600)\right] \leq & w_{3}\left[v_{3}^{N}(120)-v_{3}^{N}(150)\right] \leq 2 w_{4}\left[v_{4}^{N}(400)-v_{4}^{N}(600)\right] \\
& \Rightarrow 1.5 w_{4} \leq w_{3} \leq 2 w_{4}
\end{aligned}
$$

Incomplete preference statements: example

- Preferences are elicited with trade-off methods:
- Q: "Define an interval for x such that $600 € \rightarrow 400 €$ in maintenance costs is as valuable as $150 \mathrm{~g} \rightarrow \mathrm{x}$ gin CO_{2} emissions."
- A: "x is between 130 and 140 g "

For $x>140$, the change in maintenance costs is more valuable
For $x<130$, the change in CO2 emissions is more valuable

$$
\begin{gathered}
w_{3}\left[v_{3}^{N}(140)-v_{3}^{N}(150)\right] \leq w_{4}\left[v_{4}^{N}(400)-v_{4}^{N}(600)\right] \leq w_{3}\left[v_{3}^{N}(130)-v_{3}^{N}(150)\right] \\
\Rightarrow v_{3}^{N}(140) w_{3} \leq w_{4} \leq v_{3}^{N}(130) w_{3} \\
\Rightarrow \frac{1}{3} w_{3} \leq w_{4} \leq \frac{2}{3} w_{3}, \text { if } v_{3}^{N} \text { is linear and decreasing. }
\end{gathered}
$$

Aalto University School of Scienc

Highest and lowest \mathbf{x} for which equality possible ${ }^{14.2 .2019}$

Modeling incomplete informaation

- Incomplete information about attribute weights is modeled as set S of feasible weights that are consistent with the DM's preference statements:

$$
S \subseteq S^{0}=\left\{w \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} w_{i}=1, w_{i} \geq 0 \forall i\right\}
$$

Modeling incomplete information

- Linear inequalities on weights can correspond to

1. Weak ranking $w_{i} \geq w_{j}$
2. Strict ranking $w_{i}-w_{j} \geq \alpha$
3. Ranking with multiples $w_{i} \geq \alpha w_{j}$ (equivalent to incompletely defined weight ratios $w_{i} / w_{j} \geq \alpha$)
4. Interval form $\alpha \leq w_{i} \leq \alpha+\varepsilon$

5. Ranking of differences $w_{i}-w_{j} \geq w_{k}-w_{l}$

$$
\begin{gathered}
w_{2} \leq w_{3} \leq 3 w_{2} \\
2 w_{1} \leq w_{3} \leq 4 w_{1}
\end{gathered}
$$

Overall value intervals

\square Due to incompletely specified weights, the alternatives' overall values are intervals:
$V(x, w, v) \in\left[\min _{w \in S} V(x, w, v), \max _{w \in S} V(x, w, v)\right]$
. Note: linear functions obtain their minima and maxima at an extreme point of S

- E.g., $S=\left\{w \in S^{0} \subseteq \mathbb{R}^{2} \mid 0.4 \leq w_{1} \leq 0.7\right\} \Rightarrow$ $\operatorname{ext}(S)=\{(0.4,0.6),(0.7,0.3)\}$

Aalto University School of Science

Dominance

- Preference over interval-valued alternatives can be established through a dominance relation
D. Definition: x^{k} dominates x^{j} in S, denoted $x^{k} \succ_{S} x^{j}$, iff

$$
\left\{\begin{array}{c}
V\left(x^{k}, w, v\right) \geq V\left(x^{j}, w, v\right) \text { for all } w \in S \\
V\left(x^{k}, w, v\right)>V\left(x^{j}, w, v\right) \text { for some } w \in S
\end{array}\right.
$$

i.e., iff the overall value of x^{k} is greater than or equal to that of x^{j} for all feasible weights and strictly greater for some.

Non-dominated alternatives

. An alternative is non-dominated if no other alternative dominates it
\square The set of non-dominated alternatives is

$$
X_{N D}=\left\{x^{k} \in X \mid \nexists j \text { such that } x^{j} \succ_{S} x^{k}\right\}
$$

$\square X_{N D}$ contains all good decision recommendations

- I.e., alternatives compared to which no other alternative has at least as high value for all feasible weights and strictly higher for some

Non-dominated alternatives

x^{k} is non-dominated if no other alternative has higher value than x^{k} for all feasible weights

- Alternative x^{1} dominates x^{3}
- Alternatives x^{1} and x^{2} are non-dominated

Non-dominated vs. potentially optimal alternatives

- A non-dominated alternative is not necessarily optimal for any $w \in S$
- $\quad x^{1}, x^{2}$ and x^{3} are all non-dominated
- Only x^{1} and x^{2} are potentially optimal in that they maximize V for some $w \in S$
- Still, neither of them can be guaranteed to be better than x^{3}

w_{1}		
	w_{2}	0.4
	0.6	0.7
		0.3

Properties of dominance relation

- Transitive
- If A dominates B and B
dominates C , then A dominates C
\square Asymmetric
- If A dominates B, then B does not dominate A
- Irreflexive
- A does not dominate itself

Dominance relations

Computing dominance relations

] If x^{k} dominates x^{j} :

1. $V\left(x^{k}, w, v\right) \geq V\left(x^{j}, w, v\right)$ for all $w \in S$

$$
\Leftrightarrow \min _{w \in S}\left[V\left(x^{k}, w, v\right)-V\left(x^{j}, w, v\right)\right] \geq 0 \Leftrightarrow \min _{w \in S}\left[\sum_{i=1}^{n} w_{i}\left(v_{k i}-v_{j i}\right)\right] \geq 0
$$

2. $V\left(x^{k}, w, v\right)>V\left(x^{j}, w, v\right)$ for some $w \in S$

$$
\Leftrightarrow \max _{w \in S}\left[V\left(x^{k}, w, v\right)-V\left(x^{j}, w, v\right)\right]>0 \Leftrightarrow \max _{w \in S}\left[\sum_{i=1}^{n} w_{i}\left(v_{k i}-v_{j i}\right)\right]>0
$$

\square Dominance relations between two alternatives can thus be established by comparing their minimum and maximum value differences

Computing dominance relations: example

C Consider three cars with normalized attribute-specific values:

Car	$v_{1}^{N}:$ Top speed	$v_{2}^{N}:$ Acceleration	$v_{3}^{N}: \mathrm{CO}_{2}$ emissions	v_{4}^{N} : Maintenance
x^{1}	0.7	0.5	1	1
x^{2}	0.75	0.75	0.33	0.5
x^{3}	0.87	0.95	0	0

- Incomplete preference statements have resulted in feasible set of weights S :

$$
S=\left\{w \in S^{0} \subseteq \mathbb{R}^{4} \mid w_{1}=w_{2} \geq 3 w_{3}, w_{3} \geq w_{4} \geq 0.1\right\}
$$

