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Motivation

q You have just revised some key concepts of probability calculus
o Conditional probability
o Law of total probability
o Bayes’ rule

q This time:
– How to build a probability-based model to support decision-making under

uncertainty?
– How to elicitate the probabilities needed for these models?
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Why probabilities for modeling
uncertainty?
q Decisions are often made under uncertainty

q “How many train drivers should be trained, when future traffic is uncertain?”
q “Should I buy an old or a new car, given that I only need an operational one and

want to minimize costs = purchase price, maintenance & repair costs, selling
price, etc.?”

q “Should I buy my first my apartment now or postpone the decision, given that
future interest rates, mortgage costs, personal income and apartment prices are
uncertain?”

q Probability theory dominates the modeling of uncertainty in
decision analysis

– Well established rules for computations, understandable
– Other models (e.g., evidence theory, fuzzy sets) exist, too

10.1.2019
3



Conditional probabilities
q The probabilities of

sequential, mutually
exclusive and collectively
exhaustive events can be
represented if form of a tree

q The probability of a
sequence of events is
obtained my multiplying the
probabilities on the path
q 0.95 x 0.95 x 0.02 = 1.805 %

q The total probability of being
late is 7.985 %
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Metro driver of
a train is sick

Metro driver
not sick

This metro train
is on time

This metro train
is cancelled

This metro train
is on time

This metro train
is cancelled

Passengers are
late from …

Late

Late

Late

Not late

Not late

Not late

Not late

0.05

0.95

0.05

0.95

0.95

0.05

0.02

0.98

0.02

0.98

0.65

0.35

0.65

0.35

0.005%

0.245%

3.088%

1.663%

1.805%

88.445%

3.088%

1.663%The probability of being late on the condition
that the train is cancelled (and the original
driver is sick)



Call
help?

What if…
q We are interested in

financial aspects and
assume that being late
results in unwanted financial
consequences (Cost 1)?
q numerical outcomes for states

q You had a possibility to
influence the probability
p(this metro train is on
time | metro driver of this
train is sick) by use of extra
personnel (help) at a cost
(Cost 2)?
q Now the event probabilities

depend on your decision
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Metro driver of
a train is sick

This metro train
is on time

This metro train
is cancelled

Passengers are
late from …

Late

Not late

Not late

0.05

0.05

0.95

0.02

0.98

0.65

0.35

0.1%;
Cost 1

4.9%

61.75%;
Cost 1

33.25%
no

This metro train
is on time

This metro train
is cancelled

Passengers are
late from …

Late

Not late

Not late

0.80

0.20

0.02

0.98

0.65

0.35

yes

1.6%;
Cost 1+2

78.4%
Cost 2

13.0%;
Cost 1+2

7%;
Cost 2



Decision trees
q Decision-making under uncertainty can be

modeled by a decision tree
q Decision trees consist of

– Decision nodes (squares) – DM can choose which arc to follow
– Chance nodes (circles; cf. states of nature) – chance represented by

probabilities dictates which arc will be followed (states of nature). The
probabilities following a chance node must sum up to 1

– Consequence nodes (triangles; resulting consequences) – at the end of
the tree; describe the consequence (e.g., profit, cost, revenue, utility) of
following the path leading to this node

q Decisions and chance events are displayed in a
logical temporal sequence from left to right
q Only chance nodes whose results are known can precede a decision

node

q Each chain of decisions and chance events
represents a possible outcome
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Take an umbrella

Do not take an
umbrella

It will rain, p=0.4

It will not rain, p=0.6

It will rain, p=0.4

It will not rain, p=0.6
10

0

4
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Solving a decision tree
q A decision tree is solved by starting

from the leaves (consequence
nodes) and going backward toward
the root:

– At each chance node: compute the
expected value at the node

– At each decision node: select the arc with
the highest expected value

q The optimal strategy consists of the
arcs selected at decision nodes
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Take an umbrella

Do not take an
umbrella

It will rain, p=0.4

It will not rain, p=0.6

It will rain, p=0.4

It will not rain, p=0.6 10

0

4

5

EV=4.6

EV=6
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§ Your uncle is going to buy a tractor. He has two alternatives:
1. A new tractor (17 000 €)
2. A used tractor (14 000 €)

§ The engine of the old tractor may be defect, which is hard to ascertain. Your uncle
estimates a 15 % probability for the defect.

§ If the engine is defect, he has to buy a new tractor and gets 2000 € for the old
one.

§ Before buying the tractor, your uncle can take the old tractor to a garage for an
evaluation, which costs 1 500 €.
§ If the engine is OK, the garage can confirm it without exception.
§ If the engine is defect, there is a 20 % chance that the garage does not

notice it.
§ Your uncle maximizes expected monetary value

Example: Decision tree (1/12)
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§ Before making the buying decision and before you get to know
the result of any uncertain event, you must decide upon taking
the old tractor to a garage for an evaluation.

§ The decision node ‘evaluation’ is placed leftmost in the tree

Evaluation

No evaluation

Example: Decision tree (2/12)
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§ If the old tractor is evaluated, your uncle receives the results of the evaluation

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

Example: Decision tree (3/12)



eLearning
Systems Analysis Laboratory
Helsinki University of Technology 11/56

§ The next step is to decide which tractor to buy

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

New

Old

New

Old

New

Old

Example: Decision tree (4/12)
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§ …But the engine of the old tractor can be defect

§ Now all chance nodes and decisions are in chronological order such
that in each node, we can follow the path to the left to find out what we
know

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

New

Old

New

Old

New

Old

No defect
Defect

No defect
Defect

No defect
Defect

Example: Decision tree (5/12)
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§ We next need the probabilities for all outcomes of the chance nodes

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

New

Old

New

Old

New

Old

No defect
Defect

No defect
Defect

No defect
Defect

P(result ”OK”)

P(result ”Defect”)

P(”Defect” | result ”OK”)

P(”No defect” | result ”OK”)
P(”Defect” | result ”Defect”)

P(”No defect” | result ”Defect”)

P(”Defect”)

P(”No defect”)

Example: Decision tree (6/12)



Remember: Law of total probability
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q If E1,…,En are mutually exclusive and A = ⋃  ௜ܧ
௜ , then

P(A)=P(A|E1)P(E1)+…+P(A|En)P(En)

q Most frequent use of this law:
– Probabilities P(A|B), P(A|Bc), and P(B) are known
– These can be used to compute P(A)=P(A|B)P(B)+P(A|Bc)P(Bc)



Remember: Bayes’ rule

q Bayes’ rule: ܲ ܣ ܤ = ௉(஻|஺)௉(஺)
௉(஻)

q Follows from
1. The definition of conditional probability: ܲ ܣ ܤ = ௉(஺∩஻)

௉(஻)
, ܲ ܤ ܣ = ௉(஻∩஺)

௉(஺)
,

2. Commutative laws: ܲ ܤ ∩ ܣ = ܲ ܣ ∩ ܤ .
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Example: Bayes’ rule
A metro train is cancelled (event C) and we have not
had the opportunity to call help. What is the probability
that the driver originally allocated to drive the train is
sick (event S)? = What is ܲ ܵ ܥ ?

Solution:
q P(S)=0.05, P(Sc)=0.95, P(C|S)=0.95, P(C|Sc)=0.05

Law of total probability: P(C)=P(C|S)P(S)+P(C|Sc) P(Sc)=
0.95 x 0.05 + 0.05 x 0.95 = 0.095

Bayes’ rule: ܲ ܵ ܥ = ௉(஼|ௌ)௉(ௌ)
௉(஼)

= ଴.ଽହȉ଴.଴ହ
଴.଴ଽହ

= 50%
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Metro driver of
a train is sick

Metro driver
not sick

This metro train
is on time

This metro train
is cancelled

This metro train
is on time

This metro train
is cancelled

0.05

0.95

0.05

0.95

0.95

0.05
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§ Solve all probabilities. You know that
§ ”Your uncle estimates a 15 % probability for the defect.” => P(Defect)=0.15
§ “If the engine is OK, the garage can confirm it without exception.” => P(result

“OK” | No defect)=1
§ “If the engine is defect, there is a 20 % chance that the garage does not

notice it.” => P(result “OK” | Defect)=0.20
(result "OK") (result "OK" | No defect) (No defect) (result "OK" | Defect) (Defect)
1.0 0.85 0.20 0.15 0.88
(result "defect")=1- (result "OK") 0.12

(result "OK" | Defect) (Defect)(Defect | result "OK")

P P P P P

P P
P PP

P

= × + ×
= × + × =

=
×

=
0.20 0.15 0.034

(result "OK") 0.88
(No defect | result "OK") 1 0.034 0.966

(result "defect" | Defect) (Defect) 0.80 0.15(Defect | result "defect") 1.00
(result "defect") 0.12

(No Defect | result "defect") 1

P
P PP

P
P

×
= »

= - =
× ×

= = =

= -1 0=

Example: Decision tree (7/12)
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§ Compute monetary values for each end node
§ Evaluation + new = 1500 + 17000 = 18500
§ Evaluation + old with defect = 1500 + 14000 – 2000 + 17000 = 30500
§ Evaluation + old without defect = 1500 + 14000 = 15500
§ No evaluation + new = 17000
§ No evaluation + old with defect = 14000 – 2000 + 17000 = 29000
§ No evaluation + old without defect = 14000

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

New

Old

New

Old

New

Old

No defect
Defect

No defect
Defect

No defect
Defect

Example: Decision tree (8/12)
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Evaluation

Result: “OK”

Result: “Defect”

No evaluation

0.88

0.12

0.15

0.85

New

Old

-17 000

No defect
Defect

No defect
Defect

1

0

-30 500
-15 500

-29 000
-14 000

New

Old

-18 500

No defect
Defect0.034

0.966

-30 500
-15 500

New

Old

-18 500

§ We now have a decision tree presentation of the problem

Example: Decision tree (9/12)
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Evaluation

Result: “OK”

Result: “Defect”

No evaluation

0.88

0.12

0.15

0.85

New

Old

-17 000

No defect
Defect

No defect
Defect

1

0

-30 500
-15 500

-29 000
-14 000

New

Old

-18 500

No defect
Defect0.034

0.966

-30 500
-15 500

EMV(New | result “ok”)= -18500

Old

-18 500

§ Starting from the right, compute expected monetary values for each
decision

§ Place the value of the better decision to the decision node
EMV(Old | result “ok”)= 0.034 x -30500 +

0.966 x -15500= -16010

-16010

Example: Decision tree (10/12)
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Evaluation

Result: “OK”

Result: “Defect”

No evaluation

0.88

0.12

0.15

0.85

New

Old

-17 000

No defect
Defect

No defect
Defect

1

0

-30 500
-15 500

-29 000
-14 000

New

Old

-18 500

No defect
Defect -30 500

-15 500

-18500

Old

-18 500

§ Starting from the right, compute expected monetary values for each
decision

§ Place the value of the better decision to the decision node

-16010

New

-16010

-18500
-18500

-30500

-16250

-17000-16250

0.88 x -16010 + 0.12 x -18500 =

-16309

-16309

-16250

Example: Decision tree (11/12)
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Evaluation

Result: “OK”

Result: “Defect”

No evaluation

0.88

0.12

0.15

0.85

New

Old

-17 000

No defect
Defect

No defect
Defect

1

0

-30 500
-15 500

-29 000
-14 000

New

Old

-18 500

No defect
Defect -30 500

-15 500

-18500

Old

-18 500

§ The optimal solution is to buy the old tractor without evaluating it

-16010

New

-16010

-18500
-18500

-30500

-16250

-17000-16250

-16309

-16250

Example: Decision tree (12/12)



… How much should we pay for the
sample information by the garage?
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q The expected monetary value was higher without evaluating the old tractor
q Determine evaluation cost c so that you are indifferent between

1. Not taking the old tractor for an evaluation (EMV = -16250€)
2. Taking the old tractor for an evaluation

q Indifference, when EMVs equal: -16250 = -14809 – c => c = 1441€
q Expected value of sample information = Expected value with sample information –

Expected value without sample information = -14809€ - (-16250€) = 1441€

Evaluation

Result: “OK”

Result: “Defect”

0.88

0.12
No defect
Defect

New

Old

-17 000 - c

No defect
Defect -29 000 - c

-14 000 - c

-17000 - c

Old

-17 000 - c

-14510 - c

New

-14510 - c

-17000 - c
-17000 - c

-29000 - c

-14809 - c

-29 000 - c
-14 000 - c



Example: expected value of perfect
information
q You are considering between three

investment alternatives: high-risk stock, low-
risk stock, and savings account

q Savings account:  certain payoff of 500€
q Stocks:

– 200€ brokerage fee
– Payoffs depend on market conditions
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Up Same Down

High-risk 1700 300 -800

Low-risk 1200 400 100

Probability 0.5 0.3 0.1

Decision tree

Source: Clemen, R.T. (1996): Making Hard Decisions: An Introduction to
Decision Analysis, 2nd edition, Duxbury Press, Belmont.



Example: investing in the stock market

q The expected monetary values
(EMVs) for the different alternatives
are

– HRS: 0.5∙1500+0.3∙100-0.2∙1000=580
– LRS: 0.5∙1000+0.3∙200-0.2∙100=540
– Savings Account: 500

→   It is optimal* to invest in high-risk
stock
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Decision tree

Source: Clemen, R.T. (1996): Making Hard Decisions: An Introduction to
Decision Analysis, 2nd edition, Duxbury Press, Belmont.

EMV=580€

EMV=540€

EMV=500€

* Assuming you are risk-neutral !!! – risk
attitudes discussed later on this course



Expected value of perfect information
q How much could the expected value be expected to increase, if

– Additional information about the uncertainties was received before the decision
– The decision would be made according to this information?

– Note: this analysis is done before any information is obtained

q Perfect information: certain information about how the
uncertainties are resolved – ”if we could choose after we know the
state of the world”
q Expected value of perfect information = Expected value with perfect

information – Expected value without perfect information

q Expected value of perfect information is computed through a
reversed decision tree in which all chance nodes precede all
decision nodes
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Expected value of perfect information
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Decision tree

EMV=580€

EMV=540€

EMV=500€

Reversed decision tree: you know the state of the
world when making the decision(s)

Expected value
without perfect

information
=580€

Expected value
with perfect

information =
0.5∙1500+0.3∙500
+0.2∙500=1000€

Expected value of perfect information
= 1000€ - 580€ = 420€



Probability assessment

q Use a few minutes to answer ten probability assessment questions
– You have either questionnaire sheet A or B

q Do not communicate with others

q Do not look up the answers on the internet
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Estimation of probabilities

q How to obtain the probabilities needed in decision models?
1. If possible, use objective data
2. If  objective data is not available, obtain subjective probability

estimates from experts through
o Betting approach
o Reference lottery
o Direct judgement

10.1.2019
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Estimation of probabilities: Betting
approach
q Goal: to estimate the probability of event A

– E.g., A=”GDP growth is above 3% next year” or A=”Sweden
will join NATO within the next five years”

q Betting approach:
– Bet for A: win X € if A happens, lose Y € if not

– Expected monetary value ܺ ȉ ܲ ܣ − ܻ ȉ 1 − ܲ ܣ

– Bet against A: lose X € if A happens, win Y € if not
– Expected monetary value−ܺ ȉ ܲ ܣ + ܻ ȉ 1 − ܲ ܣ

– Adjust X and Y until the respondent is indifferent between
betting for or against A

– Assuming risk-neutrality(*, the expected monetary values of
betting for or against A must be equal:

ܺ ȉ ܲ ܣ − ܻ ȉ 1 − ܲ ܣ = −ܺ ȉ ܲ ܣ + ܻ ȉ 1 − ܲ ܣ ⇒ ܲ ܣ =
ܻ

ܺ + ܻ

10.1.2019
30

Bet for A

Bet
against A

A

Not A
A

X

-Y

-X

YNot A

*)A strong assumption



Estimation of probabilities: Reference
lottery
q Lottery:

– Win X if A happens
– Win Y if A does not happen
– X is preferred to Y

q Reference lottery:
– Win X with (known) probability p
– Win Y with (known) probability (1-p)
– Probability p can be visualized with, e.g., a wheel of fortune

q Adjust p until the respondent is indifferent between the two lotteries:
ܺ ȉ ܲ ܣ + ܻ ȉ 1 − ܲ ܣ = ܺ ȉ ݌ + ܻ ȉ 1 − ݌ ⇒ ܲ ܣ = ݌

q Here, the respondent’s risk attitude does not affect the results (shown later)
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Lottery

Ref.
lottery

A

Not A
p

X

Y

X

Y1-p



Reference lottery: example
q Event A: ”HIFK wins Jokerit”
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Lottery

Ref.
lottery

A

Not A

10 €

0 €
⚀⚁⚂⚃⚄

⚅

10 €

0 €

Lottery

Ref.
lottery

A

Not A
⚀⚁⚂

⚃⚄⚅

10 €

0 €

10 €

0 €

Lottery

Ref.
lottery

A

Not A
⚀⚁⚂⚃

⚄⚅

10 €

0 €

10 €

0 €

Lottery

Ref.
lottery

A

Not A

⚁⚂⚃⚄⚅

⚀

10 €

0 €

10 €

0 €

The respondent
chooses the
reference lottery:

૚૙ ȉ ࡼ ࡭ < ૚૙ ȉ
૞
૟

The respondent
chooses the lottery:

૚૙ ȉ ࡼ ࡭ > ૚૙ ȉ
૚
૟

Chooses
the lottery:

ࡼ ࡭ >
૚
૛

Chooses the
reference
lottery:

ࡼ ࡭ <
૛
૜

These four answers revealed to probability estimate of A to
be in (0.5, 0.67). Further questions should reveal the
respondent’s estimate for P(A)



Estimation of continuous probability
distributions
q A continuous distribution can be approximated by estimating several event

probabilities (X is preferred to Y)
q Example:

– Goal: to assess the distribution of the change in GDP (ΔGDP) in Finland next year
– Means: elicitation of probability p for five different reference lotteries
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Estimation of continuous probability
distributions
q Often experts assess the descriptive statistics of the distribution

directly, e.g.,
– The feasible range (min, max)
– Median f50 (i.e., P(X<f50)=0.5)
– Other quantiles (e.g., 5%, 25%, 75%, 95%)

q In the previous example:
– ”The 5% and 95% quantiles are f5 =-3% and f95 = 4%”
– ”The change in GDP is just as likely to be positive as it is to be negative”
– ”There is a 25% chance that the change in GDP is below -1%”
– ”There is a 25% chance that the change in GDP is above 1.5%”
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Summary

q Decision trees are probability-based models to support decision-
making under uncertainty

– Which decision alternative should I choose?
– How much would I be willing to pay for perfect information or (imperfect) sample

information about how the uncertainties are resolved?

q Subjective probability assessments often required
– Probability elicitation techniques require some effort
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Decision making and
problem solving –
Lecture 2
• Biases in probability assessment
• Expected Utility Theory (EUT)
• Assessment of utility functions

Liesiö, Punkka, Salo, Vilkkumaa



Last time

q Decision trees are a visual and easy way to model decision-
making problems, which involve uncertainties
q Paths of decisions and random events

q Probabilities are used to model uncertainty
q Data to estimate probabilities not necessarily available

q We often need subjective judgements to estimate probabilities
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Biases in probability assessment

q Subjective judgements by both ”ordinary people” and ”experts” are
prone to numerous biases

– Cognitive bias: Systematic discrepancy between the ‘correct’ answer and
the respondent’s actual answer

o E.g., assessment of conditional probability differs from the correct value given by Bayes’ rule

– Motivational biases: judgements are influenced by the desriability or
undesirability of events

o E.g., overoptimism about success probabilities
o Strategic underestimation of failure probabilities

q Some biases can be easy, some difficult to correct

17.1.2019
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q If x fits the description of A well,
then P(x∈A) is assumed to be
large

q The ‘base rate’ of A in the
population (i.e., the probability of
A) is not taken into account

q Example: You see a very tall man
in a bar. Is he more likely to be a
professional basketball player or
a teacher?

17.1.2019
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90

29 000 in Finland.

Assume the
teachers follow the
whole population’s
height distribution

Basketball players

Teachers

Representativeness bias
(cognitive)



Representativeness bias

17.1.2019
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q What is ’very tall’?
q 195 cm?
q Assume all BB players are very tall

q Based on 30 min of googling1, the share
of Finnish men taller than 195 cm
exceeds 0.3 %

q If BB players go the bar as often as
teachers, it is more probable that the
very tall man is a teacher, if the share
of very tall men exceeds 0.31%

– 2018 students’ responses: 80% teacher, 20%
basketball player

– Your responses: 82% teacher, 18 basketball
player

1 note: with the lecturer’s skills



Representativeness bias
q Linda is 31 years old, single,

outspoken, and very bright. She
majored in philosophy. As a student,
she was deeply concerned with issues
of discrimination and social justice, and
also participated in antinuclear
demonstrations. Please check the most
likely alternative:

a. Linda is a bank teller.
b. Linda is a bank teller and active in the

feminist movement.

q Many choose b, although b⊂a whereby
P(b)<P(a)

– 2018 students’ responses: 67% a, 33% b.
– Your responses: 74% a, 26% b. 17.1.2019

6

Bank tellers

Bank tellers who are
active in the feminist
movement



Conservativism bias (cognitive)
q When information about some uncertain event is obtained, people typically do not

adjust their initial probability estimate about this event as much as they should based
on Bayes’ theorem.

q Example: Consider two bags X and Y. Bag X contains 30 white balls and 10 black balls,
whereas bag Y contains 30 black balls and 10 white balls. Suppose that you select one
of these bags at random, and randomly draw five balls one-by-one by replacing them in
the bag after each draw. Suppose you get four white balls and one black. What is the
probability that you selected bag X with mainly white balls?

q Typically people answer something between 70-80%. Yet, the correct probability is
27/28 ≈ 96%.

q 2018 students’ responses: mean response 59%. The majority (57%) answered 50%.
q Your responses: mean response 68%. Many (32%) answered 50%.

17.1.2019
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Representativeness and
conservativism bias - debiasing
q Demonstrate the logic of joint and conditional probabilities and

Bayes’ rule
q Split the task into an assessment of

– The base rates for the event (i.e., prior probability)
– E.g., what is the relative share of bank tellers in the population? What are the relative shares

of teachers and pro basketball players?

– The likelihood of the data, given the event (i.e., conditional probabilities)
– E.g., what is the relative share of people active in the feminist movement? Is this share

roughly the same among bank tellers as it is among the general population or higher/lower?
– What is the likelihood that a male teacher is taller than 195cm? How about a pro basketball

player?

17.1.2019
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Availability bias (cognitive)
q People assess the probability of an event by the ease with which instances or

occurences of this event can be brought to mind.
q Example: In a typical sample of English text, is it more likely that a word starts

with the letter K or that K is the third letter?
– Most people think that words beginning with K are more likely, because it is easier to think of

words that begin with "K” than words with "K" as the third letter
– Yet, there are twice as many words with K as the third letter
– 2018 students’ responses: 13% first letter, 87% third letter.
– Your responses: 46% first letter, 54% third letter.

q Other examples:
– Due to media coverage, the number of violent crimes such as child murders seems to have

increased
– Yet, compared to 2000’s, 18 times as many children were killed per capita in 1950’s and twice as

many in 1990’s
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Availability bias - debiasing

q Conduct probability training
q Provide counterexamples
q Provide statistics

q Based on empirical evidence, availability bias is difficult to
correct

17.1.2019
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Anchoring bias (cognitive)
q When assessing probabilities, respondents sometimes consider

some reference assessment
q Often, the respondent is anchored to the reference assessment
q Example: Is the percentage of African countries in the UN

A. Greater or less than 65? What is the exact percentage?
o Average answer: Less, 45%.
o 2018 students’ responses: Less, median 22%, mean 34%.
o Your responses: Less, median 40%, mean 48%.

B. Greater or less than 10? What is the exact percentage?
o Average answer: Greater, 25%.
o 2018 students’ responses: Greater, median 23%, mean 27%.
o Your responses: Greater, median 20%, mean 27%.