Computing dominance relations: example

```
Values=[[0.7 0.5 1 1; 0.75 0.75 0.33 0.5; 0.87 0.95 0 0.7];
A=[[0
b=[0;0;-0.1];
Aeq=[1 -1 0 0;1 1 1 1];
beq=[0;1];
MinValueDiff=zeros(3,3);
MaxValueDiff=zeros(3,3)
for i=1:3
    for j=i+1:3
        [w, fval]=linprog((Values(i,:)-Values(j,:))',A,b,Aeq,beq);
        MinValueDiff(i,j)=fval;
        [w, fval]=linprog((Values(j,:)-Values(i, :))',A,b,Aeq,beq);
        MaxValueDiff(i,j)=-fval;
        MinValueDiff(j,i)=-MaxValueDiff(i,j);
        MaxValueDiff(j,i)=-MinValueDiff(i,j);
        if MinValueDiff(i,j)>=0 && MaxValueDiff(i,j)>0
            disp(['Alternative ' num2str(i) ' dominates ' num2str(j) '.'])
        elseif MinValueDiff(j,i)>=0 && MaxValueDiff(j,i)>0
            disp(['Alternative ' num2str(j) ' dominates ' num2str(i) '.'])
        end
    end

\section*{Matlab function \\ linprog(f,A,b,Aeq,beq) \\ solves the optimization problem:}
\(\min _{x} f^{T} x\) such that
\(\int^{x} A \cdot x \leq b\)
\(A e q \cdot x=b e q\)

\section*{Computing dominance relations: example}
\(\square\) Minimum and maximum value differences
\[
\begin{array}{ll}
\min _{w \in S}\left[V\left(x^{1}, w, v\right)-V\left(x^{2}, w, v\right)\right]=-0.003<0 \\
\left.\max _{w \in S} \leq V\left(x^{1}, w, v\right)-V\left(x^{2}, w, v\right)\right]=0.0338>0 & \\
\begin{array}{ll}
\min _{w \in S}\left[V\left(x^{2}, w, v\right)-V\left(x^{3}, w, v\right)\right]=-0.045<0 & \text { Neither } x^{1} \text { nor } x^{2} \\
\operatorname{maxasex}_{w \in S}\left[V\left(x^{2}, w, v\right)-V\left(x^{3}, w, v\right)\right]=-0.0163<0 & \rightarrow x^{3} \text { dominates } x^{2} \\
\min _{w \in S}\left[V\left(x^{1}, w, v\right)-V\left(x^{3}, w, v\right)\right]=-0.048<0 & \rightarrow \text { Neither } x^{1} \text { nor } x^{3} \\
\max _{w \in S}\left[V\left(x^{1}, w, v\right)-V\left(x^{3}, w, v\right)\right]=0.0175>0 & \text { dominate the other }
\end{array}
\end{array}
\]
- \(X_{N D}=\left\{x^{1}, x^{3}\right\}\)

\section*{Computing dominance relations: example}
\(\square\) Note: because value differences are linear
in \(w\), minimum and maximum value
differences are obtained at the extreme
points of set \(S\) :
\[
\begin{aligned}
& w^{1}=(0.40 .40 .10 .1) \\
& w^{2}=\left(\frac{27}{70}, \frac{27}{70}, \frac{9}{70}, \frac{1}{10}\right) \approx(0.386,0.386,0.129,0.10) \\
& w^{3}=\left(\frac{3}{8}, \frac{3}{8}, \frac{1}{8}, \frac{1}{8}\right)=(0.375,0.375,0.125,0.125)
\end{aligned}
\]
\begin{tabular}{|c|ccc|}
\hline & \(w^{1}\) & \(w^{2}\) & \(w^{3}\) \\
\hline \(\boldsymbol{V}\left(\boldsymbol{x}^{\mathbf{1}}\right)-\boldsymbol{V}\left(\boldsymbol{x}^{\mathbf{2}}\right)\) & -0.003 & 0.0204 & 0.0338 \\
\(\boldsymbol{V}\left(\boldsymbol{x}^{\mathbf{2}}\right)-\boldsymbol{V}\left(\boldsymbol{x}^{\mathbf{3}}\right)\) & -0.045 & -0.031 & -0.0163 \\
\(\boldsymbol{V}\left(\boldsymbol{x}^{\mathbf{1}}\right)-\boldsymbol{V}\left(\boldsymbol{x}^{\mathbf{3}}\right)\) & -0.048 & -0.0106 & 0.0175 \\
\hline
\end{tabular}

\section*{Additional information}
- If information set \(S\) results in too many non-dominated alternatives, additional preference statements (i.e., linear constraints) can be elicited
\(\square\) New information set \(S^{\prime} \subset S\) preserves all dominance relations and usually yields new ones \(\rightarrow X_{N D}\) stays the same or becomes smaller
\[
S^{\prime} \subset S, r i(S) \cap S^{\prime} \neq \emptyset:\left\{\begin{array}{c}
x^{k}>_{S} x^{j} \Rightarrow x^{k}>_{S^{\prime}} x^{j} \\
X_{N D}(S) \supseteq X_{N D}\left(S^{\prime}\right)
\end{array},\right.
\]
where \(r i(S)\) is the relative interior of \(S\).
- \(r i(S) \cap S^{\prime} \neq \emptyset\) : \(\mathrm{S}^{\prime}\) is not entirely on the "border" of \(S\)

\section*{Additional information: example}
- No weight information
\(S=S^{0}=\left\{w \in \mathbb{R}^{2} \mid \sum_{i=1}^{2} w_{i}=1, w_{i} \geq 0\right\}\)
- Dominance relations
1. B dominates D
2. C dominates D
- Non-dominated alternatives
- A,B,C,E


\section*{Additional information: example (2/3)}
- Ordinal weight information
\[
S=\left\{w \in S^{0} \mid w_{1} \geq w_{2}\right\}
\]
- Dominance relations
1. B dominates D
2. C dominates D
3. E dominates D
4. B dominates A
5. C dominates A
[. Non-dominated alternatives
- B,C,E


\section*{Additional information: example (3/3)}
- More information
\[
S=\left\{w \in S^{0} \mid w_{2} \leq w_{1} \leq 2 w_{2}\right\}
\]
- Dominance relations
1. B dominates D
2. C dominates D
3. E dominates D
4. B dominates A
5. C dominates A
6. B dominates C
7. B dominates E
[ Non-dominated alternatives: B


\section*{Value intervals}

Can value intervals be used in deriving decision recommendations?
Some suggestions for "decision rules" from literature:
- Maximax: choose the alternative with the highest maximum overall value over the feasible weights
- Maximin: choose the alternative with the highest lowest overall value over the feasible weights
- Central values: choose the alternative with the highest sum of the maximum and minimum values


\section*{...more decision rules}
- Minimax regret: choose the alternative with the smallest maximum regret (= value difference compared to any other alternative)
- Domain criterion: choose the alternative which is favored by the largest set of weights


\section*{Example}

DM asks 2 experts to compare fruit baskets ( \(\mathrm{x}_{1}, \mathrm{x}_{2}\) ) containing apples \(\mathrm{X}_{1}\) and oranges \(\mathrm{x}_{2}\)

Linear attribute-specific value functions \(v_{1}\) and \(v_{2}\)
- DM: \((2,0)>\sim(0,1)\) and \((0,2)>\sim(1,0)\)
\(\square\) One orange is not preferred to 2 apples, one apple is not preferred to 2 oranges
Fruit baskets \((1,2)\) and \((2,1)\) do not dominate each other
What do the decision rules recommend?

\section*{Expert 1: \(x^{0}=(0,0), x^{*}=(2,4)\)}
\[
\begin{aligned}
& v_{1}^{N}\left(x_{1}\right)=\frac{x_{1}}{2}, v_{2}^{N}\left(x_{2}\right)=\frac{x_{2}}{4} \\
& V(2,0) \geq V(0,1) \Leftrightarrow \\
& \frac{2}{2} w_{1}+0 w_{2} \geq 0 w_{1}+\frac{1}{4} w_{2}=\frac{1}{4}\left(1-w_{1}\right) \Leftrightarrow w_{1} \geq \frac{1}{5}
\end{aligned}
\]
\[
V(0,2) \geq V(1,0) \Leftrightarrow
\]
\[
\frac{2}{4} w_{2}=\frac{1}{2}\left(1-w_{1}\right) \geq \frac{1}{2} w_{1} \Leftrightarrow w_{1} \leq \frac{1}{2}
\]
\[
V(x)=w_{1} \frac{x_{1}}{2}+w_{2} \frac{x_{2}}{4}=w_{1}\left(\frac{x_{1}}{2}-\frac{x_{2}}{4}\right)+\frac{x_{2}}{4}
\]

\section*{Expert 2: \(x^{0}=(0,0), x^{*}=(4,2)\)}
\[
\begin{aligned}
& v_{1}^{N}\left(x_{1}\right)=\frac{x_{1}}{4}, v_{2}^{N}\left(x_{2}\right)=\frac{x_{2}}{2} \\
& V(2,0) \geq V(0,1) \Leftrightarrow
\end{aligned}
\]
\[
\frac{2}{4} w_{1} \geq \frac{1}{2} w_{2}=\frac{1}{2}\left(1-w_{1}\right) \Leftrightarrow w_{1} \geq \frac{1}{2}
\]
\[
V(0,2) \geq V(1,0) \Leftrightarrow
\]
\[
w_{2}=1-w_{1} \geq \frac{1}{4} w_{1} \Leftrightarrow w_{1} \leq \frac{4}{5}
\]
\[
V(x)=w_{1}\left(\frac{x_{1}}{4}-\frac{x_{2}}{2}\right)+\frac{x_{2}}{2}
\]
\[
\begin{aligned}
& V(x)=w_{1}\left(\frac{x_{1}}{2}-\frac{x_{2}}{4}\right)+\frac{x_{2}}{4} \\
& V(1,2)=w_{1}\left(\frac{1}{2}-\frac{2}{4}\right)+\frac{2}{4} \equiv \frac{1}{2} \\
& V(2,1)=w_{1}\left(\frac{2}{2}-\frac{1}{4}\right)+\frac{1}{4}=\frac{3}{4} w_{1}+\frac{1}{4}
\end{aligned}
\]
\[
\begin{aligned}
& V(x)=w_{1}\left(\frac{x_{1}}{4}-\frac{x_{2}}{2}\right)+\frac{x_{2}}{2} \\
& V(1,2)=-\frac{3}{4} w_{1}+1
\end{aligned}
\]


\section*{On decision rules}

A common problem for all of the above decision rules: changing the measurement scales \(\left[x_{i}^{0}, x_{i}^{*}\right]\) can change the recommendations

D Different attribute weightings \(w\) and \(w^{*}\) represent value functions V and \(\mathrm{V}^{*}\) - they cannot be compared
\(\square\) If V represents the DM's preferences, so do all its positive affine transformations, too
- How to choose one of the value functions which all represent the same preferences?
- Avoid using measures which compare overall values across different value functions (i.e. attribute weightings)

\section*{Rank (sensitivity) analysis}
- For any weights, the alternatives can be ranked based on their overall values
\(\square\) This ranking is not influenced by normalization (i.e., positive affine transformations of V)


. How do the rankings of alternatives change when attribute weights vary?
\begin{tabular}{lccc} 
ranks & \(x^{1}\) & \(x^{2}\) & \(x^{3}\) \\
minimum & 1 & 1 & 1 \\
maximum & 3 & 2 & 3
\end{tabular}

\section*{Computation of rank intervals}

The minimum ranking of \(x^{k}\) is
\[
r_{S}^{-}\left(x^{k}\right)=1+\min _{(w, v) \in S}\left|\left\{x^{j} \in X \mid V\left(x^{j}, w, v\right)>V\left(x^{k}, w, v\right)\right\}\right|
\]
which is obtained as a solution to the mixed integer LP
\[
\begin{aligned}
& \min _{\substack{(w, v) \in S \\
, j \in(0, j)}} \sum_{j=1} y^{j} \\
& V\left(x^{j}, w, v\right) \leq V\left(x^{k}, w, v\right)+y^{j} M \quad j=1, \ldots, m \\
& y^{k}=1
\end{aligned}
\]

Maximum rankings with a similar model

\section*{Rank analysis - example (1/5)}
- Academic ranking of world universities 2007
- 508 universities
\(\square\) Additive multi-attribute model
\(\square 6\) attributes
\(\square\) Attribute weights (denoted by w*) and scores
\(\square\) Universities ranked based on overall values

\section*{Rank analysis - example (2/5)}
\begin{tabular}{|c|c|c|c|}
\hline Criteria & \multicolumn{1}{c|}{ Indicator } & Code & Weight \\
\hline Quality of Education & Alumni of an institution winning Nobel Prizes and Fields Medals & Alumni & \(10 \%\) \\
\hline & Staff of an institution winning Nobel Prizes and Fields Medals & Award & \(20 \%\) \\
\hline Quality of Faculty & Highly cited researchers in 21 broad subject categories & HiCi & \(20 \%\) \\
\hline Research Output & Articles published in Nature and Science* & \(\mathrm{N} \mathrm{\& S}\) & \(20 \%\) \\
\hline Articles in Science Citation Index-expanded, Social Science Citation Index & SCI & \(20 \%\) \\
\hline Size of Institution & Academic performance with respect to the size of an institution & Size & \(10 \%\) \\
\hline Total & & & \\
\hline
\end{tabular}

\section*{Rank analysis example (3/5)}

\section*{Scores (some of them)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline World Rank & Institution & \begin{tabular}{l}
Score on \\
Alumni
\end{tabular} & Score on Award & Score on HiCi & \[
\begin{gathered}
\text { Score on } \\
\text { N\&S } \\
\hline
\end{gathered}
\] & Score on SCI & Score on
Size & \begin{tabular}{l}
Total \\
Score
\end{tabular} \\
\hline 1 & Harvard Univ & 100 & 100 & 100 & 100 & 100 & 73 & 100 \\
\hline 2 & Stanford Univ & 42 & 78.7 & 86.1 & 69.6 & 70.3 & 65.7 & 73.7 \\
\hline 3 & Univ California - Berkeley & 72.5 & 77.1 & 67.9 & 72.9 & 69.2 & 52.6 & 71.9 \\
\hline 4 & Univ Cambridge & 93.6 & 91.5 & 54 & 58.2 & 65.4 & 65.1 & 71.6 \\
\hline 5 & Massachusetts Inst Tech (MIT) & 74.6 & 80.6 & 65.9 & 68.4 & 61.7 & 53.4 & 70.0 \\
\hline 6 & Caifornia Inst Tech & 55.5 & 69.1 & 58.4 & 67.6 & 50.3 & 100 & 66.4 \\
\hline 7 & Columbia Univ & 76 & 65.7 & 56.5 & 54.3 & 69.6 & 46.4 & 63.2 \\
\hline 8 & Princeton Univ & 62.3 & 80.4 & 59.3 & 42.9 & 46.5 & 58.9 & 59.5 \\
\hline 9 & Univ Chicago & 70.8 & 80.2 & 50.8 & 42.8 & 54.1 & 41.3 & 58.4 \\
\hline 10 & Univ Oxford & 60.3 & 57.9 & 46.3 & 52.3 & 65.4 & 44.7 & 56.4 \\
\hline 11 & Yale Univ & 50.9 & 43.6 & 57.9 & 57.2 & 63.2 & 48.9 & 55.9 \\
\hline 12 & Cornell Univ & 43.6 & 51.3 & 54.5 & 51.4 & 65.1 & 39.9 & 54.3 \\
\hline 13 & Univ California - Los Angeles & 25.6 & 42.8 & 57.4 & 49.1 & 75.9 & 35.5 & 52.6 \\
\hline 14 & Univ California - San Diego & 16.6 & 34 & 59.3 & 55.5 & 64.6 & 46.6 & 50.4 \\
\hline 15 & Univ Pernsylvania & 33.3 & 34.4 & 56.9 & 40.3 & 70.8 & 38.7 & 49.0 \\
\hline 16 & Univ Washington - Seattle & 27 & 31.8 & 52.4 & 49 & 74.1 & 27.4 & 48.2 \\
\hline 17 & Univ Wiscon http://fwew, wastingte & 40.3 & 35.5 & 52.9 & 43.1 & 67.2 & 28.6 & 48.0 \\
\hline 18 & Univ California follow. Click and hold t & 0 & 36.8 & 54 & 53.7 & 59.8 & 46.7 & 46.8 \\
\hline 19 & Johns Hopkins Univ & 48.1 & 27.8 & 41.3 & 50.9 & 67.9 & 24.7 & 46.1 \\
\hline 20 & Tokyo Univ & 33.8 & 14.1 & 41.9 & 52.7 & 80.9 & 34 & 45.9 \\
\hline 21 & Univ Michigan - Ann Arbor & 40.3 & 0 & 60.7 & 40.8 & 77.1 & 30.7 & 44.0 \\
\hline 22 & Kyoto Univ & 37.2 & 33.4 & 38.5 & 35.1 & 68.6 & 30.6 & 43.1 \\
\hline 23 & Imperial Col London & 19.5 & 37.4 & 40.6 & 39.7 & 62.2 & 39.4 & 43.0 \\
\hline 23 & Univ Toronto & 26.3 & 19.3 & 39.2 & 37.7 & 77.6 & 44.4 & 43.0 \\
\hline 25 & Univ Coll London & 28.8 & 32.2 & 38.5 & 42.9 & 63.2 & 33.8 & 42.8 \\
\hline 26 & Univ Illinois - Urbana Champaign & 39 & 36.6 & 44.5 & 36.4 & 57.6 & 26.2 & 42.7 \\
\hline 27 & Swiss Fed Inst Tech - Zurich & 37.7 & 36.3 & 35.5 & 39.9 & 38.4 & 50.5 & 39.9 \\
\hline 28 & Washington Univ - St. Louis & 23.5 & 26 & 39.2 & 43.2 & 53.4 & 39.3 & 39.7 \\
\hline 29 & Northwestern Univ & 20.4 & 18.9 & 46.9 & 34.2 & 57 & 36.9 & 38.2 \\
\hline 30 & New York Univ & 35.8 & 24.5 & 41.3 & 34.4 & 53.9 & 25.9 & 38.0 \\
\hline 30 & Rockefeller Univ & 21.2 & 58.6 & 27.7 & 45.6 & 23.2 & 37.8 & 38.0 \\
\hline 32 & Duke Univ & 19.5 & 0 & 46.9 & 43.6 & 62 & 39.2 & 37.4 \\
\hline 33 & Univ Minnesota - Twin Cities & 33.8 & 0 & 48.6 & 35.9 & 67 & 23.5 & 37.0 \\
\hline 34 & Univ Colorade - Boulder & 15.6 & 30.8 & 39.9 & 38.8 & 45.7 & 30 & 36.6 \\
\hline 35 & Univ Calfornia - Santa Barbara & 0 & 35.3 & 42.6 & 36.2 & 42.7 & 35.1 & 35.8 \\
\hline 36 & Univ British Columbia & 19.5 & 18.9 & 31.4 & 31 & 63.1 & 36.3 & 35.4 \\
\hline 37 & Univ Maryland - Coll Park & 24.3 & 20 & 40.6 & 31.2 & 53.3 & 25.9 & 35.0 \\
\hline 38 & Univ Texas - Austin & 20.4 & 16.7 & 46.9 & 28 & 54.8 & 21.3 & 34.4 \\
\hline 39 & Univ Texas Southwestern Med Center & 22.8 & 33.2 & 30.6 & 35.5 & 38 & 31.9 & 33.8 \\
\hline
\end{tabular}

\section*{Rank analysis - example (4/5)}

\section*{Incomplete weight information}
\(\square\) Relative intervals: \(w \in\left\{w \in S_{w}^{0} \mid(1-\alpha) w_{i}^{*} \leq w_{i} \leq(1+\alpha) w_{i}^{*}\right\}\)
\(\square\) For \(\alpha=0.1,0.2,0.3\)
\(\square\) e.g. \(\alpha=0.2, \mathrm{w}_{\mathrm{i}}{ }^{*}=0.20\) : \(\quad 0.16 \leq w_{i} \leq 0.24\)
\(\square\) Incomplete ordinal: \(w \in\left\{w \in S_{w}^{0} \mid w_{i} \geq w_{k} \geq 0.02 \forall i \in\{2,3,4,5\}, k \in\{1,6\}\right\}\)
\(\square\) Consistent with initial weights and lower bound \(b=0.02\)
-Only lower bound: \(w \in\left\{w \in S_{w}^{0} \mid w_{i} \geq 0.02 \forall i=1, \ldots, 6\right\}\)
-No weight information: \(w \in S_{w}^{0}\)

\section*{Rank analysis - example (5/5)}


Ranking

\section*{Example: prioritization of innovation ideas*}
- 28 "innovation ideas" evaluated by several people on a scale from 1-7 with regard to novelty, feasibility and relevance
- Innovation ideas described by the 3 averages of these evaluations
- No preference information about the relative values of the attributes
- "Which 10 innovation ideas should be selected for further development?"
- Sets of ideas called portfolios

The value of a portfolio is the sum of its constituent projects

Aalto University
School of Science * Könnölä et al. (Technological Forecasting \& Social Change, 2007) 14.2.2019

\section*{Example: prioritization of innovation ideas}
\(\square\) Robust Portfolio Modeling* method was used to compute nondominated portfolios of 10 ideas and discriminate between
\(\square\) Core ideas that belong to all non-dominated portfolios
\(\square\) Borderlineideas that belong to some non-dominated portfolios
E Exterior ideas that do not belong to any non-dominated portfolio
\(\square\) How do ranking intervals compare with this division?
- If the ranking of an idea cannot be worse than 10 , is it a core project?
\(\square\) If the ranking of an idea cannot be better than 11 , is it an exterior project?

\footnotetext{
A"
Aalto University School of Scienc
* Liesiö, Mild, Salo (European Journal of Operational Research, 2007)
}

\section*{Ranking intervals vs. core, borderline and exterior ideas}


Ranking intervals divide the innovation ideas into core, borderline and exterior ideas among potentially optimal portfolios

\section*{Rationales for using incomplete information}
\(\square\) Limited time and effort can usually be devoted to preference elicitation
\(\square\) Complete preference specification may not even be needed to reach a decision
\(\square\) DM's preferences may evolve during the analysis \(\rightarrow\) iteration can be helpful
\(\square\) Experts / stakeholders may have conflicting preferences
\(\square\) Take-it-or-leave-it solutions may be resented in group decision settings \(\rightarrow\) results based on incomplete information leave room for negotiation

\section*{Summary}
- Complete specification of attribute weights is often difficult
- Trade-off methods take time and effort
- SWING and SMARTS are prone to biases
- Incomplete preference statements can be modeled by linear inequalities on the weights \(\rightarrow\) alternatives' overall values become intervals
. Preference over interval-valued alternatives can be established through dominance relations
- Non-dominated alternatives are good decision recommendations

Avoid methods which compare numerical values of different value functions

\section*{Decision making and problem solving Lecture 7}
- From EUT to MAUT
- Axioms for preference relations
- Assessing attribute-specific utility functions and attribute weights
- Decision recommendations
- MAVT vs. MAUT

\section*{Motivation}

Multiattribute value theory helps generate decision recommendations, when
- Alternatives are evaluated w.r.t. multiple attributes
- Alternatives' attribute-specific values are certain

What if the attribute-specific performances are uncertain?
- Planning a supply chain: minimize cost, minimize supply shortage, minimize storage costs
- Building an investment portfolio: maximize return, minimize risk
\(\rightarrow\) Multiattribute utility theory

\section*{From EUT to MAUT}

\section*{EUT}
\(\square\) Set of possible outcomes \(T\) :
- E.g., revenue \(T=\mathbb{R}\) euros, demand \(T=\) \(\mathbb{N}\)
\(\square\) Set of all possible lotteries \(L\) :
- A lottery \(f \in L\) associates a probability \(f(t) \in[0,1]\) with each possible outcome \(t \in T\)
- Deterministic outcomes are modeled as degenerate lotteries

\section*{Lottery}


\section*{Degenerate lottery}

Decision tree
Probability distribution
\(\bigcirc 1 \mathrm{M} €\)

Probability mass function

> function
\[
f(t)=\left\{\begin{array}{c}
1, t=1 M € \\
0, \text { elsewhere }
\end{array}\right.
\]

\section*{From EUT to MAUT}

\section*{MAUT}
\(\square\) Multidimensional set of outcomes

\section*{Lottery}
\(X\) :
\[
X=X_{1} \times \cdots \times X_{n}
\]
- E.g., \(X_{1}=\) revenue (€), \(X_{2}=\) market share

\(\square\) Set of all possible lotteries \(L\) :
- A lottery \(f \in L\) associates a probability \(f(t) \in[0,1]\) with each possible outcome \(x=\left(x_{1}, \ldots, x_{n}\right) \in X\)
- Deterministic outcomes are

Degenerate lottery
Decision tree PDF modelled as degenerate lotteries

\section*{Aggregation of utilities}
- Problem: How to measure the overall utility of alternative \(x=\) \(\left(x_{1}, x_{2}, \ldots x_{n}\right) ?\)
\[
U\left(x_{1}, x_{2}, \ldots x_{n}\right)=?
\]
- Question: Could the overall utility be obtained by a weighted sum of the attribute-specific utilities?
\[
U\left(x_{1}, x_{2}, \ldots x_{n}\right)=\sum_{i=1}^{n} w_{i} u_{i}\left(x_{i}\right) ?
\]
\(\square\) Answer: Yes, if the attributes are
- Mutually preferentially independent and
- Additive independent (new)

\section*{Preferential independence (old)}

Definition: Atribute \(X\) is preferentially independent (PI) of the other attributes \(\boldsymbol{Y}\), if the preference order of degenerate lotteries that differ only in \(X\) does not depend on the levels of attributes \(\boldsymbol{Y}\)
\[
(x, \boldsymbol{y}) \succcurlyeq\left(x^{\prime}, \boldsymbol{y}\right) \Rightarrow\left(x, \boldsymbol{y}^{\prime}\right) \succcurlyeq\left(x^{\prime}, \boldsymbol{y}^{\prime}\right) \text { for all } \boldsymbol{y}^{\prime} \in \boldsymbol{Y}
\]

Interpretation: Preference over the certain level of attribute \(X\) does not depend on the certain levels of the other attributes, as long as they stay the same
- Same as in MAVT

\section*{Mutual preferential independence (old)}

Definition: Attributes \(A\) are mutually perferentially independent (MPI), if any subset \(\mathbf{X}\) of attributes \(A\) is preferentially independent of the other attributes \(\mathbf{Y}=\mathrm{AlX}\). I.e., for any degenerate lotteries:
\[
\left(x, y^{\prime}\right) \succcurlyeq\left(x^{\prime}, \boldsymbol{y}^{\prime}\right) \Rightarrow(\boldsymbol{x}, \boldsymbol{y}) \succcurlyeq\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}\right) \text { for all } \boldsymbol{y} \in \boldsymbol{Y} .
\]

Interpretation: Preference over the certain levels of attributes \(\boldsymbol{X}\) does not depend on the certain levels of the other attributes, as long as they stay the same
- Same as in MAVT

\section*{Additive independence (new)}
\(\square\) Definition: Subset of attributes \(\mathrm{X} \subset \mathrm{A}\) is additive independent (AI), if the DM is indifferent between lotteries I and II for any \((\boldsymbol{x}, \boldsymbol{y}),\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right) \in A\)
- Example:

- Profit is AI if the DM is indifferent between I and II
- However, she might prefer II, because it does not include an outcome where all attributes have very poor values. In this case profit is not AI.


\section*{Additive independence (new)}

\section*{- Example:}
- A tourist is planning a downhill skiing weekend trip to the mountains
- 2 attributes: sunshine ( \{sunny, cloudy\}) and snow conditions ( \{good, poor\})
- Additive independence holds, if she is indifferent between I and II
- In both, there is a \(50 \%\) probability of getting sunshine
- In both, there is a \(50 \%\) probability of having good snow conditions
- If the DM values sunshine and snow conditions independently of each other, then I and II can be equally preferred


\section*{Additive multiattribute utility function}
\(\square\) Theorem: The attributes are mutually preferentially independent and single attributes are additive independent iff preference relation \(\geqslant\) is represented by an additive multi-attribute utility function
\[
\begin{gathered}
U(x)=\sum_{i=1}^{n} w_{i} u_{i}^{N}\left(x_{i}\right) \\
\text { where } u_{i}^{N}\left(x_{i}^{0}\right)=0, u_{i}^{N}\left(x_{i}^{*}\right)=1, \text { and } \sum_{i=1}^{n} w_{i}=1, w_{i} \geq 0
\end{gathered}
\]

\section*{What if the MPI \& AI do not hold?}
- Definition: Attribute \(X \in A\) is utility independent (UI) if the preference order between lotteries that have equal certain outcomes on attributes \(\mathbf{Y}=A \backslash X\) does not depend on the level of these outcomes, i.e.,
\[
(\tilde{x}, \boldsymbol{y}) \succcurlyeq\left(\tilde{x}^{\prime}, \boldsymbol{y}\right) \Rightarrow\left(\tilde{x}, \boldsymbol{y}^{\prime}\right) \succcurlyeq\left(\tilde{x}^{\prime}, \boldsymbol{y}^{\prime}\right) \forall \boldsymbol{y}^{\prime}
\]
- Example:


If profit is UI, then the DM should prefer I for


However, for a small market share (a), the DM may be more risk averse and choose II
\(\rightarrow\) profit is not UI

Aalto University School of Science

\section*{Mutual utility independence}
- Definition: Attributes \(A\) are mutually utility independent (MPI), if every subset \(\boldsymbol{X} \subset A\) is the utility independent of the other attributes \(\mathbf{Y}=A \backslash X\) i.e.,
\[
(\widetilde{x}, y) \succcurlyeq\left(\tilde{x}^{\prime}, y\right) \Rightarrow\left(\widetilde{x}, y^{\prime}\right) \succcurlyeq\left(\widetilde{x}^{\prime}, y^{\prime}\right) \forall y^{\prime}
\]


If DM prefers I for some a, she should prefer I for all a

AND


If DM prefers I for some \(b\), she should prefer I for all \(b\)

\section*{Other multi-attribute utility functions}
- If attributes are mutually utility independent, then preferences are represented by a multiplicative utility function:
\[
U(x)=\frac{\prod_{i=1}^{n}\left[1+k w_{i} u_{i}\left(x_{i}\right)\right]}{k}-\frac{1}{k}
\]

If each single attribute is utility independent, then preferences are represented by a so-called multilinear utility function
\(\square \mathrm{Al}\) is the strongest of the three preference assumptions
- Let \(\mathbf{X} \subset \mathrm{A}\). Then, \(\mathbf{X}\) is \(\mathrm{AI} \Rightarrow \mathbf{X}\) is \(\mathrm{UI} \Rightarrow \mathbf{X}\) is PI

\section*{Assessing attribute-specific utility functions}
[ Use the same techniques as with a unidimensional utility function
- Certainty equivalent, probability equivalent, etc. \& scale such that \(u_{i}^{N}\left(x_{i}^{0}\right)=0, u_{i}^{N}\left(x_{i}^{*}\right)=1\).
- Also direct rating often applied in practice
\(\square\) What about the other attributes?
- Fix them at the same level in every outcome
- Do not matter! \(\rightarrow\) Usually not even explicitly shown to the DM

\[
\begin{gathered}
U\left(x_{1}, 4\right)=0.5 U(50,4)+0.5 U(-10,4) \\
\Leftrightarrow w_{1} u_{1}\left(x_{1}\right)+w_{2} u_{2}(4)=0.5 w_{1} u_{1}(50)+0.5 w_{2} u_{2}(4)+0.5 w_{1} u_{1}(-10)+0.5 w_{2} u_{2}(4) \\
\Leftrightarrow w_{1} u_{1}\left(x_{1}\right)=0.5 w_{1} u_{1}(50)+0.5 w_{1} u_{1}(-10) \\
\Leftrightarrow u_{1}\left(x_{1}\right)=0.5 u_{1}(50)+0.5 u_{1}(-10)
\end{gathered}
\]

\section*{Example: Choosing a software supplier}

Three atributes: cost, delay, quality
\begin{tabular}{|c|c|c|c|c|}
\hline\(i\) & Name & \(X_{i}\) & \(x_{i}^{0}\) & \(x_{i}^{*}\) \\
\hline 1 & Cost & {\([10,40] k €\)} & 40 & 10 \\
\hline 2 & Delay & \(\{1,2, \ldots, 30\}\) days & 30 & 1 \\
\hline 3 & Quality & \{fair, good, excellent \(\}\) & fair & excellent \\
\hline
\end{tabular}

\section*{Example: Choosing a software supplier}
- Assessment of the attribute-specific utility functions
- Quality: Direct assessment
- \(u_{3}\) (fair) \(=0, u_{3}(\) good \()=0.4, u_{3}\) (excellent) \(=1\)
- Cost: Linear decreasing utility function
\begin{tabular}{|c|c|c|c|c|}
\hline\(i\) & Name & \(x_{i}\) & \(x_{i}^{0}\) & \(x_{i}^{*}\) \\
\hline 1 & Cost & {\([10,40] k €\)} & 40 & 10 \\
\hline 2 & Delay & \(\{1,2, \ldots, 30\}\) days & 30 & 1 \\
\hline 3 & Quality & \{fair, good, exc.\} & fair & exc. \\
\hline
\end{tabular}
\[
\text { - } \quad u_{1}\left(x_{1}\right)=\frac{40-x_{1}}{30}
\]
- Delay: Assessment with certainty equivalent (CE) approach

\(u_{2}(22)\)
\[
u_{2}(15)
\]

\(=0.5 u_{2}(1)+0.5 u_{2}(30)\)
\(=0.5 u_{2}(1)+0.5 u_{2}(22)\)
\(=0.5 u_{2}(1)+0.5 u_{2}(22)\)
\(=0.5 * 1+0.5 * 0\)
\(=0.5 * 1+0.5 * 0.5\)
\(=0.75\)
\[
\begin{gathered}
=0.5 * 1+0.5 * 0.75 \\
=0.875
\end{gathered}
\]

\section*{Example: Choosing a software supplier}

For delay, linear interpolation between specified values

\begin{tabular}{|c|c|c|c|}
\hline\(x_{2}\) & \(u_{2}\left(x_{2}\right)\) & \(x_{2}\) & \(u_{2}\left(x_{2}\right)\) \\
\hline 1 & 1 & 16 & 0.7143 \\
\hline 2 & 0.9861 & 17 & 0.6786 \\