17.1.2019
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Anchoring bias - debiasing

q Avoid providing anchors
q Provide multiple and counteranchors

q = if you have to provide an anchor, provide several which differ significantly
from each other

q Use different experts who use different anchors

q Based on empirical evidence, anchoring bias is difficult to
correct

17.1.2019
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Overconfidence (cognitive)

q People tend to assign overly narrow confidence intervals to their probability estimates

1. Martin Luther King’s age at death 39 years
2. Length of the Nile River 6738 km
3. Number of Countries that are members of OPEC 13
4. Number of Books in the Old Testament 39
5. Diameter of the moon 3476 km
6. Weight of an empty Boeing 747 176900 kg
7. Year of Wolfgang Amadeus Mozart’s birth 1756
8. Gestation period of an Asian elephant 645 days
9. Air distance from London to Tokyo 9590 km
10. Depth of the deepest known point in the oceans 11033 m

q If 3 or more of your intervals missed the correct value, you have demonstrated
overconfidence
q 89% of you did

17.1.2019
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Overconfidence - debiasing
q Provide probability training
q Start with extreme estimates (low and high)
q Use fixed values instead of fixed probability elicitations:

– Do not say: ”Give a value x such that the probability for a change in GDP lower than
x is 0.05”

– Do say: ”What is the probability that the change in GDP is lower than -3%?”

q Based on empirical evidence, overconfidence is difficult to
correct

17.1.2019
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Desirability / undesirability of events
(motivational)
q People tend to believe that there is a less than 50 % probability that negative

outcomes will occur compared with peers
– I am less likely to develop a drinking problem
– Your responses: 20% (25% in 2018) more likely, 34% (31%) less likely, 46% (44%) equally likely

q People tend to believe that there is a greater than 50 % probability that
positive outcomes will occur compared with peers

– I am more likely to become a homeowner / have a starting salary of more than 3,500€
– Your responses on owning a home: 49% (44%) more likely, 12% (13%) less likely, 39% (44%) equally likely
– Your responses on salary: 54% (38 %) more likely, 8% (19%) less likely, 38% (44%) equally likely

q People tend to underestimate the probability of negative outcomes and
overestimate the probability of positive outcomes

17.1.2019
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Desirability / undesirability of events -
debiasing
q Use multiple experts with alternative points of view
q Place hypothetical bets against the desired event

q “Make the respondent’s money involved”

q Use decomposition and realistic assessment of partial probabilities
q “Split the events”

q Yet, empirical evidence suggests that all motivational biases are
difficult to correct

Further reading: Montibeller, G., and D. von Winterfeldt, 2015. Cognitive and
Motivational Biases in Decision and Risk Analysis, Risk Analysis
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Risky or not risky?
q Which one would you choose:

a) Participate in a lottery, where you have a 50 % chance of
getting nothing and 50 % chance of getting 10000 €

b) Take 4000 €

q Many choose the certain outcome of 4000 €,
although a)’s expected monetary gain is
higher

Option b) involves less risk

17.1.2019
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How to compare risky alternatives?
q Last week

– We learned how to support decision-making under uncertainty,
when the DM’s objective is to maximize the expected monetary
value

– Maximizing expected value is rational only if the DM is risk
neutral, i.e., indifferent between

o obtaining x for sure and
o a gamble with uncertain payoff Y such that x=E[Y]

– Usually, DMs are risk averse = they prefer obtaining x for
sure to a gamble with payoff Y such that x=E[Y]

q Next:
– We learn how to accommodate the DM’s risk attitude

(=preference over alternatives with uncertain outcomes) in
decision models

17.1.2019
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Expected utility theory (EUT)

q John von Neumann and Oscar Morgenstern (1944) in Theory of
Games and Economic Behavior:

– Axioms of rationality for preferences over alternatives with uncertain outcomes
– If the DM follows these axioms, she should prefer the alternative with the highest

expected utility

q Elements of EUT
– Set of outcomes and lotteries
– Preference relation over the lotteries satisfying four axioms
– Representation of preference relation with expected utility

17.1.2019
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EUT: Sets of outcomes and lotteries
q Set of possible outcomes T:

– E.g., revenue ܶ euros / demand ܶ
q Set of all possible lotteries L:

– A lottery ݂ ∈ ܮ associates a probability
݂ ݐ ∈ [0,1] with each possible outcome
ݐ ∈ ܶ

o Finite number of outcomes with a positive
probability ݂ ݐ > 0

o Probabilities sum up to one ∑ ݂ ݐ = 1 
௧

o Lotteries are thus discrete PMFs / decision trees
with a single chance node

q Deterministic outcomes are modeled as
degenerate lotteries

17.1.2019
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EUT: Compound lotteries
q Compound lottery:

– Get lottery ௑݂ ∈ ܮ with probability ߣ
– Get lottery ௒݂ ∈ ܮ with probability 1 − ߣ

q Compound lottery can be modeled as lottery ௓݂ ∈ :ܮ
௓݂ ݐ = ߣ ௑݂ ݐ + 1 − ߣ ௒݂ ݐ ݐ∀   ∈ ܶ ≃ ௓݂ = ߣ ௑݂ + (1 − (ߣ ௒݂

q Example:
– You have a 50-50 chance of getting a ticket to lottery ௑݂ ∈ ܮ or to lottery ௒݂ ∈ ܮ

17.1.2019
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Preference relation

q Let ≽ be preference relation among lotteries in L
– Preference ௑݂ ≽ ௒݂: ௑݂ at least as preferable as ௒݂

– Strict preference ௑݂ ≻ ௒݂ defined as ¬( ௒݂≽ ௑݂)
– Indifference ௑݂~ ௒݂ defined as ௑݂ ≽ ௒݂  ∧ ௒݂ ≽ ௑݂
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EUT axioms A1-A4 for preference
relation
q A1: ≽ is complete

– For any ௑݂, ௒݂ ∈ either ,ܮ ௑݂ ≽ ௒݂ or ௒݂ ≽ ௑݂ or both

q A2: ≽ is transitive
– If ௑݂ ≽ ௒݂ and ௒݂ ≽ ௓݂, then ௑݂ ≽ ௓݂

q A3: Archimedean axiom
– If ௑݂≻ ௒݂ ≻ ௓݂, then ,ߣ∃ ߤ ∈ (0,1) such that

ߣ ௑݂ + (1 − (ߣ ௓݂ ≻ ௒݂ and ௒݂ ≻ ߤ ௑݂ + (1 − (ߤ ௓݂

q A4: Independence axiom
– Let ߣ ∈ (0,1). Then,

௑݂ ≻ ௒݂ ⇔ ߣ ௑݂ + (1 − (ߣ ௓݂ ≻ ߣ ௒݂ + (1 − (ߣ ௓݂
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If the EUT axioms hold for the DM’s
preferences

17.1.2019
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q A3: Archimedean axiom
– Let ௑݂≻ ௒݂ ≻ ௓݂ . Then exists ݌ ∈ (0,1) so that ௒݂ ~ ݌ ௑݂ + 1 − ݌ ௓݂

q A4: Independence axiom
– ௑݂~ ௒݂ ⇔ ߣ ௑݂ + (1 − (ߣ ௓݂~ߣ ௒݂ + (1 − (ߣ ௓݂

– Any lottery (or outcome = a degenerate lottery) can be replaced by
an equally preferred lottery; According to A3, such lotteries /
outcomes exist

– NOTE: ௓݂ can be any lottery and can have several possible outcomes
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Main result: Preference representation
with Expected Utility
q ≽ satisfies axioms A1-A4 if and only if there exists a real-valued utility

function u(t) over the set of outcomes T such that

௑݂ ≽ ௒݂ ⇔෍ ௑݂ ݐ ݑ ݐ
 

௧∈்

≥ ෍ ௒݂ ݐ (ݐ)ݑ
 

௧∈்

q Implication: a rational DM following axioms A1-A4 selects the
alternative with the highest expected utility

ܧ ݑ ܺ = ෍ ௑݂

 

௧∈்

ݐ (ݐ)ݑ

– A similar result can be obtained for continuous distributions:
o ௑݂ ≽ ௒݂ ⇔ ܧ ݑ ܺ ≥ ܧ ݑ ܻ , where ܧ ݑ ܺ = ∫ ௑݂ ݐ ݑ ݐ  ݐ݀
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Computing expected utility

q Example: Joe’s utility function for the number of
apples is u(1)=2, u(2)=5, u(3)=7. Would he prefer

– Two apples for certain (X), or
– A 50-50 gamble between 1 and 3 apples (Y)?

q Example: Jane’s utility function for money is ݑ ݐ =
ଶ. Whichݐ alternative would she prefer?

– X: 50-50 gamble between 3 and 5M€
– Y: A random amount of money from Uni(3,5) distribution

– What if her utility function was ݑ ݐ = ௧మିଽ
ଶହିଽ

?
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ܧ ݑ ܺ = ݑ 2 = 5

ܧ ݑ ܻ = ݑ0.5 1 + ݑ0.5 3
= 0.5 ȉ 2 + 0.5 ȉ 7 = 4.5

ܧ ݑ ܺ = ݑ0.5 3 + ݑ0.5 5
= 0.5 ȉ 9 + 0.5 ȉ 25 = 17

ܧ ݑ ܻ = න ௒݂ ݐ ݑ ݐ ݐ݀ =
ହ

ଷ
න

1
2
ݐଶ݀ݐ

ହ

ଷ

=
1
6

5ଷ −
1
6

3ଷ = 16.33333



Let’s practice!

The utility function of Dr. Cuckoo is ݑ ݐ = Would .ݐ√ he
a) Participate in a lottery A with 50-50 chance of getting either 0

or 400 €?
b) Participate in a lottery B in which the probability of getting

900 € is 30% and getting 0 € is 70%?
ݑ 0 = 0, ݑ 400 = 20, ݑ 900 = 30
a) ܧ ݑ ܣ = 0.5 ȉ 0 + 0.5 ȉ 20 = 10
b) ܧ ݑ ܤ = 0.7 ȉ 0 + 0.3 ȉ 30 = 9
NOTE! the expectation of lottery A = 200 € is smaller than that of
B = 270€
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Uniqueness up to positive affine
transformations

17.1.2019
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q DM’s preferences: ܺ ≽ ܻ
q ܧ ݑ ܺ = 1݌ ≥ 2݌0.9 + 0.2(1 − (2݌

q v: Multiply each utility u by 100
q ܧ ݒ ܺ = 1݌100 = ܧ100 ݑ ܺ ≥

ܧ100 ݑ ܻ = 2݌90 + 20 1 − 2݌ = ܧ ݒ ܻ

q w: Add 20 to all utilities v
q ܧ ݓ ܺ = 1݌120 + 20 1 − 1݌ = 1݌100 +

20 = ܧ ݒ ܺ + 20 ≥ ܧ ݒ ܻ + 20 =
2݌90 + 20 1 − 2݌ + 20 1 + 2݌ − 2݌ =
2݌110 + 40 1 − 2݌ = ܧ ݓ ܻ

1݌

1 − 1݌

v=100

v=0

≽
1 − 2݌

௑݂
v=20

2݌ v=90
௒݂

1݌

1 − 1݌

u=1

u=0

≽
1 − 2݌

௑݂
u=0.2

2݌ u=0.9
௒݂

1݌

1 − 1݌

w=120

w=20

≽
1 − 2݌

௑݂
w=40

2݌ w=110
௒݂



Uniqueness up to positive affine
transformations

17.1.2019
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q DM’s preferences: ܺ ≽ ܻ
q ܧ ݑ ܺ = 1݌ ≥ 2݌0.9 + 0.2(1 − (2݌

q v: Multiply u by ߙ > 0 ܧ ݒ ܺ = 1݌ߙ =
ܧߙ ݑ ܺ ≥ ܧߙ ݑ ܻ = 2݌ߙ0.9 + ߙ0.2 1 − 2݌ =
ܧ ݒ ܻ

q w: Add ߚ to all utilities v
q ܧ ݓ ܺ = (1 + 1݌(ߚ + ߚ 1 − 1݌ = 1݌ߙ + ߚ =

ܧ ݒ ܺ + ߚ ≥ ܧ ݒ ܻ + ߚ = 2݌ߙ0.9 +
ߙ0.2 1 − 2݌ + ߚ 1 + 2݌ − 2݌ = ߙ0.9) +
2݌(ߚ + ߙ0.2) + (ߚ 1 − 2݌ = ܧ ݓ ܻ

1݌

1 − 1݌

v= ߙ

v=0

≽
1 − 2݌

௑݂
v=0.2 ߙ

2݌ v=0.9 ߙ
௒݂

1݌

1 − 1݌

u=1

u=0

≽
1 − 2݌

௑݂
u=0.2

2݌ u=0.9
௒݂

1݌

1 − 1݌

w= +ߙ ߚ

w= ߚ

≽
1 − 2݌

௑݂

w= +ߙ0.2 ߚ

2݌

w= +ߙ0.9 ߚ

௒݂



q Let ௑݂ ≽ ௒݂  ⟺ ܧ ݑ ܺ ≥ ܧ ݑ ܻ . Then ܧ ݑߙ ܺ + ߚ = ܧߙ ݑ ܺ + ߚ ≥
ܧߙ ݑ ܻ + ܧ=ߚ ݑߙ ܻ + ߚ for any ߙ > 0

q Two utility functions (࢚)૚࢛ and ૛࢛ ࢚ = ૚࢛ࢻ ࢚ + ,ࢼ ࢻ) > ૙) establish
the same preference order among any lotteries:

ܧ ଶݑ ܺ = ܧ ଵݑߙ ܺ + ߚ = ܧߙ ଵݑ ܺ + .ߚ
q Implications:

– Any linear utility function ௅ݑ ݐ = ݐߙ + ,ߚ ߙ) > 0) is a positive affine transformation of
the identity function ଵݑ ݐ = ݐ ⇒ ௅ݑ ݐ establishes the same preference order as expected
value

– Utilities for two outcomes can be freely chosen:
o E.g., scale utilities represented by ଵݑ such that and ଶݑ ∗ݐ = 1 and ଶݑ ଴ݐ = 0:

ଶݑ ݐ =
ଵݑ ݐ − ଵݑ ଴ݐ

ଵݑ ∗ݐ − ଵݑ ଴ݐ =
1

ଵݑ ∗ݐ − ଵݑ ଴ݐ ଵݑ ݐ −
ଵݑ ଴ݐ

ଵݑ ∗ݐ − ଵݑ ଴ݐ

Uniqueness up to positive affine
transformations
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Summary
q Probability elicitation is prone to cognitive and motivational biases

– Some cognitive biases can be easy to correct, but…
– Some other cognitive biases and all motivational biases can be difficult to overcome

q The DM’s preferences over alternatives with uncertain outcomes
can be described by a utility function

q A rational DM (according to the four axioms of rationality) should
choose the alternative with the highest expected utility
q NOT necessarily the alternative with the highest utility of expectation
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Decision making and
problem solving –
Lecture 3
• Modeling risk preferences
• Stochastic dominance

Liesiö, Punkka, Salo, Vilkkumaa



Motivation

q Last time:
– Decisions should be based on expected value of the alternatives’ outcomes (if and)

only if the DM is risk neutral
– Under 4 axioms for the DM’s preference relation between risky alternatives, there

exists a real-valued function (“utility function”) so that
– The DM should choose the alternative with the highest expected utility
– It is unique up to positive affine transformations -> we can normalize the utility

function the way we want

q This time:
– What is this utility function and how to model the DM’s preferences with it?
– We learn how these preferences correspond to the DM’s attitude towards risk

28.1.2019
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Assessment of utility functions

q Utility functions are assessed by asking the DM to choose between a simple
lottery and a certain outcome (i.e., a degenerate lottery)

– X: Certain payoff t
– Y: Payoff ାݐ ିݐ with probability p (1-p)

q General idea:
– Vary the parameters (p,t,ݐା, (ିݐ until the DM is indifferent between X and Y:

ܧ ݑ ܺ = ܧ ݑ ܻ ⇔ ݑ ݐ = ݑ݌ ାݐ + (1 − ݑ(݌ ିݐ

– Repeat until sufficiently many points for the utility function have been obtained

q Because u is unique up to positive affine transformations, u can be fixed at
two points
q Usually, u is set at 1 at the most preferred level, and at 0 at the least preferred

28.1.2019
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Assessment: The certainty equivalence
approach
q The DM assesses t
q Example: Assess utility function for the interval [-10,50] euros

– Normalization: we can fix u(-10)=0 and u(50)=1

28.1.2019
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Other approaches to utility assessment
q Probability equivalence:

– The DM assesses p

q Gain equivalence:
– The DM assesses t+

q Loss equivalence:
– The DM assesses t-

q Often in applications, the analyst chooses a family of utility functions
and then asks the DM to compare lotteries to fix the parameter(s)

– E.g., the exponential utility function (parameter (ߩ

ݑ ݐ = 1 − ݁ି
௧
ఘ,ߩ > 0

28.1.2019
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Reference lottery revisited

q Assume that an expected utility maximizer with utility
function u uses a reference lottery to assess the
probability of event A

q She thus adjusts p such that she is indifferent
between lottery X and reference lottery Y:

ܧ ݑ ܺ = ܧ ݑ ܻ
⇔ ܲ ܣ ݑ ାݐ + 1 − ܲ ܣ ݑ ିݐ = ݑ݌ ାݐ + 1 − ݌ ݑ ିݐ

⇔ ܲ ܣ ݑ ାݐ − ݑ ିݐ = ݌ ݑ ାݐ − ݑ ିݐ
⇔ ܲ ܣ = ݌

q Utility function u does not affect the result

28.1.2019
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Expected utility in decision trees

q Do everything in the usual way,
but

– Chance node: compute the
expected utility

– Decision node: select the
alternative corresponding to
maximum expected utility

– Cf. the umbrella example, in which
‘some numbers’ represented
preferences

28.1.2019
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ݑ ݐ = 2 − ݁
ି௧
ଵ଴଴଴

UtilityProfit
1.78
1.10
-0.71

1.63
1.18
0.89

1.39

EU=1.07

EU=1.35

EU=1.39



Expected utility in Monte Carlo

q For each sample ,ଵݔ … ௡ݔ, of
random variable X,
compute utility (௜ݔ)ݑ

q Mean of sample
utilities ,(ଵݔ)ݑ … , ௡ݔ)ݑ )
provides an estimate for
ݑ]ܧ ܺ ]
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EUT for normative decision support

q EUT is a normative theory: if the DM is rational, she should select
the alternative with the highest expected utility

– Not descriptive or predictive: EUT does not describe or predict how people
actually do select among alternatives with uncertain outcomes

q The four axioms characterize properties that are required for
rational decision support

– Cf. probability axioms describe a rational model for uncertainty
– The axioms are not assumptions about the DM’s preferences
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Question 1

q Which of the below alternatives would you choose?

1. A sure gain of 1 M€
2. A gamble in which there is a

o 1% probability of getting nothing,
o 89% probability of getting 1M€, and
o 10% probability of getting 5M€

28.1.2019
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Question 2

q Imagine that a rare disease is breaking out in a community and is
expected to kill 600 people. Two different programs are available
to deal with the threat.

– If Program A is adopted, 200 people will be saved
– If Program B is adopted, there’s a 33% probability that all 600 will be

saved and a 67% probability that no one will be saved.

Which program will you choose?

1. Program A
2. Program B

28.1.2019
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Question 3

q Which of the below alternatives would you choose?

1. A gamble in which there is a
o 89% probability of getting nothing and
o 11% probability of getting 1M€

2. A gamble in which there is a
o 90% probability of getting nothing, and
o 10% probability of getting 5M€

28.1.2019
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Question 4

q Imagine that a rare disease is breaking out in some community
and is expected to kill 600 people. Two different programs are
available to deal with the threat.

– If Program C is adopted, 400 of the 600 people will die,
– If Program D is adopted, there is a 33% probability that nobody will die

and a 67% probability that 600 people will die.

Which program will you choose?

1. Program C
2. Program D

28.1.2019
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Allais paradox
q Which of the below alternatives would you choose?

A. A sure gain of 1 M€
B. A gamble in which there is a

o 1% probability of getting nothing,
o 89% probability of getting 1M€, and
o 10% probability of getting 5M€

q Which of the below alternatives would you choose?
C. A gamble in which there is a

o 89% probability of getting nothing and
o 11% probability of getting 1M€

D.   A gamble in which there is a
o 90% probability of getting nothing, and
o 10% probability of getting 5M€

q Actual choice behavior is not always consistent with EUT
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Most people choose A; hence
E[u(A)]>E[u(B)]:
u(1) > 0.10u(5)+0.89u(1)+0.01u(0) ⇒

0.11u(1) > 0.10u(5)+0.01u(0)

Most people choose D; hence
E[u(D)]>E[u(C)]:
0.10u(5)+0.90u(0) > 0.11u(1)+0.89u(0) ⇒

0.11u(1) < 0.10u(5)+0.01u(0)



Framing effect

q Most people choose A and D
q People tend to be ”risk-averse” about gains and ”risk-seeking”

about losses

28.1.2019
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Risk and risk preferences

q Risk: possibility of loss (or some other unpreferred outcome)
– Characterized by both the probability and magnitude of loss

q Risk preferences:
– How does the riskiness of a decision alternative affect its desirability?
– E.g., risk neutrality: choose the alternative with the highest expected (monetary) value, riskiness

is not a factor

q Definition of risk preferences requires that outcomes T are quantitative and
preferences among them monotonic

– E.g., profits, costs, lives saved etc.

q Here, we assume that more is preferred to less, i.e., u(t) is increasing (and
differentiable) for all t

28.1.2019
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Certainty equivalent in Expected Utility
Theory
q Definition: Certainty equivalent of a random variable X, denoted by

CE[X], is an outcome in T such that

ݑ ܧܥ ܺ = ܧ ݑ ܺ ⇔
ܧܥ ܺ = ܧ)ଵିݑ ݑ ܺ )

– IMPORTANT! CE[X] is the certain outcome such that the DM is indifferent
between alternatives X and CE[X]

– CE[X] depends on both the DM’s utility function u (preferences) and the distribution
of X (uncertainty)

o My CE for roulette may be different from yours
o My CE for roulette may be different from my CE for one-armed bandit

28.1.2019
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X

CE[X]

Allowed
because u is
monotonic



Certainty equivalent - Example
q Consider a decision alternative X with ௑݂ 3 = 0.5 and ௑݂ 5 = 0.5 and

three DMs with the below utility functions
q Compute each DM’s certainty equivalent for X

28.1.2019
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(ݐ)ݑ

ݑ]ܧ ܺ ]
(5)ݑ

(3)ݑ

ܧܥ
[ܺ

]

3 5 ݐ

(ݐ)ݑ

(5)ݑ

ܧܥ
[ܺ

]3 5 ݐ

(ݐ)ݑ

ݑ]ܧ ܺ ]

(5)ݑ

ܧܥ
[ܺ

]

3 5 ݐ

(3)ݑ

(3)ݑ

ݑ]ܧ ܺ ]

q The shape of the utility function seems to determine whether CE[X] is
below, above, or equal to E[X]=4



Convex and concave functions

q Definition: u is concave, if for any :ଶݐ,ଵݐ
ݑߣ ଵݐ + (1 − ݑ(ߣ ଶݐ ≤ ݑ ଵݐߣ + (1 − ଶݐ(ߣ ߣ∀ ∈ [0,1]

– A line drawn between any two points ݑ ଵݐ and ݑ ଶݐ is below (or
equal to) ݑ ݐ

– ′′ݑ ݐ ≤ 0 ݐ∀ ∈ ܶ, if the second derivative exists

q Definition: u is convex, if for any :ଶݐ,ଵݐ
ݑߣ ଵݐ + (1 − ݑ(ߣ ଶݐ ≥ ݑ ଵݐߣ + (1 − ଶݐ(ߣ ߣ∀ ∈ [0,1]

– A line drawn between any two points ݑ ଵݐ and ݑ ଶݐ is above (or
equal to) ݑ ݐ

– ′′ݑ ݐ ≥ 0 ݐ∀ ∈ ܶ, if the second derivative exists

28.1.2019
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Convex utility functions

q For any utility function u, ܧ ݑ ܺ = ∑ ௑݂(ݐ௜) 
(௜ݐ)ݑ  for X with

discrete set of outcomes ௜ݐ , ݅ = 1, … ,݊
q Note: ∑ ௑݂(ݐ௜) 

 = 1

q Let u be convex. Then
q ݑߣ ଵݐ + (1 − ݑ(ߣ ଶݐ ≥ ݑ ଵݐߣ + (1 − ଶݐ(ߣ ߣ∀ ∈ 0,1 (by def., previous slide)
q And, specifically, by applying this definition several times,

௑݂ ଵݐ ݑ ଵݐ +  … + ௑݂ ௡ݐ ݑ ௡ݐ = ܧ ܷ ܺ ≥ ݑ ෍ ௑݂ ௜ݐ ௜ݐ

 

 

= ܧ)ܷ ܺ )

q For convex u: Expected utility of X is higher than (expected) utility
of E(X)

28.1.2019
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Jensen’s inequality

q For any random variable X, if function u is
I. Convex, then ݑ]ܧ ܺ ] ≥ ܧ)ݑ ܺ )
II. Concave, then ܧ ݑ ܺ ≤ ݑ ܧ ܺ
⇒

28.1.2019
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concave  ݑ
⇒ ܧ ݑ ܺ ≤ ݑ ܧ ܺ

⇔ ܧ)ଵିݑ ݑ ܺ ) ≤ ݑ)ଵିݑ ܧ ܺ )
⇔ [ܺ]ܧܥ ≤ ܧ ܺ

convex  ݑ
⇒ ܧ ݑ ܺ ≥ ݑ ܧ ܺ

⇔ ܧ)ଵିݑ ݑ ܺ ) ≥ ݑ)ଵିݑ ܧ ܺ )
⇔ [ܺ]ܧܥ ≥ ܧ ܺAllowed

because u is
increasing



Risk attitudes in Expected Utility Theory

I. u is concave iff CE[X] ≤ E[X] for all X
II. u is convex iff CE[X] ≥ E[X] for all X
III. u is linear iff CE[X]=E[X] for all X

q A DM with a linear utility function is called risk neutral
– Indifferent between uncertain outcome X and a certain outcome equal to E[X]

q A DM with a concave but not linear utility function is called risk averse
– Prefers a certain outcome smaller than E[X] to uncertain outcome X

q A DM with a convex but not linear utility function is called risk seeking
– Requires a certain outcome larger than E[X] to not choose uncertain outcome X

28.1.2019
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CE[X] ?