\hline 3 & 0.9722 & 18 & 0.6429 \\
\hline 4 & 0.9583 & 19 & 0.6071 \\
\hline 5 & 0.9444 & 20 & 0.5714 \\
\hline 6 & 0.9306 & 21 & 0.5357 \\
\hline 7 & 0.9167 & 22 & 0.5 \\
\hline 8 & 0.9028 & 23 & 0.4375 \\
\hline 9 & 0.8889 & 24 & 0.375 \\
\hline 10 & 0.875 & 25 & 0.3125 \\
\hline 11 & 0.85 & 26 & 0.25 \\
\hline 12 & 0.825 & 27 & 0.1875 \\
\hline 13 & 0.8 & 28 & 0.125 \\
\hline 14 & 0.775 & 29 & 0.0625 \\
\hline 15 & 0.75 & 30 & 0 \\
\hline
\end{tabular}

\section*{Assessing attribute weights}
- Attribute weights are elicited by constructing two equally preferred degenerate lotteries
- E.g., ask the DM to establish a preference order for n hypothetical alternatives specified so that \(\left(x_{1}^{0}, \ldots, x_{i}^{*}, \ldots, x_{n}^{0}\right), i=1, \ldots, n\).
- Assume that \(\left(x_{1}^{*}, x_{2}^{0}, \ldots, x_{n}^{0}\right) \geqslant\left(x_{1}^{0}, x_{2}^{*}, \ldots, x_{n}^{0}\right) \geqslant \cdots \geqslant\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{*}\right)\)
- Then, for each \(\mathrm{i}=1, . ., \mathrm{n}-1\) ask the DM to define \(x_{i} \in X_{i}\) such that
\[
\begin{gathered}
\left(\ldots x_{i}, x_{i+1}^{0}, \ldots\right) \sim\left(\ldots x_{i}^{0}, x_{i+1}^{*}, \ldots\right) \\
\Rightarrow U\left(\ldots x_{i}, x_{i+1}^{0}, \ldots\right)=U\left(\ldots x_{i}^{0}, x_{i+1}^{*}, \ldots\right) \\
\Rightarrow w_{i} u_{i}\left(x_{i}\right)=w_{i+1}
\end{gathered}
\]
- \(\mathrm{n}-1\) such comparisons +1 normalization constraint \(\Rightarrow\) unique set of weights

\section*{Example: Choosing a software supplier}
- Assessment of the attribute weights
- Assume preferences ( \(40 \mathrm{k} €, 1\) day, fair) \(\succcurlyeq(10 \mathrm{k} €, 30\) days, fair \() \succcurlyeq(40 \mathrm{k} €, 30\) days, exc.)
- Choose delay \(x_{2} \in\{1, \ldots, 30\}\) such that ( \(40, x_{2}, x_{3}\) ) \(\sim\left(10,30, x_{3}\right)\)
- Answer \(x_{2}=8\) gives
\[
\begin{gathered}
w_{1} u_{1}(40)+w_{2} u_{2}(8)+w_{3} u_{3}\left(x_{3}\right)=w_{1} u_{1}(10)+w_{2} u_{2}(30)+w_{3} u_{3}\left(x_{3}\right) \\
w_{2} u_{2}(8)=w_{1} \\
\Leftrightarrow w_{2} \cdot 0.9028=w_{1}
\end{gathered}
\]
- Choose cost \(x_{1} \in[10,40]\) such that ( \(x_{1}, x_{2}\), fair \() \sim\left(40, x_{2}\right.\), excellent \()\)
- Answer \(x_{1}=20\) gives
\[
\begin{gathered}
w_{1} u_{1}(20)+w_{2} u_{2}\left(x_{2}\right)+w_{3} u_{3}(\text { fair })=w_{1} u_{1}(40)+w_{2} u_{2}\left(x_{2}\right)+w_{3} u_{3} \text { (excellent) } \\
w_{1} u_{1}(20)=w_{3} \\
\Leftrightarrow w_{1} \cdot \frac{2}{3}=w_{3}
\end{gathered}
\]
- Attribute weights: \(w \approx\left(\frac{9}{25}, \frac{10}{25}, \frac{6}{25}\right)\)

\section*{MAUT: Decision recommendations}
- Consider \(m\) decision alternatives \(x^{j}=\left(x_{1}^{j}, \ldots, x_{n}^{j}\right), j=1, \ldots, m\), where \(x^{j}\) is a random variable with PDF \(f_{x^{j}}(x)\)
- Alternatives are ranked by their expected (multiattribute) utilities
\[
E\left[U\left(x^{j}\right)\right]=\sum_{x \in A} f_{x^{j}}(x) U(x)=\sum_{x \in A} f_{x^{j}}(x) \sum_{i} w_{i} u_{i}(x)
\]
- Integral for continuous random variables

In a decision tree, MAU is used just like unidimensional utility

\section*{Example: Choosing a software supplier}
- Consider three suppliers:
- Supplier 1: Expensive, fair quality, can deliver without delay
\[
x^{1}=(35 k €, 1 \text { day, } \text {, air })
\]
- Supplier 2: Cheap, good quality, can deliver in 1 week
\[
x^{2}=(21 k €, 7 \text { days, good })
\]
- Supplier 3: Moderate price, good quality, 20\% chance of 1 -week delay and \(10 \%\) chance of 2 -week delay

\[
\begin{gathered}
x^{3}=\left(24 k €, \tilde{x}_{2}^{3}, \text { good }\right), \\
f_{\tilde{x}_{2}^{3}}(x)=\left\{\begin{array}{c}
0.7, x=(24 k €, 1 \text { day }, \text { good }) \\
0.2, x=(24 k €, 8 \text { days, } \text { good }) \\
0.1, x=(24 k €, 15 \text { days, } \text { good })
\end{array}\right.
\end{gathered}
\]

\section*{Example: Choosing a software supplier}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(u_{1}^{N}\) & \(u_{2}^{N}\) & \(u_{3}^{N}\) & \(U\) & \(f_{x_{k}}\) & \(\mathrm{E}[\boldsymbol{U}]\) \\
\hline\(x^{1}\) & 0.17 & 1.00 & 0.00 & 0.46 & 1 & 0.46 \\
\hline \(\boldsymbol{x}^{2}\) & \(\mathbf{0 . 6 3}\) & \(\mathbf{0 . 9 2}\) & \(\mathbf{0 . 4 0}\) & \(\mathbf{0 . 6 9}\) & \(\mathbf{1}\) & \(\mathbf{0 . 6 9}\) \\
\hline\(x^{3}\left(s_{1}\right)\) & 0.53 & 1.00 & 0.40 & 0.69 & 0.7 & 0.67 \\
\hline\(x^{3}\left(s_{2}\right)\) & 0.53 & 0.90 & 0.40 & 0.65 & 0.2 & \\
\hline\(x^{3}\left(s_{3}\right)\) & 0.53 & 0.75 & 0.40 & 0.59 & 0.1 & \\
\hline\(w\) & 0.36 & 0.40 & 0.24 & & & \\
\hline
\end{tabular}

\section*{MAVT vs. MAUT}
- MAVT: Preference between alternatives with certain outcomes can be represented by an additive multiattribute value function, iff the attributes are
- Mutually preferentially independent
- Difference independent
- MAUT: Preference between lotteries with uncertain outcomes can be represented by additive multiattribute utility function, iff the attributes are
- Mutually preferentially independent
- Additive independent

\section*{MAVT vs. MAUT}
\(\square\) Attribute-specific value functions are elicited by asking the DM to specify equally preferred differences in attribute levels
- E.g., "Specify salary \(x\) such that you would be indifferent between change \(1500 € \rightarrow \mathrm{x} €\) and \(\mathrm{x} € \rightarrow 2000 €\) "
\(\square\) Attribute-specific utility functions are elicited by asking the DM to specify equally preferred lotteries
- E.g., "Specify salary \(x\) such that you would be indifferent between getting \(\mathrm{x} €\) for certain and a 50-50 gamble between getting \(1500 €\) or \(2000 €\) "

Attribute weights are elicited similarly in MAVT and MAUT

\section*{MAVT vs. MAUT}
- In principal, the natural / measurement scale is first mapped to value scale and then (if needed) to utility scale
. Yet, in practice the value function is "hidden" in the utility function
- E.g, if certainty equivalent of 50-50 gamble between \(3 \mathrm{k} €\) and \(5 \mathrm{k} €\) salary is \(3.9 \mathrm{k} \ell\), is this a sign of risk aversion


Aalto University School of Science

\section*{Summary}
- Multiattribute utility theory helps establish a preference relation between alternatives with uncertain outcomes on multiple attributes
\(\square\) Preference relation is represented by an additive utility function, iff the attributes are mutually preferentially independent and additive independent
\(\square\) Attribute-specific utility functions are elicited as in the unidimensional case
- Attribute weights are elicited as in MAVT
\(\square\) Decision recommendation: the alternative with highest expected utility
\(\square\) Robust methods can also be used with MAUT

\section*{Decision making and problem solving Lecture 8}
- Multiple objective optimization (MOO)
- Pareto optimality (PO)
- Approaches to solving PO-solutions: weighted sum, weighted max-norm, and value function methods

\section*{Until this lecture}
- Explicit set of alternatives \(X=\) \(\left\{x^{1}, \ldots, x m\right\}\), which are evaluated with regard to \(n\) criteria
- Evaluations \(x_{i}^{j}: X \rightarrow \mathbb{R}^{n}\)
- Preference modeling
\(\square\) Value functions
\(\max _{x^{j} \in X} V\left(x^{j}\right)=V\left(x_{1}^{j}, \ldots, x_{n}^{j}\right)\)



\section*{Need for other kind of approaches}

The decision alternatives cannot necessarily be listed
- Preference modeling can be time-consuming and difficult at the early stages of the analysis
- Conditions required for the additive value function to represent preferences do not necessarily hold or are difficult to validate

We might want to see some results quickly to get a better understanding of the problem at hand

\section*{Multi-objective optimization: concepts}
- Set of feasible solutions
\[
X=\left\{x \in \mathbb{R}^{n} \mid g(x) \leq 0\right\}
\]
- Objective functions
\[
f=\left(f_{1}, \ldots, f_{n}\right): X \rightarrow \mathbb{R}^{n}
\]
- Preference modeling on trade-offs between objectives
- Valuefunctions
\[
\max _{x \in X} V(f(x))=V\left(f_{1}(x), \ldots, f_{n}(x)\right)
\]
- Pareto approaches
\[
v-\max _{x \in X} V(f(x))=\left(f_{1}(x), \ldots, f_{n}(x)\right)
\]
- Interactive approaches (not covered)

\[
f=\left(f_{1}, f_{2}\right)=\left(x_{1}+2 x_{2},-x_{2}\right)
\]

\section*{Multi-objective optimization: concepts}


\section*{Preferential independence}

In multi-objective optimization (MOO), each objective is assumed preferentially independent of the others
- Definition (cf. Lecture 5): Preference between two values of objective function \(i\) does not depend on the values of the other objective functions
\(\rightarrow\) Without loss of generality, we can assume all objectives to be maximized
- MIN can be transformed to MAX: \(\min _{x \in X} f_{i}(x)=-\max _{x \in X}\left[-f_{i}(x)\right]\)

\section*{Which feasible solution(s) to prefer?}


\section*{Pareto-optimality}

Definition. \(x^{*} \in X\) is Pareto-optimal if there does not exist \(x \in X\) such that
\[
\left\{\begin{array}{c}
f_{i}(x) \geq f_{i}\left(x^{*}\right) \text { for all } i \in\{1, \ldots, n\} \\
f_{i}(x)>f_{i}\left(x^{*}\right) \text { for some } i \in\{1, \ldots, n\}
\end{array}\right.
\]

Set of all Pareto-optimal solutions: \(\mathrm{X}_{\mathrm{PO}}\)

Definition. Objective vector \(y \in f(X)\) is Paretooptimal, if there exists a Pareto-optimal \(x^{\star} \in X\) s.t. \(f\left(x^{*}\right)=y\)
- Set of Pareto-optimal objective vectors: \(\mathrm{f}\left(\mathrm{X}_{\mathrm{PO}}\right)\)
- Notation \(f\left(X_{P O}\right)=v-\max _{x \in X} f(x)\)


\section*{Example: Markowitz model}
- Optimal asset portfolio selection
- How to allocate funds to \(m\) assets based on
- Expected returns \(\bar{r}_{i}, \mathrm{i}=1, \ldots, \mathrm{~m}\)
- Covariances of returns \(\sigma_{i j}, i, j=1, \ldots, m\)
- Set of feasible solutions
- Decision variables \(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\)
- Allocate \(\mathrm{x}_{\mathrm{j}} * 100 \%\) of funds to j -th asset
- Portfolio \(x \in X=\left\{x \in \mathbb{R}^{m} \mid x_{i} \geq 0, \sum_{i=1}^{m} x_{i}=1\right\}\)
- Objective functions
1. Maximize expected return of portfolio \(f_{2}(x)=\sum_{i=1}^{n} \bar{r}_{i} x_{i}\)
2. Minimize variance (risk) of portfolio \(f_{1}(x)=\) \(\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_{i j} x_{i} x_{j}\)


Aalto University School of Science

\section*{Pareto-optimality in Markowitz model}
- Portfolio \(x\) is Pareto-optimal, if no other portfolio yields greater or equal expected return with less risk
- One possibility for computation:
- Choosed \(=\) max number of solutions computed
- Solve \(\mu_{1}=\max _{2}, \mu_{\mathrm{d}}=\min \mathrm{f}_{2}\)
- For all k=2,..,d-1 set \(\mu_{\mathrm{k}}\) s.t. \(\mu_{\mathrm{k}-1}>\mu_{\mathrm{k}}>\mu_{\mathrm{d}}\) and solve (1-dimensional) quadratic programming problem
\(\min _{x \in X} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_{i j} x_{i} x_{j}\) such that \(\sum_{i=1}^{n} \bar{r}_{i} x_{i}=\mu_{k}\)
- Discard solutions which are not PO
- Not attractive when \(\mathrm{n}>2\)


\section*{Algorithms for solving Pareto-optimal solutions (1/2)}
- Exact algorithms
- Guaranteed to find all PO-solutions \(\mathrm{X}_{\mathrm{PO}}\)
- Only for certain problem types, e.g., Multi-Objective Mixed Integer Linear Programming (MOMILP)
\(\square\) Use of single-objective optimization algorithms
- Sequentially solve ordinary (i.e. 1-dimensional) optimization problems to obtain a subset of all PO-solutions, \(\mathrm{X}_{\text {Pos }}\)
- Performance guarantee: \(\mathrm{X}_{\mathrm{POS} \subseteq} \subseteq \mathrm{X}_{\mathrm{PO}}\)
- Solutions may not be "evenly" distributed in the sense that majority of the obtained solutions can be very "close" to each other
- Methods:
- Weighted sum approach, weighted max-norm approach, \(\varepsilon\)-constraint approach

\section*{Algorithms for solving Pareto-optimal solutions (2/2)}
- Approximation algorithms
- Obtain an approximation \(X_{\text {POA }}\) of \(X_{P O}\) in polynomial time
- Performance guarantee: For every \(\mathrm{x} \in \mathrm{X}_{\mathrm{PO}}\) exists \(\mathrm{y} \in \mathrm{X}_{\mathrm{POA}}\) such that \(\|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})\|<\varepsilon\)
- Only for very few problem types, e.g., MO knapsack problems
- Metaheuristics
- No performance guarantees
- Can handle problems with
- A large number of variables and constraints
- Non-linear or non-continuous objective functions/ constraints
- Evolutionary algorithms (e.g., SPEA, NSGA)
- Stochastic search algorithms (simulated annealing)

\section*{Example: Multiobjective integer linear programming (MOILP)}
\(\square\) Ben is at an amusement park that offers 2 different rides:
\(\square\) Tickets to ride 1 cost \(2 €\). Each ticket lets you take the ride twice
- Tickets to ride 2 are for one ride and cost \(3 €\)
\(\square\) Ben has 20 euros to spend on tickets to ride \(1\left(x_{1} \in \mathbb{N}\right)\) and ride \(2\left(x_{2} \in\right.\) \(\mathbb{N}) \rightarrow\) constraint \(2 x_{1}+3 x_{2} \leq 20\)
\(\square\) Each time Ben takes ride 2, his grandfather cheers for him
\(\square\) Ben maximizes the number of (i) rides taken and (ii) cheers \(\rightarrow\) objective functions \(f=\left(f_{1}, f_{2}\right)=\left(2 x_{1}+x_{2}, x_{2}\right)\)

\section*{Feasible solutions \(X\)}


\section*{Example: MOILP (cont’d)}

Blue points are feasible solutions; the 7 PO solutions are circled