Risk premium in Expected Utility Theory

q Definition: Risk premium for random variable X is RP[X]=E[X]-CE[X]
– RP[X] depends on both the DM’s preferences (u) and the uncertainty in the decision

alternative (distribution of X)
– RP[X] is the premium that the DM requires on the expected value to change a

certain outcome of CE[X] to an uncertain outcome X

I. DM is risk neutral, iff RP[X]=0 for all X
II. DM is risk averse, iff RP[X] ≥ 0 for all X
III. DM is risk seeking, iff RP[X] ≤ 0 for all X

28.1.2019
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(5)ݑ

(3)ݑ

ܴܲ[ܺ]
3 5 ݐ



Computing CE and RP

1. Compute E[u(X)] and E(X)
2. Solve ଵିݑ ȉ
3. Compute ܧܥ ܺ = ଵିݑ [(ܺ)ݑ]ܧ
4. Compute RP[X]=E[X]-CE[X]

q Step 2: if ଵିݑ ȉ cannot be solved
analytically, solve it numerically from
ݑ ܧܥ ܺ = ܧ ݑ ܺ
– Trial and error
– Computer software

28.1.2019
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Example: Jane’s ݑ ݐ = ଶݐ and her
payoff is Y~Uni(3,5)
1. ܧ ݑ ܺ = ∫ ௒݂ ݐ ݐ݀(ݐ)ݑ = 16.33ହ

ଷ

2. ݒ = ݑ ݐ = ଶݐ ⇔ ݐ = ଵିݑ ݒ =  ݒ

3. ܧܥ ܺ = ଵିݑ 16.33 = 16.33 = 4.04
4. RP[X] = 4 - 4.04 = -0.04



Prospect theory
q Expected Utility Theory assumes that people only care about the

outcome in the absolute sense
q Yet, empirical evidence suggests that people tend to

– think of possible outcomes relative to a certain reference point (often the
status quo),

– have different risk attitudes towards gains and losses with regard to the
reference point,

– overweight extreme, but unlikely events, but underweight "average" events.

q Prospect theory seeks to accommodate these empirical findings:
Tversky, A. and D. Kahneman. ”Advances in prospect theory: Cumulative
representation of uncertainty.” Journal of Risk and uncertainty 5.4 (1992): 297-
323.

q NOTE:
– EUT is a normative theory: tells what rational people should do
– Prospect theory is a descriptive theory: tries to describe what people tend to

do in real life

28.1.2019
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Stochastic dominance

q Question: Which decision alternative would you choose?

1. X
2. Y

28.1.2019
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Definition: X dominates Y in the sense of First-
degree Stochastic Dominance (denoted X ≽FSDY), if

௑ܨ ݐ ≤ ௒ܨ ݐ ݐ∀   ∈ ܶ

with strict inequality for some t.

Theorem: X ≽FSDY if and only if
ܧ ݑ ܺ ≥ ܧ ݑ ܻ ݑ∀   ∈ ܷ଴,

where ܷ଴ is the set of all strictly increasing functions

Implication: If an alternative is strictly dominated in the sense
of FSD, then any DM who prefers more to less should not
choose it.

First-degree Stochastic Dominance

28.1.2019
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FSD: Mining example

q A mining company has an opportunity
to bid on two separate parcels of land

q Decisions to be made:
q Overall commitment of some $500

million
– How much to bid?
– Bid alone or with partner?
– How to develop the site if the bid turns out

successful?

q Large decision tree model built to
obtain cumulative distribution functions
of different strategies (= decision
alternatives)

28.1.2019
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Source: Hax and Wing (1977): ”The use of decision analysis in a capital investment
probelm” In Bell, Keeney, and Raiffa (eds.): Conflicting Objectives in Decisions, Wiley.



FSD: Example (cont’d)

q Assume that the
company prefers a
larger net present
value (NPV) to a
smaller one

q Which strategies
would you
recommend?

28.1.2019
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Source: Hax and Wing (1977): ”The use of decision analysis in a capital investment
probelm” In Bell, Keeney, and Raiffa (eds.): Conflicting Objectives in Decisions, Wiley.



Second-degree Stochastic Dominance

q Theorem:

ܧ ݑ ܺ ≥ ܧ ݑ ܻ ݑ∀   ∈ ܷ ௖௖௩ ⇔න ௑ܨ ݐ − ௒ܨ ݐ ݐ݀ ≤ ݖ∀  0 ∈ ܶ,
௭

ିஶ
where ܷ ௖௖௩ = ݑ ∈ ܷ଴|ݑ is concave .

q Definition: X dominates Y in the sense of Second-degree Stochastic Dominance
(denoted X ≽SSD Y), if

න ௑ܨ ݐ − ௒ܨ ݐ ݐ݀ ≤ ݖ∀  0 ∈ ܶ.
௭

ିஶ

with strict inequality for some z.
q Implication: If an alternative is strictly dominated in the sense of SSD, then any risk-

averse or risk neutral DM who prefers more to less should not choose it.
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SSD: graphical interpretation

28.1.2019
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ିஶ

q Integral
= the area between ௑ܨ ݐ and ௒ܨ ݐ

up to point z
= the area between the ௑ܨ ݐ ௒ܨ- ݐ

and the horizontal axis up to point z

q If it is non-positive for all z, then
X ≽SSD Y

q Here: X ≽SSD Y, because area A is
bigger than area B, and A is left of B

A: ࢅࡲ ࢚ > ࢄࡲ ࢚
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SSD: Mining example revisited

q Assume that the
mining company is
either risk-averse or
risk-neutral

q Which strategies
would you
recommend?

28.1.2019
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Properties of FSD and SSD
q Both FSD and SSD are transitive:

– If X ≽FSD Y and Y ≽FSD Z, then X ≽FSD Z
o Why? Take any t. Then, ௑ܨ ݐ ≤ ௒ܨ ݐ ≤ ௓ܨ ݐ .

– If X ≽SSD Y and Y ≽SSD Z, then X ≽SSD Z
o Why? Take any ݑ ∈ ܷ௖௖௩ . Then, ܧ ݑ ܺ − ݑ]ܧ ܼ ] ≥ ܧ ݑ ܻ − ݑ]ܧ ܼ ] ≥ 0.

q FSD implies SSD:
– If X ≽FSD Y, then X ≽SSD Y.

o Why? Take any ݑ ∈ ܷ௖௖௩. Then, ݑ ∈ ܷ଴, and since X ≽FSD Y, we have ܧ ݑ ܺ ≥
ݑ]ܧ ܻ ].

o Or consider the definitions of FSD and SSD: If ௑ܨ ݐ ≤ ௒ܨ ݐ ݐ∀   ∈ ܶ , then

න ௑ܨ ݐ − ௒ܨ ݐ ݐ݀ ≤ න ݐ0݀ ≤ ݖ∀  0 ∈ ܶ
௭

ିஶ

௭

ିஶ
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Summary

q Utility function is elicited through specification of equally preferred
lotteries
q Then: expected utilities equal

q The shape of the utility function determines the DM’s risk attitude
– Linear utility function = risk neutral
– Concave utility function = risk averse
– Convex utility function = risk seeking

q Even if the utility function is not completely specified, decision
recommendations may be implied by stochastic dominance

– If the DM prefers more to less, she should not choose an FSD dominated alternative
– If the DM is also risk averse, she should not choose an SSD dominated alternative

28.1.2019
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Decision making and
problem solving –
Lecture 4
• Risk measures
• Multiattribute value theory
• Axioms for preference relations
• Elicitation of attribute-specific value functions

Liesiö, Punkka, Salo, Vilkkumaa



Motivation
q Last time we learned how :

– To model the DM’s preferences over risk by eliciting her utility function
– The shape (concave / linear / convex) of the utility function corresponds to

the DM’s risk attitude (risk averse / neutral / seeking)
– Decision recommendations may be implied by stochastic dominance even

if the utility function is not (completely) specified:
– If the DM prefers more to less, she should not choose an FSD dominated alternative
– If the DM is also risk averse, she should not choose an SSD dominated alternative

q This time (Part A):
– We take a look at risk measures and examine how they can be used

to describe alternatives’ risks

31.1.2019
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Risk measures

q Risk measure is a function that maps each decision alternative to a
single number describing its risk

– E.g., variance ݎܸܽ ܺ = ܺ)]ܧ − [ଶ([ܺ]ܧ
– The higher the variance, the higher the risk

q Risk measures are not based on EUT, but can be used together with
expected values to produce decision recommendations

– Risk constraint: Among alternatives whose risk is below some threshold, select the
one with the highest expected value

– Risk minimization: Among alternatives whose expected value is above some
threshold, select the one with minimum risk

– Efficient frontier: Select one of those alternative compared to which no other
alternative yields higher expected value and smaller risk

31.1.2019
3



-10 -5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

10%

90%

-10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

t euros

FY(t)

FX(t)

Risk measures: Value-at-Risk (VaR)

q Value-at-Risk (VaRఈ[ܺ]) is the outcome
such that the probability of a worse or
equal outcome is :ߙ

න ௑݂ ݐ ݐ݀ = ௑ܨ VaRఈ[ܺ] =
VaRഀ[௑]

ିஶ
.ߙ

q Higher VaR means smaller risk
– Unless applied to a loss distribution

q Common values for :ߙ 1%, 5%, and 10%
q Problem: the length/shape of the tail is not

taken into account

31.1.2019
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VaRଵ଴% ܺ = 0.6€
VaRଵ଴% ܻ = −1.4€



Mining example revisited

q Assess VaRହ% for
strategies 1 and 25

31.1.2019Strategy 1
Strategy 25
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Risk measures: Conditional Value-at-
Risk (CVaR)

q Computation of CVaR ܺ to discrete and continuous X:

ܧ ܺ ܺ ≤ VaRఈ ܺ = ∑ ݐ ௙೉(௧)
ఈ

 
௧ஸVaRഀ ௑ , ܧ ܺ ܺ ≤ VaRఈ ܺ = ∫ ݐ ௙೉(௧)

ఈ
VaRഀ ௑
ିஶ .ݐ݀

– Note: ߙ = ܲ ܺ ≤ VaRఈ ܺ ; PMF/PDF ௑݂(ݐ) is scaled such that it sums/integrates up to 1.
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q Conditional Value-at-Risk (CVaRఈ[ܺ]) is the
expected outcome given that the outcome is at most
VaRఈ:

CVaR ܺ = ܺ|ܺ]ܧ ≤ VaRఈ ܺ ]

q Higher CVaR means smaller risk (unless applied to
losses)

௑݂(ݐ)

௒݂(ݐ)

VaRଵ଴% ܺ = −1.85
VaRଵ଴% ܻ = −0.97

CVaRଵ଴% ܺ = −3.26
CVaRଵ଴% ܻ = −4.23



Computation of VaR and CVaR

q If the inverse CDF of X is well-defined, VaR can be obtained from
VaRఈ ܺ = (ߙ)௑ିଵܨ

– In Excel: norm.inv, lognorm.inv, beta.inv, binom.inv etc
– In Matlab: norminv, logninv, betainv, binoinv etc

q CVaR can then be computed using the formulas on the previous slide
– Sometimes an analytic solution can be obtained; if, e.g., ܺ~ܰ ଶߪ,ߤ and VaRఈ ܺ = then ,ߚ

CVaRఈ ܺ = ߤ − ߪ
థ ഁషഋ

഑

஍ ഁషഋ
഑

,

where ߶ and Φ are the standard normal PDF and CDF, respectively.
– Sometimes numerical integration is needed

31.1.2019
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Computation of VaR and CVaR

q With discrete random variables VaR and CVaR are not always well
defined for small values of ߙ

– Example:

– VaRଵ଴% ܺ =1

– CVaRଵ଴% ܺ = 0.06(−10)+0.02(−5)+0.02(1)
0.06+0.02+0.02 =-6.8

– But what are VaRହ% ܺ , CVaRହ% ܺ ?

31.1.2019
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VaR and CVaR with Monte Carlo - Excel
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=PERCENTILE.INC(C12:C211;0.1)

=IF(C12<=$F$10;C12;”above”)

=AVERAGE(D12:D211)

Note! 200 samples is very
little, because only 1/10=20
are used to estimate CVaR



VaR and CVaR with Monte Carlo -
Matlab
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Risk measures and stochastic
dominance
q Theorem: X ≽FSD Y if and only if

VaRఈ ܺ ≥ VaRఈ ܻ ߙ∀  ∈ 0,1

q Theorem: X ≽SSD Y if and only if
CVaRఈ ܺ ≥ CVaRఈ ܻ ߙ∀  ∈ 0,1

31.1.2019
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EUT vs. Risk measures

q EUT provides a more comprehensive way to capture the DM’s
preferences over uncertain outcomes

q With risk measures, one must answer questions such as
– Which measure to use?
– Which ߙ to use in VaR and CVaR?
– How to combine EV and the value of a risk measure into an overall performance

measure?

q Yet, if answers to such questions are exogenously imposed, the use
of risk measures can be easy

– E.g., laws, regulations, industry standard etc.

31.1.2019
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Motivation
q Consider yourself

choosing
accommodation for
a (downhill) skiing
vacation trip

q How do the
accommodation
alternatives differ
from each other?
q What are the

attributes that
influence your decision?

31.1.2019
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Motivation
q So far:

– We have considered decision-making situations in which the DM has one
objective (e.g., maximize the expected value/utility of a monetary payoff)

q This time:
– We consider decision-making situations in which the DM has

multiple objectives or, more precisely…
– Multiple attributes with regard to which the achievement of some

fundamental objective is measured

31.1.2019
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Multiattribute value theory

q Ralph Keeney and Howard Raiffa (1976):  Decisions with Multiple Objectives:
Preferences and Value Tradeoffs

q James Dyer and Rakesh Sarin (1979): Measurable multiattribute value functions,
Operations Research Vol. 27, pp. 810-822

q Elements of MAVT
– A value tree consisting of objectives, attributes, and alternatives
– Preference relation over the alternatives’ attribute-specific performances and differences thereof &

their representation with an attribute-specific value function
– Preference relation over the alternatives’ overall performances and differences thereof & their

representation with a multiattribute value function

31.1.2019
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Value tree: objectives, attributes, and
alternatives
q A value tree consists of

– A fundamental objective
– Possible lower-level objectives
– Attributes that measure the

achievement of the objectives
– Alternatives whose attribute-

specific performances are being
measured

31.1.2019
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Value tree: objectives, attributes and
alternatives
q The attributes a1,…, an have

measurement scales Xi, i=1,…,n; e.g.,
– X1=[1000€/month, 6000€/month]
– X2 =[2 weeks/year, 8 weeks/year]
– X3 =[0 days/year, 200 days/year]
– X4 ={poor, fair, good, excellent}

q Alternatives ݔ = ,ଵݔ) ,ଶݔ (௡ݔ… are
characterized by their performance
w.r.t. the attributes; e.g.,

– Banker=(6000€/month, 5 weeks/year, 40
days/year, fair) ∈ ଵܺ × ܺଶ × ܺଷ × ܺସ .

31.1.2019
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Preference relation: attribute-specific
performance
q Let ≽ be preference relation among performance levels a and b on a given

attribute

Preference ܽ ≽ ܾ: ܽ at least as preferable as ܾ
Strict preference ܽ ≻ ܾ defined as ¬(ܾ ≽ ܽ)
Indifference ܽ~ܾ defined as ܽ ≽ ܾ ∧ ܾ ≽ ܽ

31.1.2019
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Axioms for preference relation

q A1: ≽ is complete
– For any ܽ, ܾ ∈ ܺ, either ܽ ≽ ܾ or ܾ ≽ ܽ or both

q A2: ≽ is transitive
– If ܽ ≽ ܾ and ܾ ≽ ܿ, then ܽ ≽ ܿ

31.1.2019
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Ordinal value function

Theorem: Let axioms A1-A2 hold. Then, there exists an ordinal
value function ௜ݒ ȉ : ௜ܺ → ℝ that represents preference relation ≽ in
the sense that

௜ݒ ܽ ≥ ௜ݒ ܾ ⟺ ܽ ≽ ܾ

q An ordinal value function does not describe strength of preference,
i.e., it does not communicate much more an object is preferred to
another

31.1.2019
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Ordinal value function
qAssume you have two mopeds A and B with top speeds of 30 and

35km/h, respectively
qYou have two alternatives for upgrade

q Increase top speed of moped A to 40
q Increase top speed of moped B to 45

qYour prefer a higher top speed to a lower one
q 45>40>35>30
q v(45)=1, v(40)=0.8, v(35)=0.5, v(30)=0.4
qw(45)=0.9, w(40)=0.8, w(35)=0.6, w(30)=0.4

qBoth v and w are ordinal value functions representing your
preferences but they do not describe your preferences between the two
upgrade alternatives

q v(45)-v(35)=0.5 > v(40)-v(30)=0.4, but w(45)-w(35)=0.3 < w(40)-w(30) =0.4
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Ordinal value function
Theorem: Ordinal value functions ௜ݒ ȉ and ௜ݓ ȉ represent the same
preference relation ≽ if and only if there exists a strictly increasing
function ߶:ℝ → ℝ such that ௜ݓ ܽ = ߶ ௜ݒ ȉ   ∀ܽ ∈ .ܣ

Example: Let consultant ≻ professor ≻ janitor be Jim’s preferences over
these jobs and (consultant)ݒ = 10 > (professor)ݒ = 8 > (janitor)ݒ = 7.
Then ᇱݒ and ′′ݒ both represent the same preferences as ordinal
value function ݒ

31.1.2019
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consultant professor janitor
ݒ 10 8 7
′ݒ 20 16 14
′′ݒ 20 16 8



The goal is to compare multi-attribute
alternatives, wherefore ordinal value
functions are not enough
q Let ≽ௗ be preference relation among differences in performance levels on a

given attribute

– Preference (ܽ ← ܾ) ≽ௗ (ܿ ← ݀): a change from ܾ to ܽ is at least as preferable as
a change from ݀ to ܿ

– Strict preference (ܽ ← ܾ) ≻ௗ  (ܿ ← ݀) defined as ¬((ܿ ← ݀) ≽ௗ (ܽ ← ܾ))

– Indifference ܽ ← ܾ ~ௗ(ܿ ← ݀) defined as (ܽ ← ܾ) ≽ௗ (ܿ ← ݀) ∧ (ܿ ←
݀) ≽ௗ (ܽ ← ܾ)
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Axioms for preference relation (cont’d)
q A3: ∀ܽ,ܾ, ܿ ∈ ௜ܺ : ܽ ≽ ܾ ⇔ (ܽ ← ܾ) ≽ௗ (ܿ ← ܿ)

– If a is preferred to b, then a change from b to a is preferred to no change

q A4: ∀ܽ,ܾ, ܿ, ݀ ∈ ௜ܺ :  (ܽ ← ܾ) ≽ௗ (ܿ ← ݀) ⇔ (݀ ← ܿ) ≽ௗ (ܾ ← ܽ)
– E.g., if an increase in salary from 1500€ to 2000€ is preferred to an increase from 2000€ to 2500€, then a

decrease from 2500€ to 2000€ is preferred to a decrease from 2000€ to 1500€

q A5: ∀ܽ,ܾ, ܿ, ݀, ݁, ݂ ∈ ௜ܺ :  (ܽ ← ܾ) ≽ௗ (݀ ← ݁) ∧ (ܾ ← ܿ) ≽ௗ (݁ ← ݂) ⇒ (ܽ ← ܿ) ≽ௗ (݀ ← ݂)
– If two incremental changes are both preferred to some other two, then the overall change resulting from the

first two increments is also preferred.

q A6: ∀ܾ, ܿ, ݀ ∈ ௜ܺ  ∃ܽ ∈ ௜ܺ  such that ܽ ← ܾ ~ௗ ܿ ← ݀  and ∀ܾ, ܿ ∈ ௜ܺ  ∃ܽ ∈ ௜ܺ  such that (ܾ ←
ܽ)~ௗ ܽ ← ܿ

– Equally preferred differences between attribute levels can always be constructed
– There is always an attribute level a between b and c such that a change from c to a is equally preferred to a

change from a to b.

q A7: The set (or sequence) ܽ௡|ܾ ≻ ܽ௡ ݁ݎℎ݁ݓ ܽ௡ ← ܽ௡ିଵ ~ௗ(ܽଵ← ܽ଴) is finite for any b in Xi
– The sequence of equally preferred differences over a fixed interval is finite
– “No b can be infinitely better than other performance levels”

31.1.2019
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As French (1988) incorrectly puts it; the idea here is that it is possible to
construct equally preferred changes in order to represent preferences



Cardinal value function

q Theorem: Let axioms A1-A7 hold. Then, there exists a cardinal
value function ௜ݒ ȉ : ௜ܺ → ℝ that represents preference relations ≽
and ≽ௗ in the sense that

௜ݒ ܽ ≥ ௜ݒ ܾ ⟺ ܽ ≽ ܾ
௜ݒ ܽ − ௜ݒ ܾ ≥ ௜ݒ ܿ − ௜ݒ ݀ ⟺ ܽ ← ܾ ≽ௗ ܿ ← ݀ .

Note: A cardinal value function is unique up to positive affine
transformations, i.e., (ݔ)௜ݒ and ௜ᇱݒ ݔ = (ݔ)௜ݒߙ + ߙ,ߚ > 0 and
represent the same preferences

31.1.2019
25



Cardinal value function: positive affine
transformations
Example: Let consultant ≻ professor ≻ janitor and ( ݐ݊ܽݐ݈ݑݏ݊݋ܿ ←
(ݎ݋ݏݏ݂݁݋ݎ݌ ≽ௗ ݎ݋ݏݏ݂݁݋ݎ݌ ← ݎ݋ݐ݆݅݊ܽ be Jim’s preferences and
(consultant)ݒ = 10 > (professor)ݒ = 8 > (janitor)ݒ = 7.
Then ᇱݒ and ′′ݒ both represent same preferences as cardinal value
function ݒ

31.1.2019
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consultant professor janitor
ݒ 10 8 7

ᇱݒ = ݒ2 20 16 14
ᇱᇱݒ = ᇱݒ − 10 10 6 4



Attribute-specific value functions

q A value function maps the
attribute-specific measurement
scale onto a numerical scale in
accordance with the DM’s
preferences

q Value and utility:
– Value is a measure of preference

under certainty
– Utility is a measure of preference

under uncertainty
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Elicitation of value functions

q Phases:
– Define the measurement scale ௜ܺ = [ܽ௜଴, ܽ௜∗] (or ܽ௜∗, ܽ௜଴ )
– Ask a series of eliciation questions
– Check that the value function gives realistic results
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Elicitation of value functions:
Indifference methods
q Bisection method:

– Ask the DM to assess level ଴.ହݔ ∈ [ܽ௜଴,ܽ௜∗] such that she is indifferent
between change ଴.ହݔ ← ܽ଴ and change ܽ∗ ← .଴.ହݔ

– Then, ask her to assess levels ଴.ଶହݔ and ଴.଻ହݔ such that she is indifferent
between

o changes ଴.ଶହݔ ← ܽ଴ and ଴.ହݔ ← ଴.ଶହ, andݔ
o changes ଴.଻ହݔ ← ଴.ହݔ and ܽ∗ ← .଴.଻ହݔ

– Continue until sufficiently many points have been obtained
o Use, e.g, linear interpolation between elicited points if needed

– The value function can be obtained by fixing ௜(ܽ௜଴)ݒ and ௜(ܽ௜∗)ݒ at, e.g., 0
and 1
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Elicitation of value functions:
Indifference methods
q Example of the bisection method

– Attribute ܽଷ : Traveling days per year
– Measurement scale ܽଷ∗ ,ܽଷ଴ , where ܽଷ∗ = 0 and

ܽଷ଴ = 200; fix ଷݒ ܽଷ଴ =0 and ଷ(ܽଷ∗)ݒ =1
o ”What would be the number ଴.ହݔ of traveling days such that

you would be indifferent between a decrease from 200 to ଴.ହݔ
days a year and a decrease from ଴.ହݔ to zero days a year?”
(Answer e.g., ”130”)

o ”What would be the number ଴.ଶହݔ of traveling days such that
you would be indifferent between a decrease from 200 to ଴.ଶହݔ
days a year and a decrease from ଴.ଶହݔ to 130 days a year?”
(Answer e.g., ”170”)

o ”What would be the number ଴.଻ହݔ of traveling days such that
you would be indifferent between a decrease from 130 to ଴.଻ହݔ
days a year and a decrease from ଴.଻ହݔ to zero days a year?”
(Answer e.g., ”80”)

31.1.2019
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ଷݒ 130 − ଷݒ 200 = ଷݒ 0 − ଷݒ 130 ⇒

ଷݒ 130 =
ଷݒ 0 + ଷݒ 200

2 = 0.5

ଷݒ 170 − ଷݒ 200 = ଷݒ 130 − ଷݒ 170 ⇒

ଷݒ 170 =
ଷݒ 130 + ଷݒ 200

2 = 0.25

ଷݒ 80 − ଷݒ 130 = ଷݒ 0 − ଷݒ 80 ⇒

ଷݒ 80 =
ଷݒ 0 + ଷݒ 130

2 = 0.75
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Elicitation of value functions:
Indifference methods
q Sequence of equally preferred

differences:
– Set ଴ݔ ∈ (ܽ௜଴, ܽ௜∗)
– Ask the DM to assess level ଵݔ ∈ [∗଴,ܽ௜ݔ) such that he is

indifferent between changes ଴ݔ ← ܽ௜଴ and ଵݔ ← ଴ݔ
o ௜ݒ ଴ݔ − ௜ݒ ܽ௜଴ = ௜ݒ ଵݔ − ௜ݒ ଴ݔ ⇒ ௜ݒ ଵݔ ௜ݒ2= ଴ݔ

– Then, ask him to assess level ଶݔ ∈ ,ଵݔ) ܽ௜∗] such that he is
indifferent between change ଵݔ ← ଴ݔ and ଶݔ ← ଵݔ

o ௜ݒ ଵݔ − ௜ݒ ଴ݔ = ௜ݒ ଶݔ − ௜ݒ ଵݔ ⇒ ௜ݒ ଶݔ ௜ݒ3= ଴ݔ
– Continue until ∗ே=ܽ௜ݔ and solve the system of linear equations

o ௜ݒ ଴ݔ = ௩೔ ௫ಿ
ேାଵ

= ଵ
ேାଵ

⇒ ௜ݒ ଵݔ = ଶ
ேାଵ

etc.