7.3.2019

\section*{Weighted sum approach}
- Algorithm
1. Generate \(\lambda \sim U N I\left(\left\{\lambda \in[0,1]^{n} \mid \sum_{i=1}^{n} \lambda_{i}=1\right\}\right)\)
2. Solve \(\max _{x \in X} \sum_{i=1}^{n} \lambda_{i} f_{i}(x)\)
3. Solution is Pareto-optimal


Repeat 1-3 until enough PO-solutions have been found
+ Easy to implement
- Cannot find all PO solutions if the problem is non-convex (if PO solutions are not in the border of the convex hull of \(\mathrm{f}(\mathrm{X})\) )
\[
\max _{\substack{x_{1}, x_{1} \in \mathbb{N} \\ 2 x_{1}+3 x_{2} \leq 20}}\left[2 \lambda_{1} x_{1}+\left(\lambda_{1}+\lambda_{2}\right) x_{2}\right]
\]

\[
\max _{\substack{x_{1}, x_{2} \in \mathbb{N} \\ 2 x_{1}+3 x_{2} \leq 20}}\left[2 \lambda_{1} x_{1}+\left(\lambda_{1}+\lambda_{2}\right) x_{2}\right]
\]


\section*{\(f(X)\) and Pareto-optimal solutions}


\section*{Weighted max-norm approach}
I. Idea: define a utopian vector of objective function values and find a solution for which the distance from this utopian vector is minimized
- Utopian vector: \(f^{*}=\left[f_{1}^{*}, \ldots, f_{n}^{*}\right], f_{i}^{*}>f_{i}(x) \forall x \in X, i=1, \ldots, n\)
\(\square\) Distance is measured with weighted max-norm \(\max _{i=1, . ., n} \lambda_{i} d_{i}\), where \(d_{i}\) is the between \(f_{i}^{*}\) and \(f_{i}(x)\), and \(\lambda_{i}>0\) is the weight of objective \(i\) such that \(\sum_{i=1}^{n} \lambda_{i}=1\).
\(\square\) The solutions that minimize the distance of \(f(x)\) from \(f^{*}\) are found by solving:

\[
\begin{aligned}
& \min _{x \in X}\left\|f^{*}-f(x)\right\|_{\max }^{\lambda}=\min _{x \in X} \max _{i=1, \ldots, n} \lambda_{i}\left(f_{i}^{*}-f_{i}(x)\right) \\
& =\min _{x \in X, \Delta \in \mathbb{R}} \Delta \text { s.t. } \lambda_{i}\left(f_{i}^{*}-f_{i}(x)\right) \leq \Delta \forall i=1, \ldots, n
\end{aligned}
\]

Aalto University School of Science

\section*{Weighted max-norm approach (2/2)}
. Algorithm
1. Generate \(\lambda \sim U N I\left(\left\{\lambda \in[0,1]^{n} \mid \sum_{i=1}^{n} \lambda_{i}=1\right\}\right)\)
2. Solve \(\min _{x \in X}\left\|f^{*}-f(x)\right\|_{\text {max }}^{\lambda}\)
3. At least one of the solutions of Step 2 is PO Repeat 1-3 until enough PO solutions have been found
+ Easy to implement
+ Can find all PO-solutions
- n additional constraints, one additional variable

\section*{Example: MOILP (cont’d)}
- Find a utopian vector \(f^{*}\)
\(-\max f_{1}=2 x_{1}+x_{2}\) s.t. \(2 x_{1}+3 x_{2} \leq 20, x_{1}, x_{2} \geq 0\)
\[
\circ \mathrm{x}=(10,0) ; \mathrm{f}_{1}=20
\]
- \(\max _{2}=\mathrm{x}_{2}\) s.t. \(2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 20, \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0\)
- \(x=(0,20 / 3) ; f_{2}=20 / 3\)
- Let \(\mathrm{f}^{*}=(21,7)\)
- Minimize the distance from the utopian vector:
\(\min _{\Delta \in \mathbb{R}} \Delta\) s.t.
\[
\begin{gathered}
\lambda_{1}\left(21-\left(2 x_{1}+x_{2}\right)\right) \leq \Delta \\
\lambda_{2}\left(7-x_{2}\right) \leq \Delta \\
2 x_{1}+3 x_{2} \leq 20, x_{1}, x_{2} \in \mathbb{N}
\end{gathered}
\]
\[
\lambda_{1}=0.1, \lambda_{2}=0.9:
\]
\(\min _{\Delta \in \mathbb{R}} \Delta\) s.t.
\(\Delta \in \mathbb{R}\)
\(2.1-0.2 x_{1}-0.1 x_{2} \leq \Delta\)
\(6.3-0.9 x_{2} \leq \Delta\)
\(2 x_{1}+3 x_{2} \leq 20\)
\(x_{1}, x_{2} \in \mathbb{N}\)

Solution: \(\Delta=1.3, x=(1,6) \Rightarrow\) \(x=(1,6), f=(8,6)\) is PO

\section*{Example: MOILP revisited}
1. \(\lambda_{1}=0.1\); solution: \(\{\Delta=1.3, x=(1,6)\} \Rightarrow\) \(x=(1,6), f=(8,6)\) is PO
2. \(\lambda_{1}=0.2\); 3 solutions \(x=(2,5), x=(3,4)\), \(x=(4,4)\). Only \(x=(2,5), f=(9,5)\) and \(x=(4,4)\), \(f=(12,4)\) are PO
3. \(\lambda_{1}=0.35 ; x=(5,3) ; f=(13,3)\) is PO
4. \(\lambda_{1}=0.4\); 2 solutions \(x=(6,2)\) and \(x=(7,2)\);
\(x=(7,2), f=(16,2)\) is PO
\(5 . \lambda_{1}=0.55 ; x=(8,1) ; f=(17,1)\) is PO
6. \(\lambda_{1}=0.70\); 2 solutions \(x=(9,0)\) and \(x=(10,0)\); \(x=(10,0), f=(20,0)\) is PO


\section*{Value function methods (1/2)}
\(\square\) Use value function \(V: \mathbb{R}^{n} \rightarrow \mathbb{R}\) to transform the MOO problem into a single-objective problem
- E.g., the additive value function \(V(f(x))=\sum_{i=1}^{n} w_{i} v_{i}\left(f_{i}(x)\right)\)

Theorem: Feasible solution \(x^{*}\) with the highest value \(V\left(x^{*}\right)\) is Paretooptimal


\section*{Value function methods (2/2)}
- Consider the additive value function \(V(f(x))=\sum_{i=1}^{n} w_{i} v_{i}\left(f_{i}(x)\right)\) with incomplete weight information \(w \in S \subseteq S^{0}\)
\(\square\) Set of Pareto-optimal solutions \(X_{P O}=\) set of non-dominated solutions with no weight information \(X_{N D}\left(S^{0}\right)\)
- Preference statements on weights decrease the set of feasible weights to \(S \subseteq S^{0} \rightarrow\) focus on preferred PO-solutions \(X_{N D}(S) \subseteq\) \(X_{N D}\left(S^{0}\right)=X_{P O}\)

\section*{Example: MOILP revisited}
- Choose \(\mathrm{v}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}}(\mathrm{x})\right)=\mathrm{f}_{\mathrm{i}}(\mathrm{x}) / \mathrm{C}_{\mathrm{i}}{ }^{*}\), normalization constants \(\mathrm{C}_{1}{ }^{*}=20, \mathrm{C}_{2}{ }^{*}=6\)
\[
V(f(x), w)=\sum_{i=1}^{n} w_{i} v_{i}(f(x))=w_{1} v_{1}\left(f_{1}(x)\right)+\left(1-w_{1}\right) v_{2}\left(f_{2}(x)\right)=\frac{w_{1}\left(2 x_{1}+x_{2}\right)}{20}+\left(1-w_{1}\right)\left(x_{2} / 6\right)
\]


\section*{Example: Bridge repair program (1/7)}

Total of 313 bridges calling for repair

Which bridges should be included in the repair program under the next three years?
- Budget of 9,000,000€
- Program can contain maximum of 90 bridges
- Proxy for limited availability of equipment and personnel etc.

Program must repair the total sum of damages by at least 15,000 units

Aalto University School of Science

\section*{Example: Bridge repair program (2/7)}
- Set of feasible solutions \(X\) defined by linear constraints and binary decision variables:
\[
X=\left\{x \in\{0,1\}^{313} \mid g(x) \leq 0\right\}, \quad g(x)=\left[\begin{array}{c}
\sum_{j=1}^{313} c_{c} x_{j}-9000000 \\
\sum_{j=1}^{313} x_{j}-90 \\
15000-\sum_{j=1}^{313} d_{j} x_{j}
\end{array}\right]
\]
- \(x_{j}=\) a decision variable: \(\mathrm{x}_{\mathrm{j}}=1\) repair bridge j
- \(x=\left[x_{1}, \ldots, x_{313}\right]\) is a repair program
- \(\mathrm{c}_{\mathrm{j}}=\) repair cost of bridge j
- \(d_{j}=\) sum of damages of bridgej

\section*{Example: Bridge repair program (3/7)}
- Six objective indexes measuring urgency for repair
1. Sum of Damages ("SumDam")
2. Repair Index ("RepInd")
3. Functional Deficiencies ("FunDef")
4. Average Daily Traffic ("ADTraf")
5. Road Salt usage ("RSalt")
6. Outward Appearance ("OutwApp")
- All objectives additive over bridges: \(f_{i}(x)=\sum_{j=1}^{313} v_{i}^{j} x_{j}\), where \(v_{i}^{j}\) is the score of bridge \(j\) with regard to objective \(i\) :

\section*{Example: Bridge repair program (4/7)}

A A multi-objective zero-one linear programming (MOZOLP) problem
\[
\mathrm{v}-\max _{x \in X}\left(\sum_{j=1}^{313} v_{1}^{j} x_{j}, \ldots, \sum_{j=1}^{313} v_{6}^{j} x_{j}\right)
\]
\(\square\) Pareto-optimal repair programs \(X_{P O}\) generated using the weighted max-norm approach
\[
\begin{aligned}
& \min _{x \in X, \Delta \in \mathbb{R}} \Delta \\
& \Delta \geq \lambda_{i}\left(f_{i}^{*}-\sum_{j=1}^{313} x_{j} v_{i}^{j}\right) \forall i=1, \ldots, 6
\end{aligned}
\]

\section*{Example: Bridge repair program (5/7)}
- Additive value function applied for modeling preferences between the objectives: \(V(x, w)=\sum_{i=1}^{6} w_{i} f_{i}(x)=\sum_{i=1}^{6} w_{i} \sum_{j=1}^{313} v_{i}^{j} x_{j}\)
I Incomplete ordinal information about objective weights: \{SumDam,RepInd\} \(\geq\{\) FunDef, ADTraf \(\} \geq\) RSalt,OutwApp \(\}\)
\[
S=\left\{w \in S^{0} \mid w_{i} \geq w_{j} \geq w_{k}, \forall i=1,2 ; j=3,4 ; k=5,6\right\}
\]
- Non-dominated repair programs
\[
\begin{gathered}
X_{N D}(S)=\left\{x \in X \mid \nexists x^{\prime} \in X \text { s.t. }\left\{\begin{array}{c}
V\left(x^{\prime}, w\right) \geq V(x, w) \text { for all } w \in S \\
V\left(x^{\prime}, w\right)>V(x, w) \text { for some } w \in S
\end{array}\right\}\right. \\
X_{P O}=X_{N D}\left(S^{0}\right) \supseteq X_{N D}(S)
\end{gathered}
\]

\section*{Example: Bridge repair program (6/7)}
- Ca. 10,000 non-dominated bridge repair programs
- Bridge-specific decision recommendations can be obtained through a concept of core index:
\[
C I_{j}=\frac{\left|\left\{x \in X_{N D}(S) \mid x_{j}=1\right\}\right|}{\left|X_{N D}(S)\right|}
\]
- Of the 313 bridges:
- 39 were included in all non-dominated repair programs (CI=1)
- 112 were included in some but not all non-dominated
 programs ( \(0<\mathrm{CI}<1\) )
- 162 were included in none of the non-dominated programs ( \(\mathrm{CI}=0\) )

\section*{Example: Bridge repair program (7/7)}
- Bridges listed in decreasing order of core indices
- Tentative but not binding priority list
- Costs and other characteristics displayed
\(\square\) The list was found useful by the program managers
\begin{tabular}{|l|c|cccccc|r|}
\hline Bridge number and name & Core Index & BRIDEGES' SCORES & DamSum & RepInd & FunDef & ADTraf & Rsalt & OutwApp
\end{tabular} Cost \begin{tabular}{|l|l|l|l|}
\hline
\end{tabular}

\section*{Summary}
- MOO differs from MAVT in that
- Alternatives are not explicit but defined implicitly through constraints
- MOO problems are computationally much harder
- MOO problems are solved by
- Computing the set of all Pareto-optimal solutions - or at least a subset or an approximation
- Introducing preference information about trade-offs between objectives to support the selection of one of the PO -solutions

\section*{Decision making and problem solving ecture 9}
- Analytic Hierarchy Process
- Outranking methods

\section*{Motivation}
\(\square\) When alternatives are evaluated w.r.t. multiple attributes / criteria, decision-making can be supported by methods of
- Multiattribute value theory (certain attribute-specific performances)
- Multiattribute utility theory (uncertain attribute-specific performances)
\(\square\) MAVT and MAUT have a strong axiomatic basis
\(\square\) Yet, other popular multicriteria methods exist

\section*{Analytic Hierarchy Process (AHP)}
] Thomas L. Saaty (1977, 1980)
\(\square\) Enormously popular
- Thousands of reported applications
- Dedicated conferences and scientificjournals
\(\square\) Several decision support tools
- Expert Choice, WebHipre etc.
\(\square\) Not based on the axiomatization of preferences - therefore remains controversial

\section*{Problem structuring in AHP}
- Objectives, subobjectives / criteria, and alternatives are represented as a hierarchy of elements (cf. value tree)


Aalto University School of Science

\section*{Local priorities}
- For each objective / sub-objective, a local priority vector is determined to reflect the relative importance of those elements placed immediately below the objective / sub-objective
- Pairwise comparisons:
- For (sub-)objectives: "Which sub-objective / criterion is more important for the attainment of the objective? How much more important is it?"
- For alternatives: "Which alternative contributes more to the attainment of the criterion? How much more does it contribute?"
- Responses on a verbal scale correspond to
\begin{tabular}{lcc}
\hline \multirow{2}{*}{ Verbal statement } & \multicolumn{2}{c}{ Scale } \\
\cline { 2 - 3 } & 1-to-9 & Balanced \\
\hline Equally important & & \\
& 1 & 1.00 \\
Slightly more important & 2 & 1.22 \\
- & 3 & 1.50 \\
Strongly more important & 4 & 1.86 \\
- & 5 & 2.33 \\
Very strongly more important & 6 & 3.00 \\
- & 7 & 4.00 \\
Extremely more important & 8 & 5.67 \\
& 9 & 9.00 \\
\hline
\end{tabular} weight ratios
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|c|}{Balanced} \\
\hline 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 \\
\hline \multicolumn{9}{|c|}{\(\mathrm{w}_{1}=1-\mathrm{w}_{2}\)} \\
\hline
\end{tabular}

Aalto University School of Science

\section*{Pairwise comparison matrix}
- Weight ratios \(r_{i j}=\frac{w_{i}}{w_{j}}\) form a pairwise comparison matrix \(A\) :


\section*{Incosistency in pairwise comparison matrices}
\(\square\) Problem: pairwise comparisons are not necessarily consistent
\(\square\) E.g., if learning is slightly more importannt (3) than college preparation, which is strongly more important (5) than school life, then learning should be \(3 \times 5\) times more important than school life \(\ldots\) but this is impossible with the applied scale
\(\rightarrow\) Weights need to be estimated

\section*{Local priority vector}
- The local priority vector \(w\) (=estimated weights) is obtained by normalizing the eigenvector corresponding to the largest eigenvalue of matrix \(A\) :
\[
\begin{gathered}
A w=\lambda_{\text {max }} w, \\
w:=\frac{1}{\sum_{i=1}^{n} w_{i}} w .
\end{gathered}
\]
- Matlab:
- [v,lambda]=eig(A) returns the eigenvectors and eigenvalues of A
\(\gg \operatorname{real}(\mathrm{v}(:, 1)) /\) sum \((\) real \((\mathrm{v}(:, 1)))\)
ans \(=\)
\(\quad 0.1571\)
\(\quad 0.5936\)
\(\quad 0.2493\)
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ Learning } & W \\
\hline & A & B & C & \\
\hline A & 1 & \(1 / 3\) & \(1 / 2\) & 0.16 \\
\hline B & 3 & 1 & 3 & 0.59 \\
\hline C & 2 & \(1 / 3\) & 1 & 0.25 \\
\hline & & & & \\
& & & & \\
\hline
\end{tabular}

Only one eigenvector with all real elements: \((0.237,0.896,0.376) \rightarrow\) normalized eigenvector \(w=(0.16\), \(0.59,0.25)\).
```