– If ∗ே>ܽ௜ݔ (see the exercises!)
o Change ܽ௜∗ to ேݔ and interpolate, or
o Interpolate to get ௜ݒ ܽ௜∗ − ௜ݒ ܽ௜଴
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Example:
[ ܽ௜଴, ܽ௜∗] = 1000, 6000 , =଴ݔ 1500

=ଵݔ 2500, ଶݔ = 4000, ଷݔ = 6000 = ܽ௜∗ ⇒
௜ݒ 1500 = ଵ

ସ
, ௜ݒ 2500 = ଵ

ଶ
, ௜ݒ 4000 = ଷ

ସ
.



Elicitation of value functions:
Indifference methods
q Indifference methods are likely to result in a cardinal value function

that captures the DM’s preferences
q Therefore, they should be used whenever possible

q Yet: indifference methods cannot be used when the measurement
scale is discrete

– E.g.,  Fit with interest: X4 ={poor, fair, good, excellent}
– Cf. Axiom A6
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Elicitation of value functions: direct
methods
q Direct rating

– Ask the DM to directly attach a value to each attribute level
– E.g. ”Assume that the value of poor fit with interests is 0 and the value of excellent fit with

interests is 1. What is the value of fair fit with interests? How about good fit?”

q Class rating
– Divide the measurement scale into classes and ask the DM to attach a value to these classes

q Ratio evaluation
– Take one attribute level as a reference point and ask the DM to compare the other levels to this
– E.g., ”How many times more valuable is 1000€ than 900€?”

q Direct methods should be avoided whenever possible
– Usually do not result in a cardinal value function
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Next time: Aggregation of values

q Problem: How to measure the overall value of alternative ݔ =
,ଵݔ ,ଶݔ … ௡ݔ ?

ܸ ,ଵݔ ,ଶݔ … ௡ݔ =?
q Question: Could the overall value be obtained by aggregating

attribute-specific values?
ܸ ,ଵݔ ,ଶݔ … ௡ݔ = ݂ ݒ ଵݔ , … , ݒ ௡ݔ ?

q Answer: Yes, if the attributes are
– Mutually preferentially independent and
– Difference independent

31.1.2019
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Summary

q Under certain axioms, the DM’s preferences over changes on a
measurement scale can be captured by a cardinal (measurable)
value function
q “I prefer a change from 0 euros to 10 euros to a change from 10

euros to 22 euros”

q Elicitation of the attribute-specific value functions
– Use indifference methods if possible
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Decision making and
problem solving –
Lecture 5
• Preferential and difference independence
• Aggregation of values with an additive value function
• Interpretation and elicitation of attribute weights
• Trade-off methods
• SWING, SMART(S)

Liesiö, Punkka, Salo, Vilkkumaa



Last time

q Given certain axioms, a DM’s preferences about a single attribute can be represented
by a cardinal value function ௜ݒ ௜ݔ such that

௜ݒ ௜ݔ ≥ ௜ݒ ௜ݕ ⟺ ௜ݔ ≽ ௜ݕ
௜ݒ ௜ݔ − ௜ݒ ௜ᇱݔ ≥ ௜ݒ ௜ݕ − ௜ݒ ௜ᇱݕ ⟺ ௜ݔ ← ௜ᇱݔ ≽ௗ ௜ݕ ← ௜ᇱݕ .

q Attribute-specific value functions are obtained by
– Defining measurement scales ,௜଴ݔ] [∗௜ݔ
– Asking a series of elicitation questions through, e.g.,

1. Bisection method
2. Equally preferred differences
3. Giving a functional form; e.g., ௜ݒ ௜ݔ is linear and increasing

q Result: shape of the value function

q Value functions can be normalized such that ௜ݒ ௜଴ݔ = 0 and ௜ݒ ∗௜ݔ = 1.

7.2.2019
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This time
q How to measure the overall value of multi-attribute alternative ݔ =

,ଵݔ ,ଶݔ … ௡ݔ ?
ܸ ,ଵݔ ,ଶݔ … ௡ݔ =?

q Could the overall value be obtained by aggregating attribute-specific
values?

ܸ ,ଵݔ ,ଶݔ … ௡ݔ = ݂ ݒ ଵݔ , … , ݒ ௡ݔ = ෍ (௜ݔ)௜ேݒ௜ݓ
௡

௜ୀଵ
?

q Answer: Yes, if the attributes are
– Mutually preferentially independent and
– Difference independent

q … But how to interpret and elicit attribute weights ?௜ݓ

7.2.2019
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Preferential independence

q Definition: Attribute X is preferentially independent of the other
attributes Y, if for all x,x’ ∈ X

(ᇱ࢟,ݔ) ≽ (′࢟,ᇱݔ) ⇒ ࢟,ݔ ≽ ࢟,ᇱݔ for all y ∈ Y

q Interpretation: Preference over the level of attribute X does not
depend on the levels of the other attributes, as long as they stay
the same
q “All other things Y being equal (no matter what they are), an

alternative with performance level x w.r.t. X is preferred to an
alternative with level x’ ∈ X”

7.2.2019
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Last time
q Consider yourself

choosing
accommodation for
a (downhill) skiing
vacation trip

q How do the
accommodation
alternatives differ
from each other?
q What are the

attributes that
influence your decision?

7.2.2019
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Preferential independence: example 1
q Attribute X is preferentially independent of the other attributes Y, if

for all x,x’ ∈ X
(ᇱ࢟,ݔ) ≽ (′࢟,ᇱݔ) ⇒ ࢟,ݔ ≽ ࢟,ᇱݔ for all y ∈ Y

q 2 Attributes
q X={1,…,500} number of reviews
q Y=[1,10] average of reviews

q Is X preferentially independent of Y?
q No: (500,10) ≽(5,10), but (500,1) ≺(5,1)

q Is Y preferentially independent of X?
q Yes (if higher average is preferred independently of #reviews, as long there

are equally many reviews): (500,10) ≽(500,9) ⇒ (x,10)≽(x,9) for any x

7.2.2019
6



Preferential independence: example 2
q Consider choosing a meal using two attributes:

1. Food ∈ {beef, fish}
2. Wine ∈ {red, white}

q Preferences:
1. Beef is preferred to fish (no matter what the wine is):

o (beef, red) ≽ (fish, red)
o (beef, white) ≽ (fish, white)

2. White wine is preferred with fish and red wine with beef
o (fish, white)≽ (fish, red)
o (beef, red) ≽ (beef, white)

q Food is preferentially independent of wine
q Beef is preferred to fish, no matter what the wine is: (ᇱ࢟,ݔ) ≽ (′࢟,ᇱݔ) ⇒ ࢟,ݔ ≽ ࢟,ᇱݔ for all y ∈ Y

q Wine is not preferentially independent of food
q Attribute-specific valuation of wine is not meaningful from the meal’s perspective

7.2.2019
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Mutual preferential independence

q Definition: Attributes A are mutually perferentially independent, if
any subset of attributes X⊂A is preferentially independent of the
other attributes Y=A\X. I.e., for any X⊂A, Y=A\X:

(ᇱ࢟,࢞) ≽ (′࢟,ᇱ࢞) ⇒ ࢟,࢞ ≽ ࢟,ᇱ࢞ for all y ∈ Y

q Interpretation: Preference over the levels of attributes X does not
depend on the levels of the other attributes, as long as they stay
the same

7.2.2019
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Mutual preferential independence:
example
q Consider choosing a meal using three attributes:

1. Food ∈ {beef, fish}
2. Side dish ∈ {potato, rice}
3. Wine ∈ {red, white}

q Preferences:
1. All other things being equal, red ≽ white, beef ≽ fish, potato ≽ rice
2. Full meals:

o (beef, rice, red)≽(beef, potato, white)

o (fish, potato, white) ≽ (fish, rice, red)

Each attribute is preferentially independent of the other two, but the
attributes are not mutually preferentially independent:
(ࢋ࢚࢏ࢎ࢝,࢕࢚ࢇ࢚࢕࢖,ᇱ࢟) ≽ ,ᇱ࢟) ,ࢋࢉ࢏࢘ (ࢊࢋ࢘ ⇏ ࢋ࢚࢏ࢎ࢝,࢕࢚ࢇ࢚࢕࢖,ݕ ≽ ,࢟ ,ࢋࢉ࢏࢘ ࢊࢋ࢘

7.2.2019
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Mutual pref. independence: example 2

q Choosing a car w.r.t. attributes A={top speed, price, CO2
emissions}
q Attributes defined on continuous scales

q Are all A’s subsets (X) preferentially independent of the other
attributes (Y=A\X)?

q Each single attribute is preferentially independent of the other
attributes, because
q Lower price is preferred to higher price independent of other attributes (if other

attributes are equal)
q Higher top speed is preferred to lower
q Smaller emissions are preferred to bigger ones

7.2.2019
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Mutual pref. independence: example 2
q Is X={price, CO2 emissions} pref. independent of Y={top speed}?

q Consider two cars which differ in price (e.g., 30000 e, 25000 e) and emissions
(150 g/km, 200 g/km) so that one of the alternatives is better in emissions and the
other in price. Set the same top speed for the alternatives (e.g. 230 km/h). Which
one is better?
q DM says (230 km/h, 30000 e, 150 g/km) ≻ (230 km/h, 25000 e, 200 g/km)
q = when top speed is 230 km/h, she is willing to pay extra 5000 € on top of 25000 € for

this emission reduction

q Change the top speed. Is the first car still preferred to the second? e.g. does (150
km/h, 30000 e, 150 g/km) ≻ (150 km/h, 25000 e, 200 g/km) hold?
q “No matter what the top speed is, (30000 e, 150 g/km) ≻ (25000 e, 200 g/km)”

q Consider other prices and emissions; does your preference hold for all top speeds?
q If varying the top speed does not influence preference between alternatives, then

{price, CO2 emissions} is preference independent of {top speed}

7.2.2019
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Difference independence

q Definition: Attribute X is difference independent of the other
attributes Y if for all x,x’ ∈ X

(ᇱ࢟,ݔ) ← (࢟,ݔ)ௗ~(′࢟,ᇱݔ) ← (࢟,ᇱݔ) for all ࢟ ∈ ࢅ

q Interpretation: The preference over a change in attribute X does
not depend on the levels of the other attributes Y, as long as they
stay the same

7.2.2019
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Difference independence: example

q Is {top speed} difference independent of the other attributes {price,
CO2 emissions}?
q Construct y and y’ from any two levels of price and CO2 emissions; y=(25000 e,

150 g/km) and y’=(30000 e, 200 g/km)
q Consider any two levels of top speed; x’=200 km/h, x=250 km/h
q Does (250 km/h, 30000 e, 200 g/km) ← (200 km/h, 30000 e, 200 g/km) ~d (250

km/h, 25000 e, 150 g/km) ← (200 km/h, 25000 e, 150 g/km) hold?
q If yes (for all x,x’,y,y’), then difference independence holds
q That is, does the value of increased top speed depend on the levels of other attributes or not?
q Is the ”amount of” value added by a fixed change in top speed independent of the other

attributes?

7.2.2019
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Difference independence: example of
implication
q We are choosing downhill skiing accommodation with regard to 6

attributes, which include cost per night (in €) and possibility to go
to sauna (binary)
q We think that (170 e, sauna, x3, x4, …)~(145 e, no sauna, x3, x4, …) with some

x3,…,x6 = we would pay an additional 25 € on top of 145 € for the sauna, with some
x3,…,x6

q Then, if difference independence holds (for each attribute):
(145 e, no sauna, x3, x4, …) ← (170e, no sauna, x3, x4, …) ~d

(170 e, sauna, x3, x4, …) ← (170 e, no sauna, x3, x4, …) for any x3,…,x6

q For any x3,…,x6 = ”No matter how close to nearest ski lifts , no matter how fancy
the breakfast, how bad the reviews, etc.”

7.2.2019
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Additive value function

Theorem: If all attributes are mutually preferentially independent and each
attribute is difference independent of the others, then there exists an additive
value function

ܸ ݔ = ܸ ,ଵݔ … , ௡ݔ = ෍ (௜ݔ)௜ݒ
௡

௜ୀଵ

which represents preference relations ≽, ≽ௗ in the sense that
ܸ ݔ ≥ ܸ ݕ ⇔ ݔ ≽ ݕ

ܸ ݔ − ܸ ᇱݔ ≥ ܸ ݕ − (ᇱݕ)ܸ ⇔ ݔ) ← (ᇱݔ ≽ௗ ݕ) ← (ᇱݕ

Note: The additive value function is unique up to positive affine transformations,
i.e., V(x) and V’(x)=αV(x)+β, α>0 represent the same preferences
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… But where are the attribute weights
?࢏࢝
Theorem: If all attributes are (…) , then there exists an
additive value function

ܸ ݔ = ܸ ,ଵݔ … , ௡ݔ = ෍ (௜ݔ)௜ݒ
௡

௜ୀଵ

q Slide 3: Could the overall value be obtained by
aggregating attribute-specific values?

ܸ ,ଵݔ ,ଶݔ … ௡ݔ = ݂ ݒ ଵݔ , … , ݒ ௡ݔ = ෍ (௜ݔ)௜ேݒ௜ݓ
௡

௜ୀଵ
?

7.2.2019
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Normalized form of the additive value
function
q Denote

– ௜଴ݔ = Least preferred level w.r.t to attribute i
– ∗௜ݔ = Most preferred level w.r.t to attribute i

q Then,
ܸ ݔ = ܸ ݔ − ܸ ଴ݔ + (଴ݔ)ܸ
= ∑ ௜ݒ ௜ݔ −௡

௜ୀଵ ∑ ௜ݒ ௜ݔ
଴௡

௜ୀଵ + ܸ ଴ݔ = ∑ ௜ݒ] ௜௡ݔ
௜ୀଵ − ௜ݒ ௜ݔ

଴ ] +ܸ ଴ݔ

= ∑ ௜ݒ] ∗௜ݔ − ௜ݒ ௜ݔ
଴ ]

ௐ೔வ଴

௩೔ ௫೔ ି௩೔ ௫೔
బ

௩೔ ௫೔
∗ ି௩೔ ௫೔

బ
௡
௜ୀଵ + ܸ ଴ݔ

=∑ ௜ܹ
ଵ

௩೔ ௫೔
∗ ି௩೔ ௫೔

బ

ఈ೔வ଴

௜ݒ ௜ݔ + ି௩೔ ௫೔
బ

௩೔ ௫೔
∗ ି௩೔ ௫೔

బ

ఉ೔

௡
௜ୀଵ + ܸ ଴ݔ …
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Normalized form of the additive value
function (cont’d)
…=∑ ௜ܹ ௜ݒ௜ߙ ௜ݔ + ௜ߚ

௩೔
ಿ∈[଴,ଵ]

௡
௜ୀଵ + ܸ ଴ݔ

=∑ ∑ ௜ܹ
௡
௜ୀଵ ȉ ௐ೔

∑ ௐ೔
೙
೔సభ

ୀ௪೔வ଴,∑ ௪೔ୀଵ೙
೔సభ

ȉ ௡(௜ݔ)௜ேݒ
௜ୀଵ + ܸ ଴ݔ

= ∑ ௜ܹ
௡
௜ୀଵ
ఞவ଴

∑ ௡(௜ݔ)௜ேݒ௜ݓ
௜ୀଵ

௏ಿ(௫)

+ ܸ ଴ݔ
ఋ

=χܸே ݔ + ߜ

ܸ ݔ = χܸே ݔ + ߜ is a positive affine transformation of
ܸே ݔ ; they represent the same preferences!
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Normalized attribute-
specific value
function (௜ݔ)௜ேݒ ∈
[0,1]

Normalized additive value function
ܸே(ݔ)=∑ ௡(௜ݔ)௜ேݒ௜ݓ

௜ୀଵ ∈ [0,1]



Interpretation of attribute weights

q By definition, ௜ݓ = ௐ೔
∑ ௐ೔
೙
೔సభ

= ௩೔ ௫೔
∗ ି௩೔ ௫೔

బ

∑ (௩೔ ௫೔
∗ ି௩೔ ௫೔

బ೙
೔సభ )

∝ ௜ݒ ∗௜ݔ − ௜ݒ ௜ݔ
଴

q Attribute weight ௜ݓ reflects the increase in overall value when the performance level on
attribute ai is changed from the worst level to the best – relative to similar changes in
other attributes

q Weights thus reflect trade-offs between attributes; not their absolute ”importance”

q Elicitation of attribute weights without this interpretation is not meaningful
– Do not ask: ”What is more important: environment or economy?”
– Do ask: ”How much is society willing to pay to save an insect species?”

7.2.2019
19



Interpretation of attribute weights

q Correct interpretation and hence application of the weights may lead to
‘resistance’
q Let the least preferred and the most preferred levels in
q cost savings be 0 € and 1 B€ (“money”)
q the number of insect species saved from extinction in Finland be 0 and 1 (“environmental

aspects”)
q Environmental aspects are likely to receive a small weight, as for example weighting (0.5, 0.5)

would mean that we equally prefer saving 1 B€ and saving 1 species

q Cf. …. Let the least preferred and the most preferred levels in
q cost savings be 0 € and 1 B€
q the number of insect species saved from extinction in Finland be 0 and 100

7.2.2019
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Conditions

q What if the conditions (mutual preferential independence and
difference independence) do not hold?

– Reconsider the attribute ranges [ܽ௜଴, ܽ௜∗];  conditions are more likely fulfilled
when the ranges are small

– Reconsider the attributes; are you using the right measures?

q Even if the conditions do not hold, additive value function is often
used to obtain approximate results

7.2.2019
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Example (Ewing et al. 2006*): military
value of an installation
• “How to realign US Army units and which bases to close in order to

operate more cost-efficiently?”

• Many attributes, including ”total heavy maneuver area” (x1) and
”largest contiguous area” (x2; a measure of heavy maneuver area
quality)

- ”Total heavy maneuver area” is not difference independent of the other attributes x2
∪ ′′࢟ because (1000 ha, 100 ha, y’’) ← (100 ha, 100 ha, y’’) ~d (1000 ha, 10 ha, y’’)
← (100 ha, 10 ha, y’’) as the ncrease from 100 to 1000 ha in total area is found quite
useless, if total area consists of over 100 small isolated pieces of land

7.2.2019
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Realignment and Closure (BRAC) 2005 Military Value Analysis. Decision Analysis 3, 33-49



Example (Ewing et al. 2006*): military
value of an installation
q Solution: unite the two attributes x1 and x2 into one attribute ”heavy

maneuver area”
q Then (1000 ha, 100 ha, Y) ← (100 ha, 100 ha, Y) ≻d (1000 ha, 10 ha, Y) ← (100

ha, 10 ha, Y) does not violate required difference independence conditions
,ݔ) (ᇱ࢟ ← ,ᇱݔ) ,ݔ)ௗ~(′࢟ (࢟ ← ,ᇱݔ) (࢟ for all ࢟ ∈ ,ࢅ because x2 is no longer an element
of y or y’

q BUT we need to elicit preferences between different ’pairs’ (x1, x2)

7.2.2019
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Elicitation of attribute weights

q Attribute weights are derived from the DM’s preference
statements

q Approaches to eliciting attribute weights:
– Trade-off weighting
– ”Lighter” techniques: SWING, SMART(S), and ordinal methods

7.2.2019
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Trade-off weighting

q The DM is asked to
1. Set the performance levels of two imaginary alternatives x and y such that they are equally

preferred (x~y):

ଵேݒଵݓ ଵݔ + ⋯+ ௡ேݒ௡ݓ ௡ݔ = ଵேݒଵݓ ଵݕ + ⋯+ ௡ேݒ௡ݓ ௡ݕ , or

2. Set the performance levels of four imaginary alternatives x, x’, y, and y’ such that changes
x ← x’ and y ← y’ are equally preferred ݔ) ← ௗ~′ݔ ݕ ← :(′ݕ

ଵேݒ)ଵݓ ଵݔ − ଵேݒ ଵᇱݔ ) + ⋯+ ௡ேݒ)௡ݓ ௡ݔ − ௡ேݒ ௡ᇱݔ ) = ଵேݒ)ଵݓ ଵݕ − ଵேݒ ଵᇱݕ ) + ⋯+ ௡ேݒ)௡ݓ ௡ݕ − ௡ேݒ ௡ᇱݕ )
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Trade-off weighting

q n-1 pairs of equally preferred alternatives/changes → n-1 linear
constraints + 1 normalization constraint

q If the pairs are suitably selected (no linear dependencies), the system
of n linear constraints has a unique solution

– E.g., select a reference attribute and compare the other attributes against it
– E.g., compare the ”most important” attribute to the second most important, the

second most important to the third most important etc

7.2.2019
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Trade-off weighting: example (1/7)

q Consider two magazines A and B reporting a comparison of cars
ଵݔ , ଶݔ , and ଷݔ , based on the same expert appraisal, using the
same attributes:

7.2.2019
27

:૚ࢇ Top speed
km/h

:૛ࢇ Acceleration
0-100 km/h

:૜ࢇ CO2
emissions g/km

:૝ࢇ Maintenance
costs €/year

ଵݔ 192 km/h 12.0 s 120 g/km 400 €/year

ଶݔ 200 km/h 10.4 s 140 g/km 500 €/year

ଷݔ 220 km/h 8.2 s 150 g/km 600 €/year



Trade-off weighting: example (2/7)

q Consider changing top speed (reference attribute) from 150 to
250 km/h. All other things being equal, what would be an equally
preferred change in

– Acceleration time? Expert’s answer: from 14 to 7 s ⇒

ଵݓ ଵேݒ 250 − ଵேݒ 150 = ଶݓ ଶேݒ 7 − ଶேݒ 14 ⇒ ௪భ
௪మ

= ௩మಿ ଻ ି௩మಿ ଵସ
௩భಿ ଶହ଴ ି௩భಿ ଵହ଴

– CO2 emissions? Expert’s answer: from 100 to 0 g/km ⇒

ଵݓ ଵேݒ 250 − ଵேݒ 150 = ଷݓ ଷேݒ 0 − ଷேݒ 100 ⇒ ௪భ
௪య

= ௩యಿ ଴ ି௩యಿ ଵ଴଴
௩భಿ ଶହ଴ ି௩భಿ ଵହ଴

– Maintenance costs? Expert’s answer: from 800 to o €/year ⇒

ଵݓ ଵேݒ 250 − ଵேݒ 150 = ସݓ ସேݒ 0 − ସேݒ 800 ⇒ ௪భ
௪ర

= ௩రಿ ଴ ି௩రಿ ଼଴଴
௩భಿ ଶହ଴ ି௩భಿ ଵହ଴
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Trade-off weighting: example (3/7)
q Attribute-specific value functions according to the expert:
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Trade-off weighting: example (4/7)
q Magazine A uses the following measurement scales:

– ௪భ
௪మ

= ௩మಿ ଻ ି௩మಿ ଵସ
௩భಿ ଶହ଴ ି௩భಿ ଵହ଴

=

– ௪భ
௪య

= ௩యಿ ଴ ି௩యಿ ଵ଴଴
௩భಿ ଶହ଴ ି௩భಿ ଵହ଴

=

– ௪భ
௪ర

= ௩రಿ ଴ ି௩రಿ ଼଴଴
௩భಿ ଶହ଴ ି௩భಿ ଵହ଴

=

q The three equalities and ∑ ௜ݓ = 1ସ
௜ୀଵ give ଵݓ = ଶݓ = 0.39, ଷݓ = 0.12, =ସݓ 0.10.
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Attribute Measurement scale ࡺ࢏࢜

ܽଵ: Top speed (km/h) [150, 250] ଵேݒ 180 = 0.5, ଵேݒ 192 = 0. 7, ଵேݒ 200 = 0.75, ଵேݒ 220 = 0.87

ܽଶ: Acceleration time (s) [7, 14] ଶேݒ 12 = 0.5, ଶேݒ 10.4 = 0.75, ଶேݒ 8.2 = 0.95

ܽଷ: CO2 emissions (g/km) [120, 150] 5 − ଷ/30ݔ

ܽସ: Maintenance costs (€/year) [400,600] 3− ସ/200ݔ

1
100
30 ଷேݒ) 120 − ଷேݒ 150 )

1 =
10
3

800
200 ଷேݒ) 400 − ଷேݒ 600 )

1 = 4



Trade-off weighting: example (5/7)
q Magazine A reports the alternatives’ attribute-specific values multiplied by 10

(i.e., scaled to interval [0,10]) and the attribute weights:

q Possible (mis)interpretations / ”headlines”:
– ”Only power matters – minor emphasis on costs and environment”
– ”Car ଷݔ terrible w.r.t. CO2 emissions and maintenance costs – yet, it’s the expert’s choice!”
– ”No significant differences in top speed – differences are in CO2 emissions and maintenance

costs”
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૚࢜ : Top speed ૛࢜ : Acceleration ૜࢜ : CO2 ૝࢜ : Maintenance Overall value

ଵݔ 7 5 10 10 6.86

ଶݔ 7.5 7.5 3.3 5 6.76

૜࢞ 8.7 9.5 0 0 7.14

Weightsݓ௜ 39% 39% 12% 10%



Trade-off weighting: example (6/7)
q Magazine B uses the following measurement scales:

– ଵݓ ଵேݒ 250 − ଵேݒ 150 = ଶݓ ଶேݒ 7 − ଶேݒ 14 ⇒ ௪భ
௪మ

= ௩మಿ ଻ ି௩మಿ ଵସ
௩భಿ ଶହ଴ ି௩భಿ ଵହ଴

= ଵ.ଵଵାଵ.ଵଵ
ଵ.଻଺ାସ.ଵଶ

= 0.378

– ௪భ
௪య

= ௩యಿ ଴ ି௩యಿ ଵ଴଴
௩భಿ ଶହ଴ ି௩భಿ ଵହ଴

=
ଵିభఱబమఱబ

ଵ.଻଺ାସ.ଵଶ
= 0.068

– ௪భ
௪ర

= ௩రಿ ଴ ି௩రಿ ଼଴଴
௩భಿ ଶହ଴ ି௩భಿ ଵହ଴

=
ଵି మబబ

భబబబ
ଵ.଻଺ାସ.ଵଶ

= 0.136

q The three equalities and ∑ ௜ݓ = 1ସ
௜ୀଵ give ଵݓ = ଶݓ,0.039 = 0.103, ଷݓ = 0.572, =ସݓ 0.286.
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Attribute M. scale ࡺ࢏࢜

ܽଵ: Top speed [192, 220] ଵேݒ 150 = −4.12, ଵேݒ 180 = −1.18, ଵேݒ 192 = 0, ଵேݒ 200 = 0.29, ଵேݒ 220 = 1, ଵேݒ 250 = 1.76

ܽଶ: Acceleration [8.2, 12] ଶேݒ 14 = ଶேݒ,1.11− 12 = 0, ଶேݒ 10.4 = 0.56, ଶேݒ 8.2 = 1, ଶேݒ 7 = 1.11

ܽଷ: CO2 emissions [0, 250] 1− ଷ/250ݔ

ܽସ: Maintenance [0,1000] 1− ସ/1000ݔ



Trade-off weighting: example (7/7)
q Magazine B reports the alternatives’ attribute-specific values multiplied by 10

(i.e., scaled to interval [0,10]) and the attribute weights:

q Possible (mis)interpretations:
– ”Emphasis on costs and environmental issues”
– ଷݔ” wins only on the least important attributes – yet, it’s the expert’s choice!”

– ”Car ଵݔ terrible w.r.t. top speed and acceleration time”
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૚࢜ : Top speed ૛࢜ : Acceleration ૜࢜ : CO2 ૝࢜ : Maintenance Overall value

ଵݔ 0 0 5.2 6 4.7

ଶݔ 2.9 5.6 4.4 5 4.6

૜࢞ 10 10 4 4 4.9

Weightsݓ௜ 3.9% 10.3% 57.2% 28.6%



Trade-off weighting

q Weights reflect value differences over the measurement scales →
changing the measurement scales changes the weights

q The attribute-specific values used in trade-off weighting take the
measurement scales explicitly into account → weights represent
the DM’s preferences regardless of the measurement scales

q Trade-off weighting has a solid theoretical foundation and requires
thinking; use whenever possible
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SWING

q Swing-weighting process:
1. Consider alternative ଴ݔ = ,ଵ଴ݔ) … , (௡଴ݔ (each attribute on the worst level).
2. Choose the attribute ௝ܽ that you would first like to change to its most

preferred level ∗௝ݔ (i.e., the attribute for which such a change is the most
valuable). Give that attribute a (non-normalized) weight ௝ܹ = 100.

3. Consider ଴ݔ again. Choose the next attribute ܽ௞that you would like to
change to its most preferred level. Give it weight ௝ܹ ∈ 0,100 that reflects
this improvement relative to the first one.

4. Repeat step 3 until all attributes have been weighted.
5. Obtain weights ௝ݓ by normalizing ௝ܹ.
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SWING: example

q Magazine A’s measurement scales

– Alternative ଴ݔ = 150 ௞௠
௛

, ,ݏ14 150 ௚
௞௠

, 600 €
௬௘௔௥

– The first attribute to be changed from the worst to
the best level: ܽଵ → ଵܹ = 100

– The second attribute: ܽଶ → ଶܹ = 100
– The third attribute: ܽଷ → ଷܹ = 30
– The fourth attribute: ܽସ → ସܹ = 20
– Normalized weights: ଵݓ = ଶݓ = 40% ଷݓ =

12%, =ସݓ 8%.
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Attribute Measurement
scale

ܽଵ: Top speed [150, 250]

ܽଶ: Acceleration [7, 14]

ܽଷ: CO2 emissions [120, 150]

ܽସ: Maintenance [400,600]



About SWING weighting

q The mode of questioning explicitly (but only) considers the
least and most preferred levels of the attributes
q Assumes that the DM can directly numerically assess the strength of preference of

changes between these levels

q NOTE that we only have two preference relations: ≽ and ≽ ࢊ
q For example preference statement ଵܹ = 100, ସܹ = 20 is equal to ଵݒ ∗ଵݔ −

ଵݒ ଵ଴ݔ = ସݒ]5 ∗ସݔ − ସݒ ସ଴ݔ ], which assumes that there exist levels ,ଵ଴.ଶݔ ,ଵ଴.ସݔ ,ଵ଴.଺ݔ
଼.ଵ଴ݔ so that ଵ଴.ଶݔ ⟵ ଵ଴ݔ ∼ௗ ଵ଴.ସݔ ⟵ ଵ଴.ଶݔ ∼ௗ … ∼ௗ ∗ଵݔ) ⟵ (଼.ଵ଴ݔ
q Then ଵݒ ∗ଵݔ − ଵݒ ଵ଴ݔ = 5 ଵݒ ଵ଴.ଶݔ − ଵݒ ଵ଴ݔ = ସݒ]5 ∗ସݔ − ସݒ ସ଴ݔ ] if ,ଵ଴.ଶݔ) ,ଶݔ ,ଷݔ ସݔ ) ⟵

ଵ଴ݔ) ଶݔ, , ,ଷݔ ସݔ ) ∼ௗ ଵݔ) ଶݔ, , ,ଷݔ (∗ସݔ ⟵ ଵݔ) , ଶݔ ଷݔ, , (ସ଴ݔ
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SMART

q Simple Multi-Attribute Rating Technique process:
1. Select the least important attribute and give it a weight of 10 points.
2. Select the second least important attribute and give it a weight (≥10 points) that

reflects its importance compared to the least important attribute.
3. Go through the remaining attributes in ascending order of importance and give

them weights that reflect their importance compared to the less important
attributes.

4. Normalize the weights.

q This process does not consider the measurement scales at all →
interpretation of weights is questionable

7.2.2019
38



SMARTS

SMARTS = SMART using Swings
1. Select the attribute corresponding to the least preferred change from

worst to best level and give it a weight of 10 points.
2. Go through the remaining attributes in ascending order of preference over

changing the attribute from the worst to the best level, and give them
weights that reflect their importance compared to the less preferred
changes.

3. Normalize the weights.
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SMARTS: example

q Magazine A’s measurement scales

– Alternative ଴ݔ = 150 ௞௠
௛

, ,ݏ14 150 ௚
௞௠

, 600 €
௬௘௔௥

– Least preferred change from the worst to the best
level: ܽସ → ସܹ = 10

– The second least preferred change: ܽଷ → ଷܹ = 20
– The third least preferred change : ܽଶ → ଶܹ = 40
– The fourth least preferred change: ܽଵ → ଵܹ = 40
– Normalized weights: ଵݓ = ଶݓ = 36%, ଷݓ =

18%, =ସݓ 9%.
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Attribute Measurement
scale

ܽଵ: Top speed [150, 250]

ܽଶ: Acceleration [7, 14]

ܽଷ: CO2 emissions [120, 150]

ܽସ: Maintenance [400,600]



Empirical problems related to SWING &
SMARTS
q People tend to use only multiples of 10 when assessing the

weights, e.g.,
– SWING: ଵܹ = ଶܹ = 100, ଷܹ = 30, ସܹ = 20 → ଵݓ = ଶݓ = ଷݓ,0.40 = ସݓ,0.12 = 0.08
– SMARTS: ଵܹ = ଶܹ = 40, ଷܹ = 20, ସܹ = 10 → ଵݓ = ଶݓ = ଷݓ,0.36 = ସݓ,0.18 = 0.09

� SWING and SMARTS typically produce different weights

q Assessments may reflect only ordinal, not cardinal information
about the weights

– E.g., SMARTS weights ସܹ = 10 and ଷܹ = 20 only imply that ସܹ< ଷܹ, not that
ଷܹ/ ସܹ=2
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Summary
q Additive value function describes the DM’s preferences if and only if the

attributes are mutually preferentially independent and each attribute is
difference independent of the others

q The only meaningful interpretation for attribute weight :௜ݓ

The improvement in overall value when attribute ܽ௜ is changed from its worst
level to its best relative to similar changes in other attributes

q In trade-off weighting, attribute weights are elicited by specifying equally
preferred alternatives (or changes in alternatives), which differ from each
other on at least two attributes
q Use trade-off weighting whenever possible
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Decision making and
problem solving –
Lecture 6
• Ordinal weighting methods
• Incomplete preference statements
• Modeling incomplete information
• Dominance and non-dominated alternatives
• Computing dominance relations
• Decision rules Liesiö, Punkka, Salo, Vilkkumaa



Last time

q If the attributes are mutually preferentially independent and each
attribute is difference independent of the others, then there exists
an additive value function

∑=(ݔ)ܸ ௡(௜ݔ)௜ேݒ௜ݓ
௜ୀଵ

such that
ܸ ݔ ≥ ܸ ݕ ⟺ ݔ ≽ ݕ

ܸ ݔ − ܸ ′ݔ ≥ ܸ ݕ − ܸ ′ݕ ⟺ ݔ ← ′ݔ ≽ௗ ݕ ← ′ݕ .

q Decision recommendation: choose the alternative with the highest
overall value ܸ ݔ

14.2.2019
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Last time
q The only meaningful interpretation for attribute weight :௜ݓ

The improvement in overall value when attribute ܽ௜ is changed from its worst
level to its best relative to similar changes in other attributes

q Attribute weights cannot be interpreted without this interpretation
q Changing the measurement scale changes the weights

q In trade-off weighting, attribute weights are elicited by specifying equally
preferred alternatives (or changes in alternatives), which differ from each
other on at least two attributes
q Use trade-off weighting whenever possible

14.2.2019
3



This time
q Specifying equally preferred alternatives requires quite an attempt. Do

we need such an exhaustive representation of preferences to produce
defensible decision recommendations?
q Answer: Typically not, we can for example derive decision

recommendations based only on ordinal information– like SWING
without giving the points to the attributes
q But… the simplest of such methods have severe problems

q Answer2: Typically not, we learn how to
– Accommodate incomplete preference statements in the decision

model
– Generate robust decision recommendations that are compatible with

such statements
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Ordinal weighting methods

q The DM is only asked to rank the attributes in terms of their
importance (i.e., preferences over changing the attributes from the
worst to the best level, cf. SWING)

– ௝ܴ = 1 for the most important attribute
– ௝ܴ = ݊ for the least important attribute

q This ranking is then converted into numerical weights such that
these weights are compatible with the ranking

– ௜ݓ > ௝ݓ ⇔ ܴ௜ < ௝ܴ
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Ordinal weighting methods

q Rank sum weights are proportional to the
opposite number of the ranks

௜ݓ ∝ ݊ − ܴ௜ + 1

q Rank exponent weights are relative to some
power of (݊ − ܴ௜ + 1)

௜ݓ ∝ (݊ − ܴ௜ + 1)௭

– If z > 1 (z < 1), the power increases (decreases) the
weights of the most important attributes compared
to Rank sum weights.
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e.g. attribute 1 more
important

ଵܹ = 2 − 1 + 1 = 2
ଶܹ = 2 − 2 + 1 = 1

Normalize to get

ଵݓ =
2
3

ଶݓ, =
1
3



Ordinal weighting methods

q Rank reciprocal weights are proportional to the inverse of the ranks
௜ݓ ∝

1
ܴ௜

q Centroid weights are in the center of the set of weights that are
compatible with the rank ordering

– Order the attributes such that ଵݓ ≥ ଶݓ ≥ ⋯ ≥ .௡ݓ
– Then, the extreme points of the compatible weight set are (1,0,0,0…), (½, ½,0,0,…),

(1/3, 1/3, 1/3,0,…),… (1/n,…,1/n).
– The average of these extreme points is

௜ݓ =
1
݊
෍

1
ܴ௜

௡

௝ୀ௜
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Example: centroid weights

q Rank ordering ଵݓ ≥ ଶݓ ≥ :ଷݓ

ଵݓ =
1
3 1 +

1
2 +

1
3 =

11
18 ≈ 0.61

ଶݓ =
1
3

1
2 +

1
3 =

5
18 ≈ 0.28

ଷݓ =
1
3 ȉ

1
3 =

1
9 ≈ 0.11
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w1

w2

w3 (0,0,1)

(1,0,0)

(0,1,0)

ଶݓ = ଷݓ

ଵݓ ≥ ଶݓ ≥ ଷݓ

1
3 ,

1
3 ,

1
3

1
2 ,

1
2 , 0

ଵݓ = ଶݓ

௜ݓ =
1
݊෍

1
ܴ௜

௡

௝ୀ௜



Ordinal weighting methods: example
q Four attributes ܽଵ, ܽଶ,ܽଷ, ܽସ in descending order of importance → ܴଵ =

1,ܴଶ = 2, ܴଷ = 3,ܴସ = 4.

q Different methods produce different weights!
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9

a1 a2 a3 a4 ∑

Rank sum 4 3 2 1 10

weights 0.4 0.3 0.2 0.1 1

Rank exp(z=2) 16 9 4 1 30

weights 0.53 0.30 0.13 0.03 1

Rank reciprocal 1 1/2 1/3 1/4 25/12

weights 0.48 0.24 0.16 0.12 1

Centroid 25/48 13/48 7/48 3/48 1

weights 0.52 0.27 0.15 0.06 1



Ordinal weighting methods: example
(cont’d)
q Assume that the measurement scale of the most important

attribute ܽଵ is changed from [0€,1000€] to [0€,2000€].
q Because ଵݓ ∝ ଵݒ ∗ଵݔ − the weight of attribute ,(ଵ଴ݔ)ଵݒ ܽଵ should be

even larger.
q Yet,

– Ranking among the attributes remains the same → rank-based weights
remain the same

– The alternatives’ normalized scores on attribute ܽଵ become smaller →
attribute ܽଵ has a smaller impact on the decision recommendation

q Avoid using ordinal methods, which produce a ”point estimate”
weight
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Weighting in value trees
q Two modes of weighting

– Hierarchical: all weights are elicited
and then multiplied vertically

o Problem: elicitation questions for the higher-
level attributes are difficult to interpret:

ଶݓ+ଵݓ=෥ଵݓ ∝ ((ଵ଴ݔ)ଵݒ-(∗ଵݔ)ଵݒ) ((ଶ଴ݔ)ଶݒ-(∗ଶݔ)ଶݒ)+
→ Avoid!

– Non-hierarchical: weights are only
elicited for the twig-level attributes

14.2.2019
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Ideal car

DrivingEconomy

Top speedAccelerationPrice Expenses

Ideal car

DrivingEconomy

Top speedAccelerationPrice Expenses

෥ଶݓ = ෥ଵݓ0.78 = 0.22

ଵݓ = 0.22 ȉ 0.45 = 0.10
0.50 0.500.550.45

ଶݓ = 0.12 ଷݓ = 0.39 ସݓ = 0.39

ଵݓ = 0.10 ଶݓ = 0.12 ଷݓ = 0.39 ସݓ = 0.39

0.22 0.78



Recap: elements of MAVT

q Elements of MAVT:
– Alternatives ܺ = ,ଵݔ … , ௠ݔ

– Attributes ܣ = ܽଵ, … , ܽ௡
– Attribute weights ݓ = ,ଵݓ] … [௡ݓ, ∈ ℝ௡

– Attribute-specific (normalized) values ݒ ∈ ℝ௠×௡, ௝௜ݒ = ௜ேݒ ௜ݔ
௝ ∈ [0,1]

– Overall values of alternatives ܸ ௝ݔ ,ݓ, ݒ = ∑ ௝௜௡ݒ௜ݓ
௜ୀଵ , ݆ = 1, … ,݉

14.2.2019
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Recap: Elicitation of attribute weights
q Defining equally preferred alternatives / changes between

alternatives leads on a linear equation on the weights
– E.g., ”All else being equal, a change 150 → 250 km/h in top speed is

equally preferred to a change 14 → 7 s in acceleration time” ⇒

ଵேݒଵݓ 250 + ଶேݒଶݓ 14 + ଷேݒଷݓ ଷݔ + ସேݒସݓ ସݔ − ܸ 150,14, ସݔ,ଷݔ =
ଵேݒଵݓ 150 + ଶேݒଶݓ 7 + ଷேݒଷݓ ଷݔ + ସேݒସݓ ସݔ − ܸ 150,14, ସݔ,ଷݔ ⟺

ଵேݒଵݓ 250 − ଵேݒଵݓ 150 = ૛ேݒ૛ݓ 7 ૛ேݒ૛ݓ− 14

q Question: What if the DM finds it difficult or even impossible to define
such alternatives / changes?

– E.g., she can only state that a change 150 → 250 km/h in top speed is
preferred to a change 14 → 7 s in acceleration time?

14.2.2019
13



Incomplete preference statements
q Set the performance levels of two

imaginary alternatives ݔ and ݕ such that
ݔ ≽ ݕ ⇒

ଵேݒଵݓ ଵݔ + ⋯+ ௡ேݒ௡ݓ ௡ݔ
≥ ଵேݒଵݓ ଵݕ + ⋯+ ௡ேݒ௡ݓ ௡ݕ .

14.2.2019
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Attribute Measurement scale

ܽଵ: Top speed (km/h) [150, 250]

ܽଶ: Acceleration time (s) [7, 14]

ܽଷ: CO2 emissions (g/km) [120, 150]

ܽସ: Maintenance costs (€/year) [400,600]

q For instance, a change 150 → 250 km/h in top speed is preferred to
a change 14 → 7 s in acceleration time:
ଵேݒଵݓ 250 + ଶேݒଶݓ 14 + ଷேݒଷݓ ଷݔ + ସேݒସݓ ସݔ − ܸ 150,14, ସݔ,ଷݔ ≥
ଵேݒଵݓ 150 + ଶேݒଶݓ 7 + ଷேݒଷݓ ଷݔ + ସேݒସݓ ସݔ − ܸ 150,14, ସݔ,ଷݔ

ଵݓ⟺ ≥ ଶݓ
q Incomplete preference statements result in linear inequalities

between the weights



Incomplete preference statements:
example
q Consider attributes

– CO2 emissions ܽଷ ∈ [120݃, 150݃]
– Maintenance costs ܽସ ∈ [400€ , 600€]

q Preferences are elicited with SMARTS:
– Q: ”If the change 600€ → 400€ in maintenance costs is worth 10 points,

how valuable is change 150g → 120g in CO2 emissions?”
– A: ”Between 15 and 20 points”

ସேݒ]ସݓ1.5 400 − ସேݒ 600 ] ≤ ଷேݒ]ଷݓ 120 − ଷேݒ 150 ] ≤ ସேݒ]ସݓ2 400 − ସேݒ 600 ]
⇒ ସݓ1.5 ≤ ଷݓ ≤ ସݓ2

14.2.2019
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Incomplete preference statements:
example
q Preferences are elicited with trade-off methods:

– Q: ”Define an interval for x such that 600€ → 400€ in maintenance costs is
as valuable as 150 g → x g in CO2 emissions.”

– A: ”x is between 130 and 140 g”

For x>140, the change in maintenance
costs is more valuable
For x<130, the change in CO2 emissions
is more valuable

ଷேݒ]ଷݓ 140 − ଷேݒ 150 ] ≤ ସேݒ]ସݓ 400 − ସேݒ 600 ] ≤ ଷேݒ]ଷݓ 130 − ଷேݒ 150 ]
⇒ ଷேݒ 140 ଷݓ ≤ ସݓ ≤ ଷேݒ 130 ଷݓ

⇒ ଵ
ଷ
ଷݓ ≤ ସݓ ≤

ଶ
ଷ
ଷ,  ifݓ ଷேݒ is linear and decreasing.

14.2.2019
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Attribute Measurement scale

ܽଵ: Top speed (km/h) [150, 250]

ܽଶ: Acceleration time (s) [7, 14]

ܽଷ: CO2 emissions (g/km) [120, 150]

ܽସ: Maintenance costs (€/year) [400,600]

Highest and lowest x for which equality possible



Modeling incomplete informaation

q Incomplete information about attribute weights is modeled as set ܵ
of feasible weights that are consistent with the DM’s preference
statements:

ܵ ⊆ ܵ଴ = ݓ ∈ ℝ௡|෍ ௜ݓ
௡

௜ୀଵ
= ௜ݓ,1 ≥ 0  ∀݅

14.2.2019
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Modeling incomplete information

q Linear inequalities on weights can
correspond to

1. Weak ranking ௜ݓ ≥ ௝ݓ
2. Strict ranking ௜ݓ − ௝ݓ ≥ ߙ
3. Ranking with multiples ௜ݓ ≥ ௝ݓߙ

(equivalent to incompletely defined
weight ratios ௝ݓ/௜ݓ ≥ (ߙ

4. Interval form ߙ ≤ ௜ݓ ≤ ߙ + ߝ
5. Ranking of differences ௜ݓ − ௝ݓ ≥ ௞ݓ − ௟ݓ

14.2.2019
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w1

w2

w3 (0,0,1)

(1,0,0)

(0,1,0)

ଶݓ = ଷݓ

ଶݓ ≤ ଷݓ ≤ ,ଶݓ3
ଵݓ2 ≤ ଷݓ ≤ ଵݓ4

ଵݓ2 = ଷݓ

ଶݓ3 = ଷݓ

ଵݓ4 = ଷݓ

S



Overall value intervals

q Due to incompletely specified weights,
the alternatives’ overall values are
intervals:

ܸ ,ݓ,ݔ ݒ ∈ min
௪∈ௌ

,ݓ,ݔ)ܸ (ݒ , max
௪∈ௌ

,ݓ,ݔ)ܸ (ݒ

q Note: linear functions obtain their minima
and maxima at an extreme point of ܵ

– E.g., ܵ = ݓ ∈ ܵ଴ ⊆ ℝଶ|0.4 ≤ ଵݓ ≤ 0.7 ⇒
ݐݔ݁ ܵ = 0.4, 0.6 , (0.7, 0.3)

14.2.2019
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ଵݓ

ଶݓ
0.4 0.7

0.6 0.3
ଶݓ = 1 − ଵݓ

ܸ ܸ

Value
intervals

(ଵݔ)ܸ
(ଷݔ)ܸ

(ଶݔ)ܸ



Dominance

q Preference over interval-valued alternatives can be established through a
dominance relation

q Definition: ௞ݔ dominates ௝ݔ in ܵ, denoted ௞ݔ ≻ௌ ௝, iffݔ

ቐ
ܸ ௞ݔ ,ݓ, ݒ ≥ ܸ ௝ݔ ,ݓ, ݒ   for allݓ ∈ ܵ

ܸ ௞ݔ ,ݓ, ݒ > ܸ ௝ݔ ,ݓ, ݒ   for some ݓ ∈ ܵ

i.e., iff the overall value of ௞ݔ is greater than or equal to that of ௝ݔ for all
feasible weights and strictly greater for some.

14.2.2019
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Non-dominated alternatives

q An alternative is non-dominated if no other alternative dominates it

q The set of non-dominated alternatives is

ܺே஽ = ௞ݔ ∈ ܺ|∄݆  such that ௝ݔ ≻ௌ ௞ݔ

q ܺே஽ contains all good decision recommendations
– I.e., alternatives compared to which no other alternative has at least as high

value for all feasible weights and strictly higher for some

14.2.2019
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Non-dominated alternatives

௞ݔ is non-dominated if no other alternative has
higher value than ௞ݔ for all feasible weights

• Alternative ଵݔ dominates ଷݔ

• Alternatives ଵݔ and ଶݔ are non-dominated

14.2.2019
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ଵݓ

ଶݓ
0.4 0.7

0.6 0.3
ଵݓ = 1 − ଶݓ

ܸ ܸ

Value
intervals

(ଵݔ)ܸ
(ଷݔ)ܸ

(ଶݔ)ܸ



Non-dominated vs. potentially optimal
alternatives
q A non-dominated alternative is not necessarily

optimal for any ݓ ∈ ܵ

– ,ଵݔ ଶݔ and ଷݔ are all non-dominated
– Only ଵݔ and ଶݔ are potentially optimal in that they maximize V

for some ݓ ∈ ܵ
– Still, neither of them can be guaranteed to be better than ଷݔ
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ଵݓ

ଶݓ
0.4 0.7

0.6 0.3

ܸ ܸ

(ଵݔ)ܸ

(ଷݔ)ܸ

(ଶݔ)ܸ



Properties of dominance relation

q Transitive
– If A dominates B and B

dominates C, then A dominates
C

q Asymmetric
– If A dominates B, then B does

not dominate A

q Irreflexive
– A does not dominate itself

14.2.2019
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A

D

B C E

F

G

H

I

J

K

L
Non-dominated
alternatives

Dominance relations
expressed with a directed
arc: B dominates D



Computing dominance relations

q If ௞ݔ dominates :௝ݔ
1. ܸ ௞ݔ ,ݓ, ݒ ≥ ܸ ,ݓ,௝ݔ ݒ for all ݓ ∈ ܵ

⇔ min
௪∈ௌ

ܸ ݒ,ݓ,௞ݔ − ܸ ,ݓ,௝ݔ ݒ ≥ 0 ⇔ min
௪∈ௌ

∑ ௞௜௡ݒ)௜ݓ
௜ୀଵ − ≤ (௝௜ݒ 0

2. ܸ ௞ݔ ,ݓ, ݒ > ܸ ,ݓ,௝ݔ ݒ for some ݓ ∈ ܵ

⇔ max
௪∈ௌ

ܸ ௞ݔ ,ݓ, ݒ − ܸ ݒ,ݓ,௝ݔ > 0 ⇔ max
௪∈ௌ

∑ ௞௜௡ݒ)௜ݓ
௜ୀଵ − < (௝௜ݒ 0

q Dominance relations between two alternatives can thus be
established by comparing their minimum and maximum value
differences

14.2.2019
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Computing dominance relations:
example
q Consider three cars with normalized attribute-specific values:

q Incomplete preference statements have resulted in feasible set of
weights S:

ܵ = ݓ ∈ ܵ଴ ⊆ ℝସ|ݓଵ = ଶݓ ≥ ,ଷݓ3 ≤ଷݓ ସݓ ≥ 0.1

14.2.2019
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Car Top speed :ࡺ૚࢜ Acceleration :ࡺ૛࢜ :ࡺ૜࢜ CO2 emissions :ࡺ૝࢜ Maintenance

ଵݔ 0.7 0.5 1 1

ଶݔ 0.75 0.75 0.33 0.5

ଷݔ 0.87 0.95 0 0



Computing dominance relations:
example

14.2.2019
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Matlab function
linprog(f,A,b,Aeq,beq)
solves the optimization
problem:

min
௫
ݔ்݂ such that

ቊ ܣ ȉ ݔ ≤ ܾ
ݍ݁ܣ ȉ ݔ = ݍܾ݁



Computing dominance relations:
example
q Minimum and maximum value differences

min
௪∈ௌ

ܸ ,ݓ,ଵݔ ݒ − ܸ ݒ,ݓ,ଶݔ = −0.003 < 0
max
௪∈ௌ

ܸ ,ݓ,ଵݔ ݒ − ܸ ,ݓ,ଶݔ ݒ = 0.0338 > 0

min
௪∈ௌ

ܸ ݒ,ݓ,ଶݔ − ܸ ଷݔ ,ݓ, ݒ = −0.045 < 0
max
௪∈ௌ

ܸ ଶݔ ,ݓ, ݒ − ܸ ݒ,ݓ,ଷݔ = −0.0163 < 0

min
௪∈ௌ

ܸ ,ݓ,ଵݔ ݒ − ܸ ݒ,ݓ,ଷݔ = −0.048 < 0
max
௪∈ௌ

ܸ ,ݓ,ଵݔ ݒ − ܸ ,ݓ,ଷݔ ݒ = 0.0175 > 0

q ܺே஽ = ,ଵݔ} {ଷݔ

14.2.2019
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→ Neither ଵݔ nor ଶݔ
dominate the other

→ Neither ଵݔ nor ଷݔ
dominate the other

→ ଷݔ dominates ଶݔ



Computing dominance relations:
example
q Note: because value differences are linear

in w, minimum and maximum value
differences are obtained at the extreme
points of set S:

ଵݓ = 0.4 0.4 0.1 0.1

ଶݓ =
27
70

,
27
70

,
9

70
,

1
10

≈ (0.386, 0.386, 0.129, 0.10)

ଷݓ =
3
8

,
3
8

,
1
8

,
1
8

 =  (0.375, 0.375, 0.125, 0.125)
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ଵݓ ଶݓ ଷݓ

ࢂ ૚࢞ ࢂ- ૛࢞ -0.003 0.0204 0.0338

ࢂ ૛࢞ ࢂ− ૜࢞ -0.045 -0.031 -0.0163

ࢂ ૚࢞ ࢂ− ૜࢞ -0.048 -0.0106 0.0175



Additional information

q If information set S results in too many non-dominated alternatives, additional
preference statements (i.e., linear constraints) can be elicited

q New information set ܵ′ ⊂ ܵ preserves all dominance relations and usually
yields new ones → ܺே஽ stays the same or becomes smaller

ܵᇱ ⊂ ܵ, ݅ݎ ܵ ∩ ܵᇱ ≠ ∅: ቊݔ
௞ ≻ௌ ௝ݔ ⇒ ௞ݔ ≻ௌᇲ ௝ݔ

ܺே஽(ܵ) ⊇ ܺே஽(ܵ′)
 ,

where ݅ݎ ܵ is the relative interior of S.
– ݅ݎ ܵ ∩ ܵᇱ ≠ ∅: S’ is not entirely on the “border” of S

14.2.2019
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Additional information: example

q No weight information

ܵ = ܵ଴ = ݓ ∈ ℝଶ|෍ ௜ݓ = 1
ଶ

௜ୀଵ
௜ݓ, ≥ 0

q Dominance relations
1. B dominates D
2. C dominates D

q Non-dominated alternatives
– A,B,C,E

14.2.2019
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A

B

C

D
E

A

B
C

D

E

ଵݓ = 0
ଶݓ = 1

ଵݓ = 1
ଶݓ = 0



Additional information: example (2/3)
q Ordinal weight information

ܵ = ݓ ∈ ܵ଴|ݓଵ ≥ ଶݓ

q Dominance relations
1. B dominates D
2. C dominates D
3. E dominates D
4. B dominates A
5. C dominates A

q Non-dominated alternatives
– B,C,E
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A

B

C

D
E

A

B
C

D

E

ଵݓ = 0
ଶݓ = 1

ଵݓ = 1
ଶݓ = 0

ଵݓ = 0.5
ଶݓ = 0.5



Additional information: example (3/3)
q More information

ܵ = ݓ ∈ ܵ଴|ݓଶ ≤ ଵݓ ≤ ଶݓ2

q Dominance relations
1. B dominates D
2. C dominates D
3. E dominates D
4. B dominates A
5. C dominates A
6. B dominates C
7. B dominates E

q Non-dominated alternatives: B
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A

B

C

D
E

A

B
C

D

E

ଵݓ = 0
ଶݓ = 1

ଵݓ = 1
ଶݓ = 0

ଵݓ = 0.5
ଶݓ = 0.5

ଵݓ = 0.67
ଶݓ = 0.33



Value intervals
Can value intervals be used in deriving
decision recommendations?
Some suggestions for “decision rules” from
literature:
• Maximax: choose the alternative with the

highest maximum overall value over the
feasible weights

• Maximin: choose the alternative with the
highest lowest overall value over the feasible
weights

• Central values: choose the alternative with the
highest sum of the maximum and minimum
values
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ଵݓ

ଶݓ
0.4 0.7

0.6 0.3
ଵݓ = 1 − ଶݓ

ܸ ܸ

Value
intervals

(ଵݔ)ܸ
(ଷݔ)ܸ

(ଶݔ)ܸ

Maximax
Maximin

Central values



…more decision rules

• Minimax regret: choose the
alternative with the smallest maximum
regret (= value difference compared to
any other alternative)

• Domain criterion: choose the
alternative which is favored by the
largest set of weights

14.2.2019
35

ଵݓ

ଶݓ
0.4 0.7

0.6 0.3
ଵݓ = 1 − ଶݓ

ܸ ܸ

(ଵݔ)ܸ
(ଷݔ)ܸ

(ଶݔ)ܸ

Minimax regret
Domain criterion

0.55



Example
q DM asks 2 experts to compare fruit baskets (x1,x2) containing

apples x1 and oranges x2

q Linear attribute-specific value functions v1 and v2

q DM: (2,0) >~ (0,1) and (0,2)>~(1,0)
q One orange is not preferred to 2 apples, one apple is not preferred to 2 oranges

q Fruit baskets (1,2) and (2,1) do not dominate each other

q What do the decision rules recommend?
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Expert 1:
x0=(0,0), x*=(2,4)
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(1,2) is the maximin solution
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(1,2) is the minimax regret solution
(2,1) is the maximin solution
(1,2) is the maximax solution

(2,1) is the domain criterion solution (1,2) is the domain criterion solution
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1/6

2/15<1/6



On decision rules

q A common problem for all of the above decision rules: changing
the measurement scales [xi

0,xi*] can change the recommendations

q Different attribute weightings w and w* represent value functions V
and V* – they cannot be compared
q If V represents the DM’s preferences, so do all its positive affine transformations,

too
q How to choose one of the value functions which all represent the same

preferences?

q Avoid using measures which compare overall values across
different value functions (i.e. attribute weightings)
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Rank (sensitivity) analysis
q For any weights, the alternatives can

be ranked based on their overall
values
q This ranking is not influenced by

normalization (i.e., positive affine
transformations of V)

q How do the rankings of alternatives
change when attribute weights vary?

14.2.2019
40

w1 0.4 0.7w2 0.6 0.3

)( 1xV

)( 2xV

)( 3xV

ranks x1 x2 x3

minimum 1 1 1

maximum 3 2 3



Computation of rank intervals

The minimum ranking of xk is

which is obtained as a solution to the mixed integer LP

Maximum rankings with a similar model
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Rank analysis – example (1/5)

q Academic ranking of world universities 2007
q 508 universities

q Additive multi-attribute model
q 6 attributes
q Attribute weights (denoted by w*) and scores
q Universities ranked based on overall values

14.2.2019
42



Rank analysis – example (2/5)
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Rank analysis –
example (3/5)
Scores (some of them)
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Rank analysis – example (4/5)
Incomplete weight information

qRelative intervals:
q For a=0.1, 0.2, 0.3
q e.g. a=0.2 , wi*=0.20:

qIncomplete ordinal:
q Consistent with initial weights and lower bound b = 0.02

qOnly lower bound:

qNo weight information:
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Rank analysis – example (5/5)
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Example: prioritization of innovation
ideas*

q 28 ”innovation ideas” evaluated by several people on a scale from
1 – 7 with regard to novelty, feasibility and relevance
q Innovation ideas described by the 3 averages of these evaluations

q No preference information about the relative values of the
attributes

q ”Which 10 innovation ideas should be selected for further
development?”
q Sets of ideas called portfolios

q The value of a portfolio is the sum of its constituent projects

14.2.2019
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Example: prioritization of innovation
ideas
q Robust Portfolio Modeling* method was used to compute non-

dominated portfolios of 10 ideas and discriminate between
q Core ideas that belong to all non-dominated portfolios
q Borderline ideas that belong to some non-dominated portfolios
q Exterior ideas that do not belong to any non-dominated portfolio

q How do ranking intervals compare with this division?
q If the ranking of an idea cannot be worse than 10, is it a core project?
q If the ranking of an idea cannot be better than 11, is it an exterior project?

14.2.2019
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Ranking intervals divide the innovation ideas into core, borderline and exterior ideas
among potentially optimal portfolios

Ranking intervals vs. core, borderline
and exterior ideas

14.2.2019
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Rationales for using incomplete
information
q Limited time and effort can usually be devoted to preference

elicitation
q Complete preference specification may not even be needed to reach

a decision
q DM’s preferences may evolve during the analysis → iteration can be

helpful
q Experts / stakeholders may have conflicting preferences
q Take-it-or-leave-it solutions may be resented in group decision

settings → results based on incomplete information leave room for
negotiation

14.2.2019
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Summary
q Complete specification of attribute weights is often difficult

– Trade-off methods take time and effort
– SWING and SMARTS are prone to biases

q Incomplete preference statements can be modeled by linear inequalities on
the weights → alternatives’ overall values become intervals

q Preference over interval-valued alternatives can be established through
dominance relations
q Non-dominated alternatives are good decision recommendations

q Avoid methods which compare numerical values of different value functions

14.2.2019
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Decision making and
problem solving –
Lecture 7
• From EUT to MAUT
• Axioms for preference relations
• Assessing attribute-specific utility functions and attribute weights
• Decision recommendations
• MAVT vs. MAUT Liesiö, Punkka, Salo, Vilkkumaa



Motivation

q Multiattribute value theory helps generate decision
recommendations, when

– Alternatives are evaluated w.r.t. multiple attributes
– Alternatives’ attribute-specific values are certain

q What if the attribute-specific performances are uncertain?
– Planning a supply chain: minimize cost, minimize supply shortage,

minimize storage costs
– Building an investment portfolio: maximize return, minimize risk

→ Multiattribute utility theory

28.2.2019
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From EUT to MAUT

q Set of possible outcomes T:
– E.g., revenue ܶ = ℝ euros, demand ܶ =

ℕ
q Set of all possible lotteries L:

– A lottery ݂ ∈ ܮ associates a probability
݂ ݐ ∈ [0,1] with each possible outcome
ݐ ∈ ܶ

q Deterministic outcomes are modeled
as degenerate lotteries

28.2.2019
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From EUT to MAUT

q Multidimensional set of outcomes
X:

ܺ = ଵܺ × ⋯× ܺ௡
– E.g., ଵܺ = revenue (€), ܺଶ = market

share

q Set of all possible lotteries L:
– A lottery ݂ ∈ ܮ associates a

probability ݂ ݐ ∈ [0,1] with each
possible outcome ݔ = ,ଵݔ) … , (௡ݔ ∈ ܺ

q Deterministic outcomes are
modelled as degenerate lotteries
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Aggregation of utilities

q Problem: How to measure the overall utility of alternative ݔ =
,ଵݔ ,ଶݔ … ௡ݔ ?

ܷ ,ଵݔ ,ଶݔ … ௡ݔ =?
q Question: Could the overall utility be obtained by a weighted sum of

the attribute-specific utilities?

ܷ ,ଵݔ ,ଶݔ … ௡ݔ = ෍ ௜ݓ
௡

௜ୀଵ
௜ݑ ௜ݔ ?

q Answer: Yes, if the attributes are
– Mutually preferentially independent and
– Additive independent (new)

28.2.2019
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Preferential independence (old)

q Definition: Attribute X is preferentially independent (PI) of the
other attributes Y, if the preference order of degenerate lotteries
that differ only in X does not depend on the levels of attributes Y

(࢟,ݔ) ≽ (࢟,ᇱݔ) ⇒ ′࢟,ݔ ≽ ′࢟,ᇱݔ for all ′࢟ ∈ Y

q Interpretation: Preference over the certain level of attribute X does
not depend on the certain levels of the other attributes, as long as
they stay the same

q Same as in MAVT

28.2.2019
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Mutual preferential independence (old)

q Definition: Attributes A are mutually perferentially independent
(MPI), if any subset X of attributes A is preferentially independent
of the other attributes Y=A\X. I.e., for any degenerate lotteries:

(ᇱ࢟,࢞) ≽ (′࢟,ᇱ࢞) ⇒ ࢟,࢞ ≽ ࢟,ᇱ࢞ for all y ∈ Y.

q Interpretation: Preference over the certain levels of attributes X
does not depend on the certain levels of the other attributes, as
long as they stay the same

q Same as in MAVT

28.2.2019
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Additive independence (new)

q Definition: Subset of attributes X⊂A is additive
independent (AI), if the DM is indifferent between
lotteries I and II for any ࢟,࢞ , (ᇱ࢟,′࢞) ∈ ܣ

q Example:
– Profit is AI if the DM is indifferent between I and II
– However, she might prefer II, because it does not include an

outcome where all attributes have very poor values. In this
case profit is not AI.
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Additive independence (new)

q Example:
– A tourist is planning a downhill skiing weekend trip to the mountains
– 2 attributes: sunshine ( {sunny, cloudy} ) and snow conditions ( {good, poor} )
– Additive independence holds, if she is indifferent between I and II

– In both, there is a 50 % probability of getting sunshine
– In both, there is a 50 % probability of having good snow conditions
– If the DM values sunshine and snow conditions independently of each other, then I and II can be equally

preferred

28.2.2019
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Additive multiattribute utility function

q Theorem: The attributes are mutually preferentially
independent and single attributes are additive
independent iff preference relation ≽ is represented by an
additive multi-attribute utility function

ܷ ݔ = ෍ (௜ݔ)௜ேݑ௜ݓ
௡

௜ୀଵ
,

where ௜ேݑ ௜଴ݔ = 0, ௜ேݑ ∗௜ݔ = 1, and ∑ ௜ݓ
௡
௜ୀଵ = 1, ௜ݓ ≥ 0.

28.2.2019
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What if the MPI & AI do not hold?
q Definition: Attribute ܺ ∈ ܣ is utility independent (UI) if the preference order

between lotteries that have equal certain outcomes on attributes Y=A\X does
not depend on the level of these outcomes, i.e.,

࢟,෤ݔ ≽ ࢟,෤ᇱݔ ⇒ ᇱ࢟,෤ݔ ≽ ᇱ࢟,෤ᇱݔ ′࢟∀
q Example:

28.2.2019
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Mutual utility independence

q Definition: Attributes ܣ are mutually utility independent (MPI), if every
subset X ⊂ ܣ is the utility independent of the other attributes Y=A\X i.e.,

࢟,෥࢞ ≽ ࢟,෥ᇱ࢞ ⇒ ᇱ࢟,෥࢞ ≽ ᇱ࢟,෥ᇱ࢞ ′࢟∀ 

28.2.2019
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Other multi-attribute utility functions

q If attributes are mutually utility independent, then preferences are
represented by a multiplicative utility function:

ܷ ݔ =
∏ [1 + ௡[(௜ݔ)௜ݑ௜ݓ݇
௜ୀଵ

݇ −
1
݇

q If each single attribute is utility independent, then preferences are
represented by a so-called multilinear utility function

q AI is the strongest of the three preference assumptions
– Let X ⊂ A. Then, X is AI ⇒ X is UI ⇒ X is PI

28.2.2019
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Assessing attribute-specific utility
functions
q Use the same techniques as with a unidimensional utility function

– Certainty equivalent, probability equivalent, etc. & scale such that ௜ேݑ ௜଴ݔ = 0, ௜ேݑ ∗௜ݔ = 1.
– Also direct rating often applied in practice

q What about the other attributes?
– Fix them at the same level in every outcome
– Do not matter! → Usually not even explicitly

shown to the DM

28.2.2019
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Example: Choosing a software supplier

q Three attributes: cost, delay, quality

28.2.2019
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i Name Xi ૙࢏࢞ ∗࢏࢞

1 Cost [10,40] k€ 40 10

2 Delay {1,2,…,30} days 30 1

3 Quality {fair, good, excellent} fair excellent



Example: Choosing a software supplier

q Assessment of the attribute-specific utility
functions

– Quality: Direct assessment
o ,ଷ(fair)=0ݑ ,ଷ(good)=0.4ݑ ଷ(excellent)=1ݑ

– Cost: Linear decreasing utility function
o ଵݑ ଵݔ = ସ଴ି௫భ

ଷ଴

– Delay: Assessment with certainty equivalent (CE)
approach

28.2.2019
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i Name Xi ૙࢏࢞ ∗࢏࢞

1 Cost [10,40] k€ 40 10

2 Delay {1,2,…,30} days 30 1

3 Quality {fair, good, exc.} fair exc.
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0.5
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0.5

0.5
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0.5

0.5
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15 10

ଶݑ 22
= ଶݑ0.5 1 + ଶݑ0.5 30

= 0.5 ∗ 1 + 0.5 ∗ 0
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ଶݑ 15
= ଶݑ0.5 1 + ଶݑ0.5 22

= 0.5 ∗ 1 + 0.5 ∗ 0.5
= 0.75

ଶݑ 10
= ଶݑ0.5 1 + ଶݑ0.5 22

= 0.5 ∗ 1 + 0.5 ∗ 0.75
= 0.875



Example: Choosing a software supplier
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૛࢞ (૛࢞)૛࢛ ૛࢞ (૛࢞)૛࢛

1 1 16 0.7143

2 0.9861 17 0.6786

3 0.9722 18 0.6429

4 0.9583 19 0.6071

5 0.9444 20 0.5714

6 0.9306 21 0.5357

7 0.9167 22 0.5

8 0.9028 23 0.4375

9 0.8889 24 0.375

10 0.875 25 0.3125

11 0.85 26 0.25

12 0.825 27 0.1875

13 0.8 28 0.125

14 0.775 29 0.0625

15 0.75 30 0
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For delay, linear interpolation between
specified values

ଶݑ 10
= ⋯
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Assessing attribute weights

q Attribute weights are elicited by constructing two equally preferred
degenerate lotteries

– E.g., ask the DM to establish a preference order for n hypothetical
alternatives specified so that ,ଵ଴ݔ … , ,∗௜ݔ … , ௡଴ݔ , ݅ = 1, … ,݊.