> A=[lllllu.5; 3 1 3; 2 1/3 1]
A =

1.0000	0.3333	0.5000
3.0000	1.0000	3.0000
2.0000	0.3333	1.0000

```
>> [ \(\mathrm{v}, \mathrm{l}]=\mathrm{eig}(\mathrm{A})\)


\section*{Local priority vectors = "weights"}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Learning} & \multirow[t]{2}{*}{w} & & \multicolumn{3}{|c|}{Friends} & W \\
\hline & A & B & C & & & A & B & C & \\
\hline A & 1 & 1/3 & 1/2 & 0.16 & A & 1 & 1 & 1 & 0.33 \\
\hline B & 3 & 1 & 3 & 0.59 & B & 1 & 1 & 1 & 0.33 \\
\hline C & 2 & 1/3 & 1 & 0.25 & C & 1 & 1 & 1 & 0.33 \\
\hline & \multicolumn{3}{|c|}{School life} & W & & \multicolumn{3}{|l|}{Voc. training} & W \\
\hline & A & B & C & & & A & B & C & \\
\hline A & 1 & 5 & 1 & 0.45 & A & 1 & 9 & 7 & 0.77 \\
\hline B & 1/5 & 1 & 1/5 & 0.09 & B & 1/9 & 1 & 5 & 0.05 \\
\hline C & 1 & 5 & 1 & 0.46 & C & 1/7 & 1/5 & 1 & 0.17 \\
\hline & \multicolumn{3}{|r|}{College prep.} & W & & \multicolumn{3}{|l|}{Music classes} & W \\
\hline & A & B & C & & & A & B & C & \\
\hline A & 1 & 1/2 & 1 & 0.25 & A & 1 & 6 & 4 & 0.69 \\
\hline B & 2 & 1 & 2 & 0.50 & B & 1/6 & 1 & 1/3 & 0.09 \\
\hline C & 1 & 1/2 & 1 & 0.25 & C & 1/4 & 3 & 1 & 0.22 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline & L & F & SL & VT & CP & MC & W \\
\hline Learning & 1 & 4 & 3 & 1 & 3 & 4 & 0.32 \\
\hline Friends & \(1 / 4\) & 1 & 7 & 3 & \(1 / 5\) & 1 & 0.14 \\
\hline Schoo life & \(1 / 3\) & \(1 / 7\) & 1 & \(1 / 5\) & \(1 / 5\) & \(1 / 6\) & 0.03 \\
\hline Voc. Training & 1 & \(1 / 3\) & 5 & 1 & 1 & \(1 / 3\) & 0.13 \\
\hline College prep. & \(1 / 3\) & 5 & 5 & 1 & 1 & 3 & 0.24 \\
\hline Music classes & \(1 / 4\) & 1 & 6 & 3 & \(1 / 3\) & 1 & 0.14 \\
\hline
\end{tabular}

\section*{Consistency checks}
- The consistency of the pairwise comparison matrix \(A\) is studied by comparing the consistency index (Cl) of \(A\) to the average consistency index \(R I\) of a random pairwise comparison matrix:
\[
C I=\frac{\lambda_{\max }-n}{n-1}, \quad C R=\frac{C I}{R I}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline n & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline RI & 0.58 & 0.90 & 1.12 & 1.24 & 1.32 & 1.41 & 1.45 & 1.49 \\
\hline
\end{tabular}
- Rule of thumb: if \(\mathrm{CR}>0.10\), comparisons are so inconsistent that they should be revised

A"

\section*{Aalto University} School of Science

Three alternatives, \(n=3\) :
- Learning: \(\lambda_{\text {max }}=3.05, C R=0.04\)
- Friends: \(\lambda_{\text {max }}=3.00, C R=0\)
\(\square\) School life: \(\lambda_{\max }=3.00, C R=0\)
\(\square\) Voc. training \(\lambda_{\max }=3.40, C R=0.34\)
College prep: \(\lambda_{\text {max }}=3.00, C R=0\)
- Music classes: \(\lambda_{\max }=3.05, C R=0.04\)

Six attributes, \(n=6\) :
- All attributes: \(\lambda_{\max }=7.42, C R=0.23\)
>> real (max (1))
ans \(=\)
\(3.0536 \quad-0.0268 \quad-0.0268\)
21.3.2019

\section*{Total priorities}
- The total (overall) priorities are obtained recursively:

\[
w_{k}=\sum_{i=1}^{n} w_{i} w_{k}^{i}
\]
where
- \(w_{i}\) is the total priority of criterion \(i\),
- \(w_{k}^{i}\) is the local priority of criterion / alternative \(k\) with regard to criterion \(i\),
- The sum is computed over all criteria i below which criterion / alternative \(k\) is positioned in the hierarchy
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ Learning } & W & & \multicolumn{3}{|c|}{ Friends } & w \\
\hline & A & B & C & & & A & B & C & \\
\hline A & 1 & \(1 / 3\) & \(1 / 2\) & 0.16 & & A & 1 & 1 & 1 & 0.33 \\
\hline B & 3 & 1 & 3 & 0.59 & & B & 1 & 1 & 1 & 0.33 \\
\hline C & 2 & \(1 / 3\) & 1 & 0.25 & & C & 1 & 1 & 1 & 0.33 \\
\hline
\end{tabular}
\(A^{39}\)

\section*{Aalto University} School of Science
\[
w_{A}=\sum_{i=1}^{6} w_{i} w_{k}^{i}=0.32 \cdot 0.16+0.14 \cdot 0.33+\ldots
\]

\section*{Total priorities}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Learning} & \multirow[t]{2}{*}{w} & & \multicolumn{3}{|c|}{Friends} & w \\
\hline & A & B & C & & & A & B & C & \\
\hline A & 1 & 1/3 & 1/2 & 0.16 & A & 1 & 1 & 1 & 0.33 \\
\hline B & 3 & 1 & 3 & 0.59 & B & 1 & 1 & 1 & 0.33 \\
\hline C & 2 & 1/3 & 1 & 0.25 & C & 1 & 1 & 1 & 0.33 \\
\hline & \multicolumn{3}{|c|}{School life} & \multirow[t]{2}{*}{w} & & \multicolumn{3}{|l|}{Voc. training} & w \\
\hline & A & B & C & & & A & B & C & \\
\hline A & 1 & 5 & 1 & 0.45 & A & 1 & 9 & 7 & 0.77 \\
\hline B & 1/5 & 1 & 1/5 & 0.09 & B & 1/9 & 1 & 5 & 0.05 \\
\hline \multirow[t]{3}{*}{C} & 1 & 5 & 1 & 0.46 & C & 1/7 & 1/5 & 1 & 0.17 \\
\hline & \multicolumn{3}{|l|}{College prep.} & \multirow[t]{2}{*}{w} & & \multicolumn{3}{|l|}{Music classes} & w \\
\hline & A & B & C & & & A & B & C & \\
\hline A & 1 & 1/2 & 1 & 0.25 & A & 1 & 6 & 4 & 0.69 \\
\hline B & 2 & 1 & 2 & 0.50 & B & 1/6 & 1 & 1/3 & 0.09 \\
\hline C & 1 & 1/2 & 1 & 0.25 & C & 1/4 & 3 & 1 & 0.22 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline & L & F & SL & VT & CP & MC & w \\
\hline Learning & 1 & 4 & 3 & 1 & 3 & 4 & 0.32 \\
\hline Friends & \(1 / 4\) & 1 & 7 & 3 & \(1 / 5\) & 1 & 0.14 \\
\hline Schoo life & \(1 / 3\) & \(1 / 7\) & 1 & \(1 / 5\) & \(1 / 5\) & \(1 / 6\) & 0.03 \\
\hline Voc. Training & 1 & \(1 / 3\) & 5 & 1 & 1 & \(1 / 3\) & 0.13 \\
\hline College prep. & \(1 / 3\) & 5 & 5 & 1 & 1 & 3 & 0.24 \\
\hline Music classes & \(1 / 4\) & 1 & 6 & 3 & \(1 / 3\) & 1 & 0.14 \\
\hline
\end{tabular} \begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline & & & & & & & \\
\hline & 0.32 & 0.14 & 0.03 & 0.13 & 0.24 & 0.14 & \\
\hline & \multicolumn{1}{|c|}{ L } & F & SL & VT & CP & MC & Total w \\
\hline A & 0.16 & 0.33 & 0.45 & 0.77 & 0.25 & 0.69 & 0.37 \\
\hline B & 0.59 & 0.33 & 0.09 & 0.05 & 0.50 & 0.09 & \(\mathbf{0 . 3 8}\) \\
\hline C & 0.25 & 0.33 & 0.46 & 0.17 & 0.25 & 0.22 & 0.25 \\
\hline
\end{tabular}
E.g.,
\(\mathrm{w}_{\mathrm{B}}=0.32^{*} 0.59+0.14^{*} 0.33+0.03^{*} 0.09+\) \(0.13^{*} 0.05+0.24^{*} 0.50+0.14^{*} 0.09\)

\section*{Problems with AHP}
- Rank reversals: the introduction of an additional alternative may change the relative ranking of the other alternatives
- Example:
- Alternatives A and B are compared w.r.t. two "equally important" criteria \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\left(\mathrm{w}_{\mathrm{C} 1}=\mathrm{w}_{\mathrm{C} 2}=0.5\right)\)
- A is better than \(B\) :
\[
w_{A}=\frac{1}{2} \times \frac{1}{5}+\frac{1}{2} \times \frac{5}{6} \approx 0.517, \quad w_{B}=\frac{1}{2} \times \frac{4}{5}+\frac{1}{2} \times \frac{1}{6} \approx 0.483
\]
- Add C which is identical to A:
\begin{tabular}{|c|c|c|}
\hline & \(C_{1}\) & \(C_{2}\) \\
\hline A & 1 & 5 \\
\hline B & 4 & 1 \\
\hline \hline C & 1 & 5 \\
\hline
\end{tabular}
\[
w_{A}=w_{C}=\frac{1}{2} \times \frac{1}{6}+\frac{1}{2} \times \frac{5}{11} \approx 0.311, \quad w_{B}=\frac{1}{2} \times \frac{4}{6}+\frac{1}{2} \times \frac{1}{11} \approx 0.379
\]
- Now B is better than A!

\section*{Methods based on outranking relations}
- Basic question: is there enough preference information / evidence to state that an alternative is at least as good as some other alternative?
I.e., does an alternative outrank some other alternative?

\section*{Indifference and preference thresholds divide the measurement scale into three parts}
\(\square\) If the difference between the criterion-specific performances of \(A\) and \(B\) is below a predefined indifference threshold, then A and \(B\) are "equally good" w.r.t. this criterion
- If the difference between the criterion-specific performances of \(A\) and \(B\) is above a predefined preference threshold, then \(A\) is preferred to B w.r.t this criterion

Between indifference and preference thresholds, the DM is uncertain about preference


Indifference threshold

Preference threshold

\section*{PROMETHEE I \& II}
- In PROMETHEE methods, the degree to which alternative \(k\) is preferred to I is
\[
\sum_{i=1}^{n} w_{i} F_{i}(k, l) \geq 0
\]
where
- \(\quad w_{i}\) is the weight of criterion i
- \(\quad F_{i}(k, l)=1\), if k is preferred to \(l\) w.r.t. criterion i ,
- \(\quad F_{i}(k, l)=0\), if the DM is indifferent between k and l w.r.t. criterion i , or l is preferred to k
- \(\quad F_{i}(k, l) \in(0,1)\), if preference between k and l w.r.t. criterion i is uncertain


\section*{PROMETHEE I \& II}
- PROMETHEE I: \(k\) is preferred to \(k^{\prime}\), if
\[
\begin{aligned}
& \sum_{l \neq k} \sum_{i=1}^{n} w_{i} F_{i}(k, l)>\sum_{l \neq k^{\prime}} \sum_{i=1}^{n} w_{i} F_{i}\left(k^{\prime}, l\right) \\
& \sum_{l \neq k} \sum_{i=1}^{n} w_{i} F_{i}(l, k)<\sum_{l \neq k} \sum_{i=1}^{n} w_{i} F_{i}\left(l, k^{\prime}\right)
\end{aligned}
\]

There is more evidence in favor of \(k\) than \(k^{\prime}\)

There is less evidence
- PROMETHEE II: \(k\) is preferred to \(k\), if
\[
F_{\text {net }}(k)=\sum_{l \neq k} \sum_{i=1}^{n} w_{i}\left[F_{i}(k, l)-F_{i}(l, k)\right]>\sum_{l \neq k^{\prime}} \sum_{i=1}^{n} w_{i}\left[F_{i}\left(k^{\prime}, l\right)-F_{i}\left(l, k^{\prime}\right)\right]=F_{\text {net }}\left(k^{\prime}\right)
\]

\section*{}
\begin{tabular}{|c|c|c} 
Weight & 1 & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & Revenue \(F_{1}\) & \begin{tabular}{c} 
Market share \\
\(F_{2}\)
\end{tabular} & \begin{tabular}{c} 
Weighted \\
\(F_{w}=w_{1} F_{1}+w_{2} F_{2}\)
\end{tabular} \\
\hline\(x^{1}, x^{2}\) & 1 & 0 & 1 \\
\hline\(x^{2}, x^{1}\) & 0 & 0 & 0 \\
\hline\(x^{1}, x^{3}\) & 1 & 0 & 1 \\
\hline\(x^{3}, x^{1}\) & 0 & 1 & 1 \\
\hline\(x^{2}, x^{3}\) & 1 & 0 & 1 \\
\hline\(x^{3}, x^{2}\) & 0 & 0 & 0 \\
\hline
\end{tabular}


\section*{PROMETHEE I: Example}

\section*{- PROMETHEE I:}
- \(x^{1}\) is preferred to \(x^{2}\), if
\begin{tabular}{|l|l|l|l|}
\hline & \(F_{1}\) & \(F_{2}\) & \(F_{w}\) \\
\hline\(x^{1}, x^{2}\) & 1 & 0 & 1 \\
\hline\(x^{2}, x^{1}\) & 0 & 0 & 0 \\
\hline\(x^{1}, x^{3}\) & 1 & 0 & 1 \\
\hline\(x^{3}, x^{1}\) & 0 & 1 & 1 \\
\hline\(x^{2}, x^{3}\) & 1 & 0 & 1 \\
\hline\(x^{3}, x^{2}\) & 0 & 0 & 0 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \underbrace{\sum_{=1+1=2}^{2}\left(F_{i}\left(x^{1}, x^{2}\right)+F_{i}\left(x^{1}, x^{3}\right)\right)}_{i=1}>\underbrace{\sum_{i=0}^{2}\left(F_{i}\left(x^{2}, x^{1}\right)+F_{i}\left(x^{2}, x^{3}\right)\right)}_{=1=1} \\
& \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{2}, x^{1}\right)+F_{i}\left(x^{3}, x^{1}\right)\right)}_{=0+1=1}<\underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{1}, x^{2}\right)+F_{i}\left(x^{3}, x^{2}\right)\right)}_{=0+1=1} \\
&- x^{1} \text { is not preferred to } x^{2} \text { due to the latter condition } \\
&- x^{2} \text { is not preferred to } x^{1} \text { due to both conditions } \\
&- x^{1} \text { is preferred to } x^{3} \\
&- x^{2} \text { is not preferred to } x^{3} \text { and vice versa }
\end{aligned}
\]
\(\square\) Note: preferences are not transitive
\(-x^{1}>x^{3} \sim x^{2} \nRightarrow x^{1}>x^{2}\)

\section*{PROMETHEE I: Example (Cont'd)}
- PROMETHEE I is also prone to rank reversals:
- Remove \(x^{2}\)
- Then,
\[
\begin{aligned}
& \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{1}, x^{3}\right)\right)}_{=1} \ngtr \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{3}, x^{1}\right)\right)}_{=1} \\
& \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{3}, x^{1}\right)\right)}_{=1} \nless \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{1}, x^{3}\right)\right)}_{=1}
\end{aligned}
\]

\(\rightarrow x^{1}\) is no longer preferred to \(x^{3}\)

\section*{PROMETHEE II: Example}
- The "net flow" of alternative \(x^{j}\)
\[
\begin{aligned}
F_{n e t}\left(x^{j}\right) & =\sum_{k \neq j}\left[F_{w}\left(x^{j}, x^{k}\right)-F_{w}\left(x^{k}, x^{j}\right)\right] \\
-\quad F_{n e t}\left(x^{1}\right) & =(1-0)+(1-1)=1 \\
- & F_{n e t}\left(x^{2}\right)=(0-1)+(1-0)=0 \\
- & F_{n e t}\left(x^{3}\right)=(1-1)+(0-1)=-1
\end{aligned}
\]
\[
\rightarrow x_{1}>x_{2}>x_{3}
\]
\begin{tabular}{|c|c|c|c|}
\hline & \(F_{1}\) & \(F_{2}\) & \(F_{w}\) \\
\hline\(x^{1}, x^{2}\) & 1 & 0 & 1 \\
\hline\(x^{2}, x^{1}\) & 0 & 0 & 0 \\
\hline\(x^{1}, x^{3}\) & 1 & 0 & 1 \\
\hline\(x^{3}, x^{1}\) & 0 & 1 & 1 \\
\hline\(x^{2}, x^{3}\) & 1 & 0 & 1 \\
\hline\(x^{3}, x^{2}\) & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{PROMETHEE II: Example (Cont’d)}
- PROMETHEE II is also prone to rank reversals
- Add two altrenatives that are equal to \(\mathrm{x}^{3}\) in both criteria. Then, \(x^{2}\) becomes the most preferred:
\[
\begin{aligned}
& F_{n e t}\left(x^{1}\right)=(1-0)+3 \times(1-1)=1 \\
& F_{n e t}\left(x^{2}\right)=(0-1)+3 \times(1-0)=2 \\
& F_{n e t}\left(x^{3: 5}\right)=(1-1)+(0-1)=-1
\end{aligned}
\]
- Add two alternatives that are equal to \(\mathrm{x}^{1}\) in both criteria. Then, \(x^{2}\) becomes the least preferred:
\[
\begin{gathered}
F_{n e t}\left(x^{1,4,5}\right)=(1-0)+(1-1)+2 \times(0-0)=1 \\
F_{n e t}\left(x^{2}\right)=3 \times(0-1)+(1-0)=-2 \\
F_{n e t}\left(x^{3}\right)=3 \times(1-1)+(0-1)=-1
\end{gathered}
\]

- Remove \(x^{2}\). Then, \(x^{1}\) and \(x^{3}\) are equally preferred.
\[
F_{n e t}\left(x^{1}\right)=F_{n e t}\left(x^{3}\right)=(1-1)=0
\]

\section*{Summary}
\(\square\) AHP and outranking methods are commonly used for supporting multiattribute decision-making
\(\square\) Unlike MAVT (and MAUT), these methods do not build on the axiomatization of preferences \(\rightarrow\)
- Rank reversals
- Preferences are not necessarily transitive
- Elicitation of model parameters can be difficult
- Weights have no clear interpretation
- In outranking methods, statement "I prefer \(2 €\) to \(1 €\) " and "I prefer \(3 €\) to \(1 €\) " are both modeled with the same number (1); to make a difference, indifference and preference thresholds need to be carefully selected

\section*{Decision making and problem solving ecture 10}
- Group techniques
- Voting
- MAVT for group decisions

\section*{Motivation}
- Thus far we have assumed that
- Objectives, attributes/ criteria, and decision alternatives are given
- There is a single decision maker
\(\square\) This time we'll learn
- How a group of experts / DMs can be used to generate objectives, attributes, and/ or decision alternatives
- How to aggregate the views and preferences of the group members into a single decision recommendation

\section*{Idea generation and evaluation techniques}
- Goals:
- Generate topics / ideas / decision alternatives
- Evaluate these topics / ideas / alternatives
- Agree on a prioritization of the topics / ideas / alternatives
- Methods:
- Brainstorming
- Nominal group technique
- Delphi method
- .. and variants of the above

\section*{Brainstorming}

G Goal: to generate a large number of possible solutions for a problem
[ Participants: Facilitator, recorder, and max 8-12 panel members
- Step 1 Prior notification: time for individual idea generation
- Step 2 Session for idea generation: all ideas are listed, spotaneous ideas are encouraged, no criticism is allowed
- Step 3 Review and evaluation: a list of ideas is sent to the panel members for further study
- Principles:
- Focus on quantity
- Withhold criticism
- Welcome unusual ideas
- Combine and improve ideas

\section*{Brainstorming}
+ A large number of ideas can be generated in a short period of time
+ Simple - no expertise or knowledge required from the facilitator
- Blocking: during the process, participants may forget their ideas or not share them because they no longer find them relevant
- Collaborative fixation: Exchanging ideas in a group may decrease the novelty and variety of ideas

\section*{Nominal group technique}

Goal: to generate a large number of possible solutions for a problem and decide on a solution
[ Participants: Faciliator, recorder, and max 6-12 panel members
- Step 1: Silent generation of ideas - group work not allowed
- Step 2: Round-robin sharing of ideas. Facilitator lists all ideas on a flip chart, no comments at this point.
- Step 3: Group discussion to facilitate common understanding of the presented ideas. No ideas are eliminated, judgment and criticism are avoided.
- Step 4: Ranking of the ideas (by, e.g., voting)

\section*{Nominal group technique}
+ A large number of ideas can be generated in a short period of time
+ Silent generation of ideas decreases blocking
+ Round-robin process ensures equal participation
- Not suitable for settings where consensus is required
- Can be time-consuming

\section*{Delphi technique}
[ Goal: To obtain quantitative estimates about some future events (e.g., estimated probabilities, impacts, and time spans of negative trends for Finland)
Participants: Faciliator and a panel of experts
\(\square\) Principles:
- Anonymous participation
- Structured gathering of information through questionnaires: numerical estimates and arguments to support these estimates
- Iterative process: participants comment on each other's estimates and are encouraged to revise their own estimates in light of such comments
- Role of the facilitator: sends out the questionnaires, organizes the information, identifies common and conflicting viewpoints, works toward synthesis

\section*{Example: Decision analysis based real world conflict analysis tools}
- Workshop organized by the Finnish Operations Research Society (FORS) Monday 5.10.2015
- Goal: to practice DA-based conflict analysis tools that Crisis Management Initiative (CMI) uses regularly in its operations:
- Trend identification,
- Data collection,
- Visualization,
- Root-cause analysis.

\section*{Example cont'd}
- Prior to the workshop, each participant was asked to
- List 3-5 negative trends for Finland (title and brief description)
- Provide time-spans for the impacts of these trends (<10 years, 10-20 years, \(>20\) years)

\section*{Trend identification exercise: Negative trends for Finland}

Negative trend is a, possibly escalating, course of events that would lead to harmful consequences. Please provide three to five negative trends that can have harmful impacts on the development of Finland. There are no limitations regarding the scope of the trend; it can be either broad or specific trend.

These trends can be related to
demographics,
economic situation
welfare of citizens,
environment,
political situation
or other topics.
Give a short title for each trend and a longer explanation of why this trend can be harmful.
OBJECTIVES OF THE WORKSHOP. READING THIS MAY HELP YOU TO SUGGEST RELEVANT TRENDS:
The objective of this workshop is to evaluate and discuss these trends. This includes evaluation of (i) the probabilities that these trends cause significant harmful impacts, and (ii) the magnitudes of these impacts. The next step would be to use this information to design policy actions that can help to mitigate these trends and to adapt to them.
*Required

Trend 1 (title) *

\section*{Example cont'd}
- Trends listed by the participants were organized by the workshop facilitators
- Similar trends combined
- Marginal trends eliminated
- A final list of 21 trends was emailed to the participants prior to the workshop

Trend evaluation exercise
Trends, time-scales and explanations.
1.) Urbanization ( \(10-20\) years)

A worsening economic situation can send people to seek employment in urban areas, leaving much of the Finnish rural areas depopulated. As these rural areas already have functioning infrastructure, this causes inefficiency.
2.) Bifurcation of Finns and political radicalization (<10)

Tough economic times combined with other crises can create rifts between Finns. In many political issues, there seems to be an increased tendency to polarize the matter, creating only two sides with little discourse. For example, worker's unions vs. employers, urban vs. rural, pro-immigration vs. anti-immigration.
3.) The "welfare trap" ( \(<10\) )

The social security system can discourage the unemployed to accept low-paying part-time work. This can lead to the situation where individuals would rather receive constant benefits rather than risk losing or decreasing their income by taking a job.
4.) Passive political system ( \(<10\) )

In the past years, the government has shown an inability to react with speed and decisiveness to many issues facing Finland today. Delayed preventive actions can cause crisis situations to escalate.
5.) Socially excluded youth (10-20)

During a recession, getting a job and joining society as a productive member can be challenging, especially for young people applying for schooling or work. To maintain social stability and ensure future economic success, the youth should be integrated into society, or else there is a risk they become permanent outsiders.
6.) The Retirement Bomb (20+)

The current pension system might be unable to handle the aging population. The number of employed may be too low to pay for pensions.
7.) Brain drain (10-20)

Talented and educated people who are dissatisfied with the current situation in Finland might emigrate to find more suitable conditions to work in.

\section*{Example cont'd}
- At the workshop, each participant was asked to evaluate
- The probability of each trend being realized (scale \(0-5\) )
- The impact that the trends would have upon realization (scale 0-5)

Prioritization
You are asked to evaluate each trend with respect to (1) the probability of the trend realizing in significant negative consequences and (2) the impact the trend would have upon realization.

In both dimensions we use a scale of 0 to 5 . For the probabilities, 0 means close to impossible and 5 means next to certain. For the impacts, 0 means close to no significant negative impact and 5 means a very significant negative impact.

Probability of each trend realizing in significant negative consequences *
Tick your best guess for each. 0 means close to impossible and 5 means next to certain.
\begin{tabular}{lllllll} 
& 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 1.) Urbanization & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \begin{tabular}{l} 
2.) Bifurcation of \\
Finns and political \\
radicalization
\end{tabular} & 0 & 0 & 0 & 0 & 0 & 0 \\
\begin{tabular}{l} 
3.) The "welfare \\
trap"
\end{tabular} & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Impacts that the trends would have upon realization *
Tick your best guess for each. 0 means close to no significant negative impact and 5 means a very
significant negative impact.
\begin{tabular}{lcccccc} 
& 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 1.) Urbanization & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \begin{tabular}{l} 
2.) Bifurcation of \\
Finns and political \\
radicalization
\end{tabular} & 0 & 0 & 0 & 0 & 0 & 0 \\
\begin{tabular}{l} 
3.) The "welfare \\
trap"
\end{tabular} & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \begin{tabular}{l} 
4.) Passive \\
political system
\end{tabular} & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Example cont'd}
- The participants were also asked to assess cross-impacts among trends
- Which other trends does this trend enhance?

\section*{Cross-impact analysis}

Some of the trends enhance another trends. In this exercise you are asked to identify for each trend 0 to 3 other trends that it strongly enhances.
1.) Urbanization

Choose \(0-3\) trends that this trend impacts strongly
\(\square\) 2.) Bifurcation of Finns and political radicalization
3.) The "welfare trap"
4.) Passive political system
2.) Bifurcation of Finns and political radicalization

Choose 0-3 trends that this trend impacts strongly
(1.) Urbanization
\(\square\) 3.) The "welfare trap"
4.) Passive political system

\section*{21.) Economic stagnation}

Choose 0-3 trends that this trend impacts strongly
1.) Urbanization
2.) Bifurcation of Finns and political radicalization
\(\square\) 3.) The "welfare trap"
(1)) Passive political system

\section*{Example cont’d}

Visualizations on the probability and impact assessments were shown to the participants to facilitate discussion


Categories
O Societal - Political O Environmental O Economic

The retirement bomb

\section*{Example cont'd}
- Cross-impacts were visualized, too


\section*{Example cont'd}
- Goal of such analysis:
- To create a shared understanding of the problem
- To identify possible points of disagreement
[ Next steps:
- Possible revision of estimates in light of the discussion
- The determination of policy actions to help mitigate / adapt to the most important negative trends
- Agreement on which policy actions to pursue
- The implementation of these policy actions

\section*{Aggregation of preferences}
\(\square\) Consider \(N\) alternatives \(x_{1}, \ldots, x_{N}\)
- Consider \(K\) decision makers \(\mathrm{DM}_{1}, \ldots \mathrm{DM}_{K}\) with different preferences about the alternatives
- How to aggregate the DMs' preferences into a group choice?
- Voting
- MAVT

\section*{Plurality voting}

E Each voter casts one vote to his/her most preferred candidate
The candidate with the most votes wins
- Plurality voting with runoff:
- The winner must get over \(50 \%\) of the votes
- If this condition is not met, alternatives with the least votes are eliminated
- Voting is continued until the condition is met
- E.g., Finnish presidential election: in the second round only two candidates remain

\section*{Plurality voting}

Suppose, there are three alternatives \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and 9 voters
- 4 think that \(\mathrm{A}>\mathrm{B}>\mathrm{C}\)
- 3 think that \(B>C>A\)
- 2 think that \(C>B>A\)

Plurality voting
4 votes for A
3 votes for B
2 votes for C

Run-off
C eliminated
4 votes for A
\(3+2=5\) votes for \(B\)
\(\square \mathrm{A}\) is the winner \(\quad \mathrm{B}\) is the winner

\section*{Example: Finnish Presidential elections}
- Organized every 6 six years
- Plurality voting with runoff
- 2 most voted candidates to the \(2^{\text {nd }}\) round, unless some candidate receives over \(50 \%\) of votes already on the \(1^{\text {st }}\) round
- 7-11 candidates in 1994-2018
- Some candidates can have moderate support, but strong opposition
- I.e., they are ranked \(1^{\text {st }}\) by some, but last or close to last by many other voters

\section*{Polls just before the \(1^{\text {st }}\) election round suggest that candidate \(F\) is the strongest, but a \(2^{\text {nd }}\) will be needed. The battle for the \(2^{\text {nd }}\) position will be tight}


\section*{Time for \(1^{\text {st }}\) round vote!}
- Based on polls, D and H are battling for the second position
- Supporters of A,B,C,E,F,G: who to vote?
- Supporters of \(F\) could vote against an unwanted \(2^{\text {nd }}\) round competitor (D or H)
- Supporters A,B,C,E,G could vote against or for D or H
- Your preferences are given on the piece of paper provided to you
ranking of \(D\) : 2; ranking of \(F\) : 1 ; ranking of \(g\) : 3; vote accordingto preferences
\[
=\mathrm{F}>\mathrm{D}>\mathrm{G}
\]
- Go to https://presemo.aalto.fi/votingexample/ and vote!

\section*{Do voters actually vote tactically?}


\section*{Condorcet}

All voters rank-order the alternatives
E Each pair of alternatives is compared - the one with more votes is the winner
- If an alternative wins all its one-to-one comparisons, it is the Condorcet winner
- There might not be a Condorcet winner - some other rule must be applied, e.g.,
- Copeland's method: the winner is the alternative with the most wins in one-to-one comparisons
- Eliminate the alternative(s) with the least votes and recompute

\section*{Condorcet - example}
\(\square 33\) voters and alternatives \(A, B, C\)
- 17 voters: \(\mathrm{A}>\mathrm{B}>\mathrm{C}\)
- 1 voter: \(\mathrm{A}>\mathrm{C}>\mathrm{B}\)
- 15 voters: \(\mathrm{B}>\mathrm{C}>\mathrm{A}\)
- 0 voters: \(\mathrm{C}>\mathrm{B}>\mathrm{A}, \mathrm{C}>\mathrm{A}>\mathrm{B}, \mathrm{B}>\mathrm{A}>\mathrm{C}\)
\(\square\) A is the Condorcet winner, because it wins both one-on-one comparisons
- \(17+1=18>15\) out of 33 favor A over B and 18 favor A over C

\section*{Condorcet completion}
- There might not be a Condorcet winner
- Copeland's completion method: the winner is the alternative with the most wins in one-to-one comparisons

5 voters and 5 alternatives \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\)
- 1 voter: \(A>B>C>D>E\)
- 1 voter: \(\mathrm{A}>\mathrm{D}>\mathrm{E}>\mathrm{C}>\mathrm{B}\)
- 2 roters: \(\mathrm{D}>\mathrm{E}>\mathrm{B}>\mathrm{C}>\mathrm{A}\)
- 1 yoter: \(C>B>A>D>E\)

D wins more one-on-one comparisons than other alternatives
\begin{tabular}{r|cccc|c} 
& \(A\) & \(B\) & \(C\) & \(D\) & \(E\) \\
\hline
\end{tabular}

\section*{Condorcet completion}

DAnother possibility for Condorcet completion: Eliminate the one with least wins and recompute results

DFirst C is eliminated
- B,D,E lose one win
\(\square \mathrm{B}\) and E with one win are elimitated
- A and D remain
-A wins \(D\) by 3 votes to 2
\begin{tabular}{|c|c|c|}
\hline & A B C DE & wins \\
\hline A & 2233 & 2 \\
\hline B & \(3 \quad 322\) & 21 \\
\hline C & 3222 & 1 \\
\hline D & 2335 & 3. \\
\hline & 2330 & 2 \\
\hline
\end{tabular}

\section*{Borda}
\(\square\) Each voter gives
- \(\mathrm{n}-1\) points to the most preferred alternative,
- n-2 points to the second most preferred,
- ...
- 0 points to the least preferred alternative

The alternative with the highest total number of points wins
4 state that \(\mathrm{A}>\mathrm{B}>\mathrm{C}\)
A : \(4 \cdot 2+3 \cdot 0+2 \cdot 0=8\) points
3 state that \(B>C>A\)
B : \(4 \cdot 1+3 \cdot 2+2 \cdot 1=12\) points
2 state that \(C>B>A\)
C : \(4 \cdot 0+3 \cdot 1+2 \cdot 2=7\) points

\section*{Approval voting}

E Each voter casts one vote for each alternative he/she approves

The alternative with the highest number of votes is the winner
\begin{tabular}{c|ccccccccc|c} 
& \(D M_{1}\) & \(\mathrm{DM}_{2}\) & \(\mathrm{DM}_{3}\) & \(\mathrm{DM}_{4}\) & \(\mathrm{DM}_{5}\) & \(\mathrm{DM}_{6}\) & \(\mathrm{DM}_{7}\) & \(\mathrm{DM}_{8}\) & \(\mathrm{DM}_{9}\) & total \\
\hline A & X & - & - & X & - & X & - & X & - & 4 \\
\\
\(\mathbf{B}\) & \(\mathbf{X}\) & \(\mathbf{X}\) & \(\mathbf{X}\) & \(\mathbf{X}\) & \(\mathbf{X}\) & \(\mathbf{X}\) & - & \(\mathbf{X}\) & - & 7
\end{tabular} the winner!
- "If you want to vote against some, cast your votes to all others"

\section*{Problems with voting: The Condorcet paradox (1/2)}
\(\square\) Consider the following rank-orderings of three alternatives
\begin{tabular}{|c|c|c|c|}
\hline & DM1 & DM2 & DM3 \\
\hline A & 1 & 3 & 2 \\
\hline B & 2 & 1 & 3 \\
\hline C & 3 & 2 & 1 \\
\hline
\end{tabular}
\(\square\) Paired comparisons:
- A is preferred to \(B\) by 2 out of 3 voters
- B is preferred to Cby 2 out of 3 voters
- C is preferred to A by 2 out of 3 voters

\section*{Problems with voting: The Condorcet paradox (2/2)}
- Three voting orders:
1. (A-B) \(\rightarrow A\) wins, \((A-C) \rightarrow \mathbf{C}\) is the winner
2. ( \(\mathrm{B}-\mathrm{C}) \rightarrow \mathrm{B}\) wins, \((\mathrm{B}-\mathrm{A}) \rightarrow \mathbf{A}\) is the winner
3. \((A-C) \rightarrow C\) wins, \((C-B) \rightarrow B\) is the winner
\begin{tabular}{|c|c|c|c|}
\hline & DM1 & DM2 & DM3 \\
\hline A & 1 & 3 & 2 \\
\hline B & 2 & 1 & 3 \\
\hline C & 3 & 2 & 1 \\
\hline
\end{tabular}

The outcome depends on the order in which votes are cast!

No matter what the outcome is, the majority of voters would prefer some other alternative:
- If C wins, 2 out of 3 voters would change it to B
- ..But B would be changed to A by 2 out of 3 voters
- ..And then A would be changed to C by 2 out of 3 voters...

\section*{Problems with voting: tactical voting}

D \(\mathrm{DM}_{1}\) knows the preferences of the other voters and the voting order (A-B, winner-C)
\(\square\) If \(\mathrm{DM}_{2}\) and \(\mathrm{DM}_{3}\) vote according to their true preferences, then the favourite of \(\mathrm{DM}_{1}(\mathrm{~A})\) cannot win:
- \(1^{\text {st }}\) round: A gets 2 votes
- \(2^{\text {nd }}\) round: A loses to C
\(\square\) Could \(\mathrm{DM}_{1}\) avoid the selection of C , her
\begin{tabular}{|c|c|c|c|}
\hline & DM1 & DM2 & DM3 \\
\hline A & 1 & 3 & 2 \\
\hline B & 2 & 1 & 3 \\
\hline C & 3 & 2 & 1 \\
\hline
\end{tabular} worst outcome?
- \(1^{\text {st }}\) round: vote for \(B\); \(B\) wins 2-1
- \(2^{\text {nd }}\) round: vote for \(B ; B\) wins 2-1

\section*{Social choice function}
- Assume that the preferences of \(\mathrm{DM}_{\mathrm{i}}\) are represented by a complete and transitive weak preference order \(R_{i}\) :
\[
D M_{i} \text { thinks that } x \text { is at least as good as } y \Leftrightarrow x R_{i} y
\]
\(\square\) What is the social choice function \(f\) that determines the collective preference \(R=f\left(R_{1}, \ldots, R_{K}\right)\) of a group of K decision-makers?
- Voting procedures are examples of social choice functions

\section*{Requirements on the social choice function}
1. Universality: For any set of \(R_{i}\), the social choice function should yield a unique and complete preference ordering \(R\) for the group
2. Independence of irrelevant alternatives: The group's preference between two alternatives ( \(x\) and \(y\) ) does not change if we remove an alternative from the analysis or add an alternative to the analysis.
3. Pareto principle: If all group members prefer \(x\) to \(y\), the group should prefer \(x\) to \(y\)
4. Non-dictatorship: There is no \(\mathrm{DM}_{\mathrm{i}}\) such that \(\mathrm{x} R_{i} \mathrm{y} \Rightarrow \mathrm{x} R \mathrm{y}\)

\section*{The big problem with voting: Arrow's theorem}

There is no complete and transitive social choice function \(f\) such that conditions 1-4 would always be satisfied.

\section*{Arrow's theorem - an example}
- Borda criterion:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & DM \({ }_{1}\) & DM 2 & \(\mathrm{DM}_{3}\) & DM 4 & DM \({ }_{5}\) & Total & \multirow{5}{*}{Alternative \(\mathrm{x}_{2}\) is the winner!} \\
\hline \(\mathrm{x}_{1}\) & 3 & 3 & 1 & 2 & 1 & 10 & \\
\hline \(\mathrm{x}_{2}\) & 2 & 2 & 3 & 1 & 3 & (11) & \\
\hline \(\mathrm{x}_{3}\) & 1 & 1 & 2 & 0 & 0 & 4 & \\
\hline \(\mathrm{x}_{4}\) & 0 & 0 & 0 & 3 & 2 & 5 & \\
\hline
\end{tabular}
- Suppose that the DMs' preferences do not change. A ballot between alternatives 1 and 2 gives
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & DM \({ }_{1}\) & \(\mathrm{DM}_{2}\) & DM 3 & DM 4 & DM 5 & Total & \multirow[t]{3}{*}{Alternative \(\mathrm{x}_{1}\) is the winner!} \\
\hline \(\mathrm{x}_{1}\) & 1 & 1 & 0 & 1 & 0 & (3) & \\
\hline \(\mathrm{x}_{2}\) & 0 & 0 & 1 & 0 & 1 & 2 & \\
\hline
\end{tabular}
[ Independence of irrelevant alternatives is not satisfied!

\section*{Aggregation of values}

\section*{Theorem (Harsanyi 1955, Keeney 1975):}

Let \(\mathrm{v}_{\mathrm{k}}(\cdot)\) be a cardinal value function describing the preferences of \(\mathrm{DM}_{\mathrm{k}}\). There exists a \(K\)-dimensional differentiable (ordinal) function \(V^{G}()\) with positive partial derivatives describing group preferences \(>_{g}\) in the definition space such that
\[
\mathrm{a}>_{g} \mathrm{~b} \Leftrightarrow \mathrm{~V}^{\mathrm{G}}\left[\mathrm{v}_{1}(\mathrm{a}), \ldots, \mathrm{v}_{\mathrm{K}}(\mathrm{a})\right] \geq \mathrm{V}^{G}\left[\mathrm{v}_{1}(\mathrm{~b}), \ldots, \mathrm{v}_{\mathrm{K}}(\mathrm{~b})\right]
\]
and conditions 1-4 are satisfied.

Note: Voting procedures use only ordinal information (i.e., rank ordering) about the DMs' preferences - strength of preference should be considered, too

\section*{MAVT in group decision support}
- From MAVT, we already know how to combine cardinal value functions into an overall value function:
\[
V^{G}(x)=\sum_{k=1}^{K} W_{k} V_{k}^{N}(x), W_{k} \geq 0, \sum_{k=1}^{K} W_{k}=1 .
\]
\(\square\) This can be done for multiattribute cardinal value functions as well:

\[
V^{G}(x)=\sum_{k=1}^{K} W_{k} \sum_{i=1}^{n} w_{k i} v_{k i}^{N}\left(x_{i}\right)
\]

\section*{MAVT in group decision support}
- Weights \(W_{1}, W_{2}\) measure the value difference between the worst and best achievement levels \(x^{0}, x^{*}\) for \(\mathrm{DM}_{1}\) and \(\mathrm{DM}_{2}\), respectively
- How to compare these value differences i.e., how to make trade-offs between people?
\(\square\) "Compared to my preference for apples over oranges, how strong is yours?"
- Group weights \(W_{1}=W_{2}=0.5\) would mean that the value differences are equally valuable, but...
- Who gets to define \(x^{0}\) and \(x^{*}\) ?


\section*{MAVT for group decision support}
- Example: for both DMs, \(v_{i}^{\prime}\) s are linear, \(\mathrm{DM}_{1}\) has preferences \((1,0) \sim(0,2)\) and \(\mathrm{DM}_{2}(2,0) \sim(0,1)\)
- Let \(x^{0}=(0,0), x^{*}=(2,4)\) for both DMs, and \(W_{1}=W_{2}=0.5\)
- Then \(\mathrm{v}_{\mathrm{k} 1} \mathrm{~N}=0.5 \mathrm{x}_{1}, \mathrm{v}_{\mathrm{k} 2} \mathrm{~N}^{\mathrm{N}}=0.25 \mathrm{x}_{2}\) for both \(\mathrm{k}=1,2\)
```

DM
- (1,0)~(0,2) => V N N
0.5\mp@subsup{w}{11}{}=0.5\mp@subsup{w}{12}{}}
w

- $\mathrm{V}_{1}{ }^{\mathrm{N}}(1,0)=0.25, \mathrm{~V}_{1}{ }^{\mathrm{N}}(0,1)=0.125$

```
```

DM2
- (2,0)~(0,1) => V N
w21}=0.25\mp@subsup{w}{22}{}
w wh1 =0.2, w w2 =0.8
- }\mp@subsup{V}{2}{N}(1,0)=0.1,\mp@subsup{V}{2}{N}(0,1)=0.

```
\(\square V^{G}(1,0)=0.5^{*} 0.25+0.5^{*} 0.1=0.175>V^{G}(0,1)=0.1625\)

\section*{MAVT for group decision support}
- Interpretation of the result
- For \(\mathrm{DM}_{1}(1,0) \leftarrow(0,1)\) is an improvement. The "group" values this more than the value of change \((0,1) \leftarrow(1,0)\) for \(\mathrm{DM}_{2}\)

Let \(x^{0}=(0,0), x^{*}=(4,2)\) for both DMs, and \(W_{1}=W_{2}=0.5\)
- \(\mathrm{V}^{\mathrm{G}}(1,0)=0.1625<\mathrm{V}^{\mathrm{G}}(0,1)=0.175\)
\(\square\) Interpretation of the result
- \((0,1) \leftarrow(1,0)\) - which is an improvement for \(\mathrm{DM}_{2}\) - is now more valuable for the group than change \((1,0) \leftarrow(0,1)\)

\section*{Summary}

Techniques for involving a group of experts or DMs can be helpful for
- Problem identification and definition,
- Generating objectives, attributes, and alternatives,
- Defining common terminology
- Individual preferences can be easily aggregated into a group preference through voting procedures, but...
- Arrow's impossibility theorem states that no "good" voting procedure exists
- MAVT provides a sound method for aggregating preferences, but...
- The determination of group weights = interpersonal comparisons can be difficult
\(\rightarrow\) Aim at ajoint model e.g. by exploiting incomplete preference information```


[^0]:    $\Delta 5$
    Aalto University
    School of Scien
    Source: Hax and Wing (1977): "The use of decision analysis in a capital investment School of Science probelm" In Bell, Keeney, and Raiffa (eds.): Conflicting Objectives in Decisions, Wiley.

[^1]:    Das Central - Alpine . Luxury . Life $\begin{aligned} & \text { ***** }\end{aligned}$