– Assume that ,∗ଵݔ ,ଶ଴ݔ … , ௡଴ݔ ≽ ,ଵ଴ݔ ,∗ଶݔ … , ௡଴ݔ ≽ ⋯ ≽ ,ଵ଴ݔ ,ଶ଴ݔ … , ∗௡ݔ

– Then, for each i=1,…,n-1 ask the DM to define ௜ݔ ∈ ௜ܺ such that
௜ݔ… , ௜ାଵ଴ݔ , … ~ … ,௜଴ݔ ∗௜ାଵݔ , …

⇒ ܷ ௜ݔ… , ௜ାଵ଴ݔ , … = ܷ … ,௜଴ݔ ∗௜ାଵݔ , …
⇒ (௜ݔ)௜ݑ௜ݓ  = ௜ାଵݓ

– n-1 such comparisons + 1 normalization constraint ⇒ unique set of
weights

28.2.2019
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Example: Choosing a software supplier
q Assessment of the attribute weights

– Assume preferences 40k€, 1 day, fair ≽ 10k€, 30 days, fair ≽ 40k€, 30 days,  exc.
– Choose delay ଶݔ ∈ {1, … , 30} such that ,ଶݔ,40 ଷݔ ~ 10,30, ଷݔ
– Answer ଶݔ = 8 gives

ଵݑଵݓ 40 + ଶݑଶݓ 8 + ଷݑଷݓ ଷݔ = ଵݑଵݓ 10 + ଶݑଶݓ 30 + ଷݑଷݓ ଷݔ
ଶݑଶݓ 8 = ଵݓ

⇔ ଶݓ ȉ 0.9028 = ଵݓ

– Choose cost ଵݔ ∈ 10,40 such that ,ଶݔ,ଵݔ fair ~ ,ଶݔ,40 excellent
– Answer ଵݔ = 20 gives

ଵݑଵݓ 20 + ଶݑଶݓ ଶݔ + ଷݑଷݓ fair = ଵݑଵݓ 40 + ଶݑଶݓ ଶݔ + ଷݑଷݓ excellent
ଵݑଵݓ 20 = ଷݓ

⇔ ଵݓ ȉ
2
3 = ଷݓ

– Attribute weights: ݓ ≈ ଽ
ଶହ

, ଵ଴
ଶହ

, ଺
ଶହ

28.2.2019
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MAUT: Decision recommendations

q Consider m decision alternatives ௝ݔ = ଵݔ
௝ , … ௡ݔ,

௝ , ݆ = 1, … ,݉,
where ௝ݔ is a random variable with PDF ݂௫ೕ(ݔ)

q Alternatives are ranked by their expected (multiattribute) utilities

ܧ ܷ ௝ݔ = ෍݂௫ೕ(ݔ) (ݔ)ܷ
 

௫∈஺

= ෍݂௫ೕ(ݔ) ෍ݓ௜ݑ௜(ݔ)
 

௜

 

௫∈஺
– Integral for continuous random variables

q In a decision tree, MAU is used just like unidimensional utility

28.2.2019
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Example: Choosing a software supplier
q Consider three suppliers:

– Supplier 1: Expensive, fair quality, can deliver
without delay

ଵݔ = (35݇€, 1 day,݂ܽ݅ݎ)
– Supplier 2: Cheap, good quality, can deliver in 1

week
ଶݔ = (21݇€, 7 days,݃݀݋݋)

– Supplier 3: Moderate price, good quality, 20%
chance of 1-week delay and 10% chance of 2-week
delay

ଷݔ = ݀݋݋݃,෤ଶଷݔ,24݇€ ,

݂௫෤మయ ݔ = ൞
0.7, ݔ = (24݇€, 1 day, (݀݋݋݃
0.2, ݔ = (24݇€, 8 days,݃݀݋݋)

0.1, ݔ = (24݇€, 15 days,݃݀݋݋)

28.2.2019
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Example: Choosing a software supplier

ࡺ૚࢛ ࡺ૛࢛ ࡺ૜࢛ ࢁ ࢑࢞ࢌ
࢐ E[ࢁ]

ଵݔ 0.17 1.00 0.00 0.46 1 0.46
૛࢞ 0.63 0.92 0.40 0.69 1 0.69

(ଵݏ) ଷݔ 0.53 1.00 0.40 0.69 0.7 0.67
(ଶݏ) ଷݔ 0.53 0.90 0.40 0.65 0.2
(ଷݏ) ଷݔ 0.53 0.75 0.40 0.59 0.1
ݓ 0.36 0.40 0.24

28.2.2019
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MAVT vs. MAUT

q MAVT: Preference between alternatives with certain outcomes can be
represented by an additive multiattribute value function, iff the
attributes are

– Mutually preferentially independent
– Difference independent

q MAUT: Preference between lotteries with uncertain outcomes can be
represented by additive multiattribute utility function, iff the attributes
are

– Mutually preferentially independent
– Additive independent

28.2.2019
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MAVT vs. MAUT
q Attribute-specific value functions are elicited by asking the DM

to specify equally preferred differences in attribute levels
– E.g., ”Specify salary x such that you would be indifferent between change

1500€ → x€ and x€ → 2000€”

q Attribute-specific utility functions are elicited by asking the DM
to specify equally preferred lotteries

– E.g., ”Specify salary x such that you would be indifferent between getting
x€ for certain and a 50-50 gamble between getting 1500€ or 2000€”

q Attribute weights are elicited similarly in MAVT and MAUT

28.2.2019
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MAVT vs. MAUT

q In principal, the natural /
measurement scale is first
mapped to value scale and
then (if needed) to utility scale

q Yet, in practice the value
function is ”hidden” in the utility
function

– E.g, if certainty equivalent of 50-50
gamble between 3k€ and 5k€ salary
is 3.9k€, is this a sign of risk aversion
or decreasing marginal value of
salary?

28.2.2019
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Summary

q Multiattribute utility theory helps establish a preference relation
between alternatives with uncertain outcomes on multiple attributes

q Preference relation is represented by an additive utility function, iff the
attributes are mutually preferentially independent and additive
independent

q Attribute-specific utility functions are elicited as in the unidimensional
case

q Attribute weights are elicited as in MAVT
q Decision recommendation: the alternative with highest expected utility
q Robust methods can also be used with MAUT

28.2.2019
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Decision making and
problem solving –
Lecture 8
• Multiple objective optimization (MOO)
• Pareto optimality (PO)
• Approaches to solving PO-solutions: weighted sum, weighted max-norm,

and value function methods
Liesiö, Punkka, Salo, Vilkkumaa



Until this lecture
q Explicit set of alternatives ܺ =

,1ݔ … , ݉ݔ , which are evaluated with
regard to ݊ criteria

q Evaluations ௜ݔ
௝: ܺ → ℝ௡

q Preference modeling
q Value functions

max
௫ೕ∈௑

ܸ ௝ݔ = ଵݔ)ܸ
௝ , … , ௡ݔ

௝ )

7.3.2019
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ଶݒ

ଵݒ

(ଵݔ)ܸ = ଵݒ ଵݔ
ଵ , ଶݒ ଶݔ

ଵ

ଶݔ

ଵݔ

ଵݔ = ଵݔ)
ଵ, ଶݔ

ଵ)

଺ݔ = ଵݔ)
଺, ଶݔ

଺)



Need for other kind of approaches

q The decision alternatives cannot necessarily be listed

q Preference modeling can be time-consuming and difficult at the
early stages of the analysis

q Conditions required for the additive value function to represent
preferences do not necessarily hold or are difficult to validate

q We might want to see some results quickly to get a better
understanding of the problem at hand

7.3.2019
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Multi-objective optimization: concepts

7.3.2019
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q Set of feasible solutions
ܺ = ݔ} ∈ ℝ௡|݃(ݔ) ≤ 0}

q Objective functions
݂ = ଵ݂, … , ௡݂ : ܺ → ℝ௡

q Preference modeling on trade-offs
between objectives

– Value functions
max
௫∈௑

((ݔ)݂)ܸ = ܸ( ଵ݂(ݔ), … , ௡݂(ݔ))

– Pareto approaches
v−max

௫∈௑
((ݔ)݂)ܸ = ( ଵ݂(ݔ), … , ௡݂(ݔ))

– Interactive approaches (not covered)

ଶݔ

ଵݔ

ܺ = ,ଵݔ)} (ଶݔ ∈ ℝ2|
1ݔ ≥ 1, 2ݔ ≥ 1, 1ݔ + 2ݔ ≤ 7}

ܺ

݂ = ଵ݂, ଶ݂ = 1ݔ) + ,2ݔ2 (2ݔ−



Multi-objective
optimization: concepts

q Objective functions ݂ map the
feasible solutions ܺ to ݂ ܺ in the
solution space:

݂ ܺ = ݕ} ∈ ℝ݊|∃ݔ ∈ ܺ ݋ݏ ݐℎܽݐ ݕ
= ݂ ݔ }

7.3.2019
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ଶݔ

ଵݔ

ܺ = ,ଵݔ)} (ଶݔ ∈ ℝ2|
1ݔ ≥ 1, 2ݔ ≥ 1, 1ݔ + 2ݔ ≤ 7}

ܺ

ଶ݂

ଵ݂

݂(ܺ)

݂ = ଵ݂, ଶ݂
݂1 = 1ݔ + 2ݔ2

݂2 = 2ݔ−

1,1

3, −1

݂(ܺ) = {( ଵ݂, ଶ݂) ∈ ℝ2|
݂2 ≤ −1, ݂2 ≤ 7 − ݂1, 2݂2 ≥ 1 − ݂1}



Preferential independence
q In multi-objective optimization (MOO), each objective is assumed

preferentially independent of the others

q Definition (cf. Lecture 5): Preference between two values of
objective function i does not depend on the values of the other
objective functions

→ Without loss of generality, we can assume all objectives to be
maximized

– MIN can be transformed to MAX: min
௫∈௑ ௜݂(ݔ) = − max

௫∈௑
[− ௜݂(ݔ)]

7.3.2019
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Which feasible solution(s) to prefer?

q Selection of 1ݕ

cannot be
supported because
other solutions
have higher ݂1 and
݂2

→ Focus on
Pareto-optimal
solutions

7.3.2019
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Pareto-optimality
Definition. x*ÎX is Pareto-optimal if there does
not exist xÎX such that

ቊ ௜݂ ݔ ≥ ௜݂ ∗ݔ   for all ݅ ∈ {1, … , ݊}
௜݂ ݔ > ௜݂ ∗ݔ   for some ݅ ∈ {1, … , ݊}

Set of all Pareto-optimal solutions: XPO

Definition. Objective vector yÎf(X) is Pareto-
optimal, if there exists a Pareto-optimal x*ÎX s.t.
f(x*)=y

- Set of Pareto-optimal objective vectors: f(XPO)
- Notation ݂ ܺ௉ை = v−max

௫∈௑
(ݔ)݂

7.3.2019
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Example: Markowitz model
q Optimal asset portfolio selection

– How to allocate funds to m assets based on
o Expected returns ,௜̅ݎ i=1,...,m
o Covariances of returns σij, i,j=1,...,m

q Set of feasible solutions
– Decision variables x1,...,xm

o Allocate xj *100% of funds to j-th asset

– Portfolio ݔ ∈ ܺ = ݔ} ∈ ℝ௠|ݔ௜ ≥ 0, ∑ ௜ݔ = 1௠
௜ୀଵ }

q Objective functions
1. Maximize expected return of portfolio ଶ݂ ݔ = ∑ ௜ݔ௜̅ݎ

௡
௜ୀଵ

2. Minimize variance (risk) of portfolio ଵ݂ ݔ =
ଵ
ଶ

∑ ∑ ௝ݔ௜ݔ௜௝ߪ
௠
௝ୀଵ

௡
௜ୀଵ

7.3.2019
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Pareto-optimality in Markowitz model

q Portfolio x is Pareto-optimal, if no other
portfolio yields greater or equal expected
return with less risk

q One possibility for computation:
- Choose d = max number of solutions computed
- Solve μ1 = max f2, μd = min f2

- For all k=2,…,d-1 set μk s.t. μk-1>μk> μd and solve
(1-dimensional) quadratic programming problem

min
௫∈௑

ଵ
ଶ

∑ ∑ ௝ݔ௜ݔ௜௝ߪ
௠
௝ୀଵ

௡
௜ୀଵ such that ∑ ௜ݔ௜̅ݎ

௡
௜ୀଵ = ௞ߤ

- Discard solutions which are not PO
- Not attractive when n>2

7.3.2019
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Algorithms for solving Pareto-optimal
solutions (1/2)
q Exact algorithms

- Guaranteed to find all PO-solutions XPO

- Only for certain problem types, e.g., Multi-Objective Mixed Integer Linear
Programming (MOMILP)

q Use of single-objective optimization algorithms
- Sequentially solve ordinary (i.e. 1-dimensional) optimization problems to obtain a

subset of all PO-solutions, XPOS

- Performance guarantee: XPOSÍXPO

o Solutions may not be “evenly” distributed in the sense that majority of the obtained solutions
can be very “close” to each other

- Methods:
o Weighted sum approach, weighted max-norm approach, ε-constraint approach

7.3.2019
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Algorithms for solving Pareto-optimal
solutions (2/2)
q Approximation algorithms

- Obtain an approximation XPOA of XPO in polynomial time
- Performance guarantee: For every xÎXPO exists y ÎXPOA such that ||f(x)-f(y)||< ε
- Only for very few problem types, e.g., MO knapsack problems

q Metaheuristics
- No performance guarantees
- Can handle problems with

• A large number of variables and constraints
• Non-linear or non-continuous objective functions/constraints

- Evolutionary algorithms (e.g., SPEA, NSGA)
- Stochastic search algorithms (simulated annealing)

7.3.2019
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Example: Multiobjective integer linear
programming (MOILP)
q Ben is at an amusement park that offers 2 different rides:

q Tickets to ride 1 cost 2 €. Each ticket lets you take the ride twice
q Tickets to ride 2 are for one ride and cost 3 €

q Ben has 20 euros to spend on tickets to ride 1 (x1Îℕ) and ride 2 (x2Î
ℕ) → constraint 1ݔ2 + 2ݔ3 ≤ 20

q Each time Ben takes ride 2, his grandfather cheers for him
q Ben maximizes the number of (i) rides taken and (ii) cheers →

objective functions ݂ = ݂1, ݂2 = 1ݔ2) + ,2ݔ (2ݔ

7.3.2019
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Feasible solutions ࢄ

7.3.2019
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”Ben has 20 euros. He is
choosing the number of tickets to
ride 1ݔ) 1 ∈ ℕ) and ride 2ݔ) 2 ∈ ℕ)

‒ Constraint 1ݔ2 + 2ݔ3 ≤ 20”

1ݔ2 + 2ݔ3 = 20



Example: MOILP (cont’d)

q Blue points are feasible solutions; the 7 PO solutions are circled

7.3.2019
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Weighted sum approach

q Algorithm
1. Generate ߣ})ܫܷܰ~ߣ ∈ 0,1 ௡| ∑ ௜ߣ = 1௡

௜ୀଵ })
2. Solve max

௫∈௑
∑ ௜ߣ

௡
௜ୀଵ ௜݂(ݔ)

3. Solution is Pareto-optimal
Repeat 1-3 until enough PO-solutions have been found

+ Easy to implement
– Cannot find all PO solutions if the problem is non-convex (if PO

solutions are not in the border of the convex hull of f(X))

7.3.2019
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1f

2f
1 (0.2, 0.8)Tl =

2 (0.7,0.3)Tl =



max
௫ଵ,௫ଶ∈ℕ

ଶ௫ଵାଷ௫ଶஸଶ଴

1ݔ1ߣ2] + 1ߣ) + [2ݔ(2ߣ



max
௫ଵ,௫ଶ∈ℕ

ଶ௫ଵାଷ௫ଶஸଶ଴

1ݔ1ߣ2] + 1ߣ) + [2ݔ(2ߣ

ߣ =
0.2, 0.8 ⇒

maximize
1ݔ0.4 + 2ݔ

1ݔ0.4 +  2ݔ
constant

,1ݔ) (2ݔ =
1 , 6 is

Pareto-
optimal

ߣ = 0.5, 0.5

,1ݔ) (2ݔ =
10 , 0 is

Pareto-
optimal

ߣ = 1/3, 2/3

,1ݔ) (2ݔ =
4 , 4 is

Pareto-
optimal ,1ݔ) (2ݔ =

7 , 2 is
Pareto-
optimal



(ࢄ)ࢌ and Pareto-optimal solutions

7.3.2019
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Only 4 of the 7 Pareto-optimal
solutions can be found with
the weighted sum approach



Weighted max-norm approach

q Idea: define a utopian vector of objective function values
and find a solution for which the distance from this utopian
vector is minimized

q Utopian vector: ݂∗ = ଵ݂
∗, … , ௡݂

∗ , ௜݂
∗ > ௜݂ ݔ ݔ∀  ∈ ܺ, ݅ = 1, … , ݊

q Distance is measured with weighted max-norm max
௜ୀଵ,…,௡

௜ߣ ݀௜,
where ݀௜ is the between ௜݂

∗ and ௜݂ ݔ , and ௜ߣ > 0 is the
weight of objective i such that ∑ ௜ߣ

௡
௜ୀଵ = 1.

q The solutions that minimize the distance of (ݔ)݂ from ݂∗ are
found by solving:

min
௫∈௑

݂∗ − (ݔ)݂ ௠௔௫
ఒ = min

௫∈௑
max

௜ୀଵ,…,௡
௜ߣ ௜݂

∗ − ௜݂ ݔ

= min
௫∈௑,Δ∈ℝ

Δ .ݏ .ݐ ௜ߣ ௜݂
∗ − ௜݂ ݔ ≤ Δ  ∀݅ = 1, … , ݊

7.3.2019
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Weighted max-norm approach (2/2)

q Algorithm
1. Generate ߣ})ܫܷܰ~ߣ ∈ 0,1 ௡| ∑ ௜ߣ = 1௡

௜ୀଵ })
2. Solve min

௫∈௑
݂∗ − f(x) ௠௔௫

ఒ

3. At least one of the solutions of Step 2 is PO
Repeat 1-3 until enough PO solutions have been
found

+ Easy to implement
+ Can find all PO-solutions
– n additional constraints, one additional variable

7.3.2019
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Example: MOILP (cont’d)

q Find a utopian vector f*
- max f1= 2x1+x2 s.t. 2x1+3x2≤ 20, x1,x2 ≥ 0

o x=(10,0); f1=20

- max f2 = x2 s.t. 2x1+3x2≤ 20, x1,x2 ≥ 0
o x=(0, 20/3); f2=20/3

- Let f*=(21,7)

q Minimize the distance from the
utopian vector:

min
Δ∈ℝ

Δ s.t.

ଵߣ 21 − ଵݔ2 + ଶݔ ≤ Δ
ଶߣ 7 − ଶݔ ≤ Δ

ଵݔ2 + ଶݔ3 ≤ 20, ,ଵݔ ଶݔ ∈ ℕ

7.3.2019
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λ1=0.1, λ2=0.9:

min
Δ∈ℝ

Δ s.t.
2.1 − ଵݔ0.2 − ଶݔ0.1 ≤ Δ
6.3 − ଶݔ0.9 ≤ Δ
ଵݔ2 + ଶݔ3 ≤ 20
,ଵݔ ଶݔ ∈ ℕ

Solution: Δ=1.3, x=(1,6) Þ
x=(1,6), f=(8,6) is PO



Example: MOILP revisited

1.λ1=0.1; solution: {Δ=1.3, x=(1,6)} Þ
x=(1,6), f=(8,6) is PO

2.λ1=0.2; 3 solutions x=(2,5), x=(3,4),
x=(4,4). Only x=(2,5), f=(9,5) and x=(4,4),
f=(12,4) are PO

3.λ1=0.35; x=(5,3); f=(13,3) is PO

4.λ1=0.4; 2 solutions x=(6,2) and x=(7,2);
x=(7,2), f=(16,2) is PO

5.λ1=0.55; x=(8,1); f=(17,1) is PO

6.λ1=0.70; 2 solutions x=(9,0) and x=(10,0);
x=(10,0), f=(20,0) is PO

7.3.2019
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Value function methods (1/2)

q Use value function ܸ: ℝ௡ → ℝ to
transform the MOO problem into a
single-objective problem

– E.g., the additive value function
ܸ ݂ ݔ = ∑ )௜ݒ௜ݓ ௜݂(ݔ))௡

௜ୀଵ

q Theorem: Feasible solution x* with
the highest value V(x*) is Pareto-
optimal

7.3.2019
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Value function methods (2/2)

q Consider the additive value function ܸ ݂ ݔ = ∑ )௜ݒ௜ݓ ௜݂(ݔ))௡
௜ୀଵ

with incomplete weight information ݓ ∈ ܵ ⊆ ܵ଴

q Set of Pareto-optimal solutions ܺ௉ை= set of non-dominated
solutions with no weight information ܺே஽(ܵ଴)

q Preference statements on weights decrease the set of feasible
weights to ܵ ⊆ ܵ଴ → focus on preferred PO-solutions ܺே஽ ܵ ⊆
ܺே஽ ܵ଴ = ܺ௉ை

7.3.2019
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Example: MOILP revisited

q Choose vi(fi(x))=fi(x)/Ci*, normalization constants C1*=20, C2*=6
ܸ ݂ ݔ , ݓ = ෍ ((ݔ)݂)௜ݒ௜ݓ

௡

௜ୀଵ

= ଵݒଵݓ ଵ݂ ݔ + 1 − ଵݓ ଶݒ ଶ݂ ݔ =
ଵݓ ଵݔ2 + ଶݔ

20 + (1 − (ଶ/6ݔ)(ଵݓ

7.3.2019
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Example: Bridge repair program (1/7)

q Total of 313 bridges calling for repair

q Which bridges should be included in the repair program under the next three
years?

q Budget of 9,000,000€

q Program can contain maximum of 90 bridges
- Proxy for limited availability of equipment and personnel etc.

q Program must repair the total sum of damages by at least 15,000 units

7.3.2019
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P. Mild, J. Liesiö and A. Salo (2015): Selecting Infrastructure Maintenance
Projects with Robust Portfolio Modeling, Decision Support Systems



Example: Bridge repair program (2/7)

q Set of feasible solutions X defined by linear constraints and binary
decision variables:

ܺ = ݔ ∈ 0,1 ଷଵଷ ݃ ݔ ≤ 0 , ݃ ݔ =

∑ ௝ܿݔ௝
ଷଵଷ
௝ୀଵ − 9000000

∑ ௝ݔ
ଷଵଷ
௝ୀଵ − 90

15000 − ∑ ௝݀ݔ௝
ଷଵଷ
௝ୀଵ

- xj = a decision variable: xj =1 repair bridge j
- x=[x1,...,x313] is a repair program
- cj = repair cost of bridge j
- dj = sum of damages of bridge j

7.3.2019
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Example: Bridge repair program (3/7)

q Six objective indexes measuring urgency for repair
1. Sum of Damages (“SumDam”)
2. Repair Index (“RepInd”)
3. Functional Deficiencies (“FunDef”)
4. Average Daily Traffic (“ADTraf”)
5. Road Salt usage (“RSalt”)
6. Outward Appearance (“OutwApp”)

q All objectives additive over bridges: ௜݂ ݔ = ∑ ௜ݒ
௝ݔ௝

ଷଵଷ
௝ୀଵ ,

where ௜ݒ
௝ is the score of bridge j with regard to objective i:

7.3.2019
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Example: Bridge repair program (4/7)

q A multi-objective zero-one linear programming (MOZOLP) problem

v− max
௫∈௑

(෍ ଵݒ
௝ݔ௝

ଷଵଷ

௝ୀଵ

, … , ෍ ଺ݒ
௝ݔ௝

ଷଵଷ

௝ୀଵ

)

q Pareto-optimal repair programs XPO generated using the weighted
max-norm approach

min
௫∈௑,Δ∈ℝ

Δ

Δ ≥ ௜ߣ ௜݂
∗ − ∑ ௜ݒ௝ݔ

௝ଷଵଷ
௝ୀଵ  ∀݅ = 1, … , 6
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Example: Bridge repair program (5/7)

q Additive value function applied for modeling preferences between the
objectives: ܸ ,ݔ ݓ = ∑ ௜ݓ ௜݂ ଺ݔ

௜ୀଵ = ∑ ௜ݓ ∑ ௜ݒ
௝ݔ௝

ଷଵଷ
௝ୀଵ

଺
௜ୀଵ

q Incomplete ordinal information about objective weights: {SumDam,RepInd}
≥{FunDef, ADTraf} ≥ {RSalt,OutwApp}

ܵ = ݓ ∈ ܵ଴ ௜ݓ ≥ ௝ݓ ≥ ௞ݓ , ∀݅ = 1,2; ݆ = 3,4; ݇ = 5,6
q Non-dominated repair programs

ܺே஽ ܵ = ݔ ∈ ᇱݔ∄|ܺ ∈ ܺ s.t. ቊ ܸ ,ᇱݔ ݓ ≥ ܸ ,ݔ ݓ  for all ݓ ∈ ܵ
ܸ ,ᇱݔ ݓ > ܸ ,ݔ ݓ  for some ݓ ∈ ܵ

ܺ௉ை = ܺே஽(ܵ଴) ⊇ ܺே஽(ܵ)

7.3.2019
31



Example: Bridge repair program (6/7)
q Ca. 10,000 non-dominated bridge repair programs
q Bridge-specific decision recommendations can be

obtained through a concept of core index:

௝ܫܥ =
ݔ}| ∈ ܺே஽(ܵ)|ݔ௝ = 1}|

|ܺே஽(ܵ)|
q Of the 313 bridges:

– 39 were included in all non-dominated repair programs
(CI=1)

– 112 were included in some but not all non-dominated
programs (0<CI<1)

– 162 were included in none of the non-dominated programs
(CI=0)

7.3.2019
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Example: Bridge repair program (7/7)

q Bridges listed in
decreasing order of core
indices

- Tentative but not binding
priority list

- Costs and other
characteristics displayed

q The list was found useful
by the program managers

7.3.2019
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BRIDEGES' SCORES
Bridge number and name Core Index DamSum RepInd FunDef ADTraf Rsalt OutwApp Cost
2109 Lavusjoen silta 1.00 5.00 1.65 4 2.6 1 2.6 50000
2218 Joroisvirran silta 1.00 5.00 5.00 2 5 5 2.6 180000
2217 Rautatieylikulkusilta 1.00 3.49 5.00 1.5 5 5 1.8 130000
763 Hurukselantien risteyssilta 1.00 2.27 2.33 1 3.4 5 1 280000
80 Suolammenojan silta 1.00 1.36 1.53 2 4.2 5 1.8 10000
257 Villikkalan silta 0.81 1.97 1.96 5 1 1 1.8 20000
1743 Huuman silta II 0.76 1.64 1.53 1 5 5 1.8 140000
730 Mälkiän itäinen risteyssilta 0.63 1.33 1.58 1.5 5 5 1 120000
2804 Raikuun kanavan silta 0.60 3.93 1.12 2.5 1 1 1 20000
856 Ojaraitin alikulkukäytävä I 0.54 1.46 1.46 1 5 5 1 20000
2703 Grahnin alikulkukäytävä 0.43 1.70 1.23 1 5 5 1 60000
817 Petäjäsuon risteyssilta 0.39 1.52 1.37 1 5 5 1 50000
725 Mustolan silta 0.29 1.98 1.93 2 1.8 1 4.2 190000
2189 Reitunjoen silta 0.24 1.90 1.63 3 1.8 1 1.8 10000
2606 Haukivuoren pohjoinen ylikulkusilta 0.15 1.84 2.09 1.5 2.6 1 1 70000
125 Telataipaleen silta 0.14 1.38 1.12 1 5 5 1.8 40000
608 Jalkosalmen silta 0.03 1.54 1.50 3 1.8 1 2.6 10000
556 Luotolan silta 0.00 1.74 1.26 3 1 1 1.8 10000
661 Raikan silta 0.00 1.95 1.58 2 1 1 1.8 10000
2613 Pitkänpohjanlahden silta 0.00 1.27 1.16 1 4.2 5 2.6 20000
738 Hyypiälän ylikulkusilta 0.00 1.72 1.79 1 3.4 1 1.8 90000
2549 Uitonsalmen silta 0.00 1.71 1.37 3 1 1 1 30000
703 Tokkolan silta 0.00 1.82 1.70 2 1.8 1 1 10000
870 Tiviän alikulkukäytävä 0.00 1.10 1.07 1 5 5 1 20000
377 Sudensalmen silta 0.00 1.88 1.66 1 2.6 1 1.8 20000
953 Sydänkylän silta 0.00 1.23 1.33 3.5 1 1 1.8 10000
700 Kirjavalan ylikulkusilta 0.00 1.42 1.98 1.5 1 1 1 60000
2142 Latikkojoen silta 0.00 1.43 1.58 2.5 2.6 1 1.8 20000
464 Jokisilta 0.00 1.19 1.25 3.5 1.8 1 1 20000
1025 Hartunsalmen silta 0.00 1.18 1.09 3.5 1.8 1 2.6 20000
95 Touksuon silta 0.00 1.83 1.18 2 2.6 1 2.6 20000
418 Laukassalmen silta 0.00 1.54 1.35 1.5 2.6 1 1.8 10000
420 Sillanmäenojan silta 0.00 1.20 1.07 1.5 2.6 1 1.8 10000



Summary

q MOO differs from MAVT in that
– Alternatives are not explicit but defined implicitly through constraints
– MOO problems are computationally much harder

q MOO problems are solved by
– Computing the set of all Pareto-optimal solutions – or at least a subset or

an approximation
– Introducing preference information about trade-offs between objectives to

support the selection of one of the PO-solutions
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Decision making and
problem solving –
Lecture 9
• Analytic Hierarchy Process
• Outranking methods

Liesiö, Punkka, Salo, Vilkkumaa



Motivation

q When alternatives are evaluated w.r.t. multiple attributes / criteria,
decision-making can be supported by methods of

– Multiattribute value theory (certain attribute-specific performances)
– Multiattribute utility theory (uncertain attribute-specific performances)

q MAVT and MAUT have a strong axiomatic basis

q Yet, other popular multicriteria methods exist

21.3.2019
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Analytic Hierarchy Process (AHP)

q Thomas L. Saaty (1977, 1980)

q Enormously popular
– Thousands of reported applications
– Dedicated conferences and scientific journals

q Several decision support tools
– Expert Choice, WebHipre etc.

q Not based on the axiomatization of preferences – therefore remains
controversial

21.3.2019
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Problem structuring in AHP

q Objectives, sub-
objectives / criteria,
and alternatives
are represented as
a hierarchy of
elements (cf. value
tree)

21.3.2019
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
w1=1-w2

1-to-9

Balanced

Local priorities
q For each objective / sub-objective, a local priority

vector is determined to reflect the relative
importance of those elements placed immediately
below the objective / sub-objective

q Pairwise comparisons:
– For (sub-)objectives: ”Which sub-objective /

criterion is more important for the attainment of the
objective? How much more important is it?”

– For alternatives: ”Which alternative contributes
more to the attainment of the criterion? How much
more does it contribute?”

q Responses on a verbal scale correspond to
weight ratios

21.3.2019
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Scale
Verbal statement 1-to-9 Balanced

Equally important 1 1.00
- 2 1.22

Slightly more important 3 1.50
- 4 1.86

Strongly more important 5 2.33
- 6 3.00

Very strongly more important 7 4.00
- 8 5.67

Extremely more important 9 9.00



Pairwise comparison matrix
q Weight ratios ௜௝ݎ = ௪೔

௪ೕ
form a pairwise

comparison matrix A:

21.3.2019
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L F SL VT CP MC

Learning 1 4 3 1 3 4

Friends 1/4 1 7 3 1/5 1

School life 1/3 1/7 1 1/5 1/5 1/6

Voc. training 1 1/3 5 1 1 1/3

College prep. 1/3 5 5 1 1 3

Music classes 1/4 1 6 3 1/3 1

Learning

A B C

A 1 1/3 ½

B 3 1 3

C 2 1/3 1

Voc. training

A B C

A 1 9 7

B 1/9 1 5

C 1/7 1/5 1

Friends

A B C

A 1 1 1

B 1 1 1

C 1 1 1

College prep.

A B C

A 1 1/2 1

B 2 1 2

C 1 1/2 1

School life

A B C

A 1 5 1

B 1/5 1 1/5

C 1 5 1

Music classes

A B C

A 1 6 4

B 1/6 1 1/3

C 1/4 3 1

ܣ =
ଵଵݎ ⋯ ଵ௡ݎ
⋮ ⋱ ⋮

௡ଵݎ = ଵ௡ݎ/1 ⋯ ௡௡ݎ

Goal
Satisfaction with School

Learning           Friends       School        Vocational       College           Music
Life             Training           Preparation    Classes

School
A

School
C

School
B

Goal
Satisfaction with School

Learning           Friends       School        Vocational       College           Music
Life             Training           Preparation    Classes

School
A

School
C

School
B

Music classes are strongly – very
strongly more important than school life



Incosistency in pairwise comparison
matrices
q Problem: pairwise comparisons are not necessarily consistent

q E.g., if learning is slightly more importannt (3) than college
preparation, which is strongly more important (5) than school life, then
learning should be 3 × 5 times more important than school life … but
this is impossible with the applied scale

→ Weights need to be estimated

21.3.2019
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Local priority vector

q The local priority vector w (=estimated
weights) is obtained by normalizing the
eigenvector corresponding to the largest
eigenvalue of matrix A:

ݓܣ = ,ݓ௠௔௫ߣ

:ݓ =
1

∑ ௜ݓ
௡
௜ୀଵ

.ݓ

q Matlab:
– [v,lambda]=eig(A) returns the eigenvectors

and eigenvalues of A

21.3.2019
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Learning W
A B C

A 1 1/3 1/2 0.16

B 3 1 3 0.59

C 2 1/3 1 0.25

Only one eigenvector with all real
elements: (0.237, 0.896, 0.376) →
normalized eigenvector w=(0.16,
0.59, 0.25).



Local priority vectors = ”weights”
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L F SL VT CP MC W

Learning 1 4 3 1 3 4 0.32

Friends 1/4 1 7 3 1/5 1 0.14

Schoo life 1/3 1/7 1 1/5 1/5 1/6 0.03

Voc. Training 1 1/3 5 1 1 1/3 0.13

College prep. 1/3 5 5 1 1 3 0.24

Music classes 1/4 1 6 3 1/3 1 0.14

Learning W

A B C

A 1 1/3 1/2 0.16

B 3 1 3 0.59

C 2 1/3 1 0.25

School life W

A B C

A 1 5 1 0.45

B 1/5 1 1/5 0.09

C 1 5 1 0.46

College prep. W

A B C

A 1 1/2 1 0.25

B 2 1 2 0.50

C 1 1/2 1 0.25

Friends W

A B C

A 1 1 1 0.33

B 1 1 1 0.33

C 1 1 1 0.33

Voc. training W

A B C

A 1 9 7 0.77

B 1/9 1 5 0.05

C 1/7 1/5 1 0.17

Music classes W

A B C

A 1 6 4 0.69

B 1/6 1 1/3 0.09

C 1/4 3 1 0.22



Consistency checks

q The consistency of the pairwise
comparison matrix A is studied by
comparing the consistency index (CI)
of A to the average consistency index
RI of a random pairwise comparison
matrix:

ܫܥ =
௠௔௫ߣ − ݊
݊ − 1

, ܴܥ =
ܫܥ
ܫܴ

q Rule of thumb: if CR>0.10,
comparisons are so inconsistent that
they should be revised

21.3.2019
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n 3 4 5 6 7 8 9 10

RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

Three alternatives, n=3:

q Learning: =௠௔௫ߣ 3.05, ܴܥ = 0.04
q Friends: =௠௔௫ߣ 3.00, ܴܥ = 0
q School life: =௠௔௫ߣ 3.00, ܴܥ = 0
q Voc. training =௠௔௫ߣ 3.40, ܴܥ = 0.34
q College prep: =௠௔௫ߣ 3.00, ܴܥ = 0
q Music classes: =௠௔௫ߣ 3.05, ܴܥ = 0.04

Six attributes, n=6:

q All attributes: =௠௔௫ߣ 7.42, ܴܥ = 0.23



Total priorities
q The total (overall) priorities are

obtained recursively:

௞ݓ =෍ ௜ݓ

௡

௜ୀଵ
௞ݓ
௜ ,

where
– ௜ݓ is the total priority of criterion i,
– ௞ݓ

௜ is the local priority of criterion /
alternative k with regard to criterion i,

– The sum is computed over all criteria i
below which criterion / alternative k is
positioned in the hierarchy

21.3.2019
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Goal
Satisfaction with School

Learning           Friends       School        Vocational       College           Music
Life             Training           Preparation    Classes

School
A

School
C

School
B

Goal
Satisfaction with School

Learning           Friends       School        Vocational       College           Music
Life             Training           Preparation    Classes

School
A

School
C

School
B

0.32 0.14 0.03 0.13 0.24 0.14

0.16 0.33

஺ݓ = ∑ ௜ݓ
଺
௜ୀଵ ௞ݓ

௜ = 0.32 ȉ 0.16 + 0.14 ȉ 0.33 +…



Total priorities
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L F SL VT CP MC w

Learning 1 4 3 1 3 4 0.32

Friends 1/4 1 7 3 1/5 1 0.14

Schoo life 1/3 1/7 1 1/5 1/5 1/6 0.03

Voc. Training 1 1/3 5 1 1 1/3 0.13

College prep. 1/3 5 5 1 1 3 0.24

Music classes 1/4 1 6 3 1/3 1 0.14

Learning w

A B C

A 1 1/3 1/2 0.16

B 3 1 3 0.59

C 2 1/3 1 0.25

School life w

A B C

A 1 5 1 0.45

B 1/5 1 1/5 0.09

C 1 5 1 0.46

College prep. w

A B C

A 1 1/2 1 0.25

B 2 1 2 0.50

C 1 1/2 1 0.25

Friends w

A B C

A 1 1 1 0.33

B 1 1 1 0.33

C 1 1 1 0.33

Voc. training w

A B C

A 1 9 7 0.77

B 1/9 1 5 0.05

C 1/7 1/5 1 0.17

Music classes w

A B C

A 1 6 4 0.69

B 1/6 1 1/3 0.09

C 1/4 3 1 0.22

0.32 0.14 0.03 0.13 0.24 0.14

L F SL VT CP MC Total w

A 0.16 0.33 0.45 0.77 0.25 0.69 0.37

B 0.59 0.33 0.09 0.05 0.50 0.09 0.38

C 0.25 0.33 0.46 0.17 0.25 0.22 0.25

E.g.,
wB=0.32*0.59+0.14*0.33+0.03*0.09+
0.13*0.05+0.24*0.50+0.14*0.09



Problems with AHP

q Rank reversals: the introduction of an additional
alternative may change the relative ranking of the other
alternatives

q Example:
– Alternatives A and B are compared w.r.t. two ”equally important”

criteria C1 and C2 (wC1 = wC2 = 0.5)
– A is better than B:

஺ݓ =
1
2 ×

1
5 +

1
2 ×

5
6 ≈ 0.517, ஻ݓ =

1
2 ×

4
5 +

1
2 ×

1
6 ≈ 0.483

– Add C which is identical to A:

஺ݓ = ஼ݓ =
1
2

×
1
6

+
1
2

×
5
11

≈ 0.311, ஻ݓ =
1
2

×
4
6

+
1
2

×
1
11

≈ 0.379

– Now B is better than A!

21.3.2019
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C1 C2

A 1 5

B 4 1

C 1 5



Methods based on outranking relations

q Basic question: is there enough preference information / evidence
to state that an alternative is at least as good as some other
alternative?

q I.e., does an alternative outrank some other alternative?

21.3.2019
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Indifference and preference thresholds divide
the measurement scale into three parts
q If the difference between the criterion-specific

performances of A and B is below a pre-
defined indifference threshold, then A and
B are ”equally good” w.r.t. this criterion

q If the difference between the criterion-specific
performances of A and B is above a pre-
defined preference threshold, then A is
preferred to B w.r.t this criterion

q Between indifference and preference
thresholds, the DM is uncertain about
preference

21.3.2019
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200 400 Difference
in cost
between A
and B

A and B
equally
preferred

A preferred
to B

Uncertain
preference

Indifference
threshold Preference

threshold

0



PROMETHEE I & II

q In PROMETHEE methods, the degree
to which alternative k is preferred to l
is

෍ ௜ݓ
௡

௜ୀଵ
,݇)௜ܨ ݈) ≥ 0,

where
– ௜ݓ is the weight of criterion i
– ,݇)௜ܨ ݈) =1, if k is preferred to l w.r.t. criterion i,
– ,݇)௜ܨ ݈) =0, if the DM is indifferent between k

and l w.r.t. criterion i, or l is preferred to k
– ,݇)௜ܨ ݈) ∈ (0,1), if preference between k and l

w.r.t. criterion i is uncertain

21.3.2019
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200 400 Difference
in cost
between A
and B

A and B
equally
preferred

A preferred
to B

Uncertain
preference

Indifference
threshold

Preference
threshold

0

௜ܨ

1

0



PROMETHEE I & II
q PROMETHEE I: k is preferred to k’, if

෍ ෍ ,݇)௜ܨ௜ݓ ݈)
௡

௜ୀଵ

 

௟ஷ௞
> ෍ ෍ ,′݇)௜ܨ௜ݓ ݈)

௡

௜ୀଵ

 

௟ஷ௞ᇱ

෍ ෍ ,݈)௜ܨ௜ݓ ݇)
௡

௜ୀଵ

 

௟ஷ௞
< ෍ ෍ ,݈)௜ܨ௜ݓ ݇′)

௡

௜ୀଵ

 

௟ஷ௞ᇱ

q PROMETHEE II: k is preferred to k’, if

௡௘௧ܨ ݇ = ෍ ෍ ,݇)௜ܨ]௜ݓ ݈)
௡

௜ୀଵ
− [(݇,݈)௜ܨ

 

௟ஷ௞
> ෍ ෍ ,′݇)௜ܨ]௜ݓ ݈)

௡

௜ୀଵ
− ,݈)௜ܨ ݇′)]

 

௟ஷ௞ᇱ
= ௡௘௧ܨ ݇′

21.3.2019
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There is more
evidence in
favor of k than k’

There is less
evidence
against k than k’

The ”net evidence” for
k is larger than for k’



PROMETHEE: Example
Revenue Market share

x1 1M€ 10%

x2 0.5M€ 20%

x3 0 30%

Indiff. threshold 0 10%

Pref. threshold 0.5M€ 20%

Weight 1 1

Revenue F1 Market share
F2

Weighted
Fw=w1F1+w2F2

x1, x2 1 0 1

x2, x1 0 0 0

x1, x3 1 0 1

x3, x1 0 1 1

x2, x3 1 0 1

x3, x2 0 0 0

10% 20%0

ଶܨ

1

0

0.5M€0

ଵܨ

1

0



PROMETHEE I: Example
q PROMETHEE I:

– ଵݔ is preferred to ଶ, ifݔ
෍ ௜ܨ ,ଵݔ ଶݔ + ௜ܨ ,ଵݔ ଷݔ

ଶ

௜ୀଵ
ୀଵାଵୀଶ

> ෍ ௜ܨ ଶݔ ଵݔ, + ௜ܨ ଶݔ , ଷݔ
ଶ

௜ୀଵ
ୀ଴ାଵୀଵ

෍ ௜ܨ ,ଶݔ ଵݔ + ௜ܨ ,ଷݔ ଵݔ
ଶ

௜ୀଵ
ୀ଴ାଵୀଵ

< ෍ ௜ܨ ,ଵݔ ଶݔ + ௜ܨ ଷݔ , ଶݔ
ଶ

௜ୀଵ
ୀଵା଴ୀଵ

– ଵݔ is not preferred to ଶݔ due to the latter condition
– ଶݔ is not preferred to ଵݔ due to both conditions
– ଵݔ is preferred to ଷݔ

– ଶݔ is not preferred to ଷݔ and vice versa

q Note: preferences are not transitive
– ଵݔ ≻ ଶݔ~ଷݔ ⇏ ଵݔ ≻ ଶݔ

21.3.2019
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F1 F2 Fw

x1, x2 1 0 1

x2, x1 0 0 0

x1, x3 1 0 1

x3, x1 0 1 1

x2, x3 1 0 1

x3, x2 0 0 0



PROMETHEE I: Example (Cont’d)

q PROMETHEE I is also prone to rank
reversals:

– Remove ଶݔ

– Then,

෍ ௜ܨ ,ଵݔ ଷݔ
ଶ

௜ୀଵ
ୀଵ

≯ ෍ ௜ܨ ,ଷݔ ଵݔ
ଶ

௜ୀଵ
ୀଵ

෍ ௜ܨ ,ଷݔ ଵݔ
ଶ

௜ୀଵ
ୀଵ

≮ ෍ ௜ܨ ,ଵݔ ଷݔ
ଶ

௜ୀଵ
ୀଵ

→ ଵݔ is no longer preferred to ଷݔ
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F1 F2 Fw

x1, x2 1 0 1

x2, x1 0 0 0

x1, x3 1 0 1

x3, x1 0 1 1

x2, x3 1 0 1

x3, x2 0 0 0



PROMETHEE II: Example

q The ”net flow” of alternative ௝ݔ

௡௘௧ܨ ௝ݔ = ෍ ௝ݔ)௪ܨ] −(௞ݔ, [(௝ݔ,௞ݔ)௪ܨ
 

௞ஷ௝

– ௡௘௧ܨ ଵݔ = 1 − 0 + 1 − 1 = 1
– ௡௘௧ܨ ଶݔ = 0 − 1 + 1 − 0 = 0
– ௡௘௧ܨ ଷݔ = 1 − 1 + 0 − 1 = −1

→ ଵݔ ≻ ଶݔ ≻ ଷݔ

21.3.2019
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F1 F2 Fw

x1, x2 1 0 1

x2, x1 0 0 0

x1, x3 1 0 1

x3, x1 0 1 1

x2, x3 1 0 1

x3, x2 0 0 0



PROMETHEE II: Example (Cont’d)

q PROMETHEE II is also prone to rank reversals
– Add two altrenatives that are equal to x3 in both criteria.

Then, x2 becomes the most preferred:
௡௘௧ܨ ଵݔ = 1 − 0 + 3 × 1− 1 = 1
௡௘௧ܨ ଶݔ = 0− 1 + 3 × 1 − 0 = 2
௡௘௧ܨ ଷ:ହݔ = 1 − 1 + 0− 1 = −1

– Add two alternatives that are equal to x1 in both criteria.
Then, x2 becomes the least preferred:
௡௘௧ܨ ଵ,ସ,ହݔ = 1− 0 + 1 − 1 + 2 × (0− 0) = 1

௡௘௧ܨ ଶݔ = 3 × 0− 1 + 1 − 0 = −2
௡௘௧ܨ ଷݔ = 3 × 1− 1 + 0 − 1 = −1

– Remove x2. Then, x1 and x3 are equally preferred.
௡௘௧ܨ ଵݔ = ௡௘௧ܨ ଷݔ = 1 − 1 = 0
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F1 F2 Fw

x1, x2 1 0 1

x2, x1 0 0 0

x1, x3 1 0 1

x3, x1 0 1 1

x2, x3 1 0 1

x3, x2 0 0 0



Summary

q AHP and outranking methods are commonly used for supporting
multiattribute decision-making

q Unlike MAVT (and MAUT), these methods do not build on the
axiomatization of preferences →

– Rank reversals
– Preferences are not necessarily transitive

q Elicitation of model parameters can be difficult
– Weights have no clear interpretation
– In outranking methods, statement ”I prefer 2€ to 1€” and ”I prefer 3€ to 1€” are both

modeled with the same number (1); to make a difference, indifference and
preference thresholds need to be carefully selected
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Decision making and
problem solving –
Lecture 10
• Group techniques
• Voting
• MAVT for group decisions

Liesiö, Punkka, Salo, Vilkkumaa



Motivation

q Thus far we have assumed that
– Objectives, attributes/criteria, and decision alternatives are given
– There is a single decision maker

q This time we’ll learn
– How a group of experts / DMs can be used to generate objectives,

attributes, and/or decision alternatives
– How to aggregate the views and preferences of the group members into a

single decision recommendation

28.3.2019
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Idea generation and evaluation
techniques
q Goals:

– Generate topics / ideas / decision alternatives
– Evaluate these topics / ideas / alternatives
– Agree on a prioritization of the topics / ideas / alternatives

q Methods:
– Brainstorming
– Nominal group technique
– Delphi method
– …and variants of the above

28.3.2019
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Brainstorming
q Goal: to generate a large number of possible solutions for a problem

q Participants: Facilitator, recorder, and max 8-12 panel members
– Step 1 Prior notification: time for individual idea generation
– Step 2 Session for idea generation: all ideas are listed, spotaneous ideas are encouraged, no

criticism is allowed
– Step 3 Review and evaluation: a list of ideas is sent to the panel members for further study

q Principles:
– Focus on quantity
– Withhold criticism
– Welcome unusual ideas
– Combine and improve ideas

28.3.2019
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Brainstorming

+ A large number of ideas can be generated in a short period of time
+ Simple – no expertise or knowledge required from the facilitator

- Blocking: during the process, participants may forget their ideas or
not share them because they no longer find them relevant

- Collaborative fixation: Exchanging ideas in a group may decrease
the novelty and variety of ideas

28.3.2019
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Nominal group technique

q Goal: to generate a large number of possible solutions for a problem and
decide on a solution

q Participants: Faciliator, recorder, and max 6-12 panel members
– Step 1: Silent generation of ideas – group work not allowed
– Step 2: Round-robin sharing of ideas. Facilitator lists all ideas on a flip chart, no comments at this

point.
– Step 3: Group discussion to facilitate common understanding of the presented ideas. No ideas are

eliminated, judgment and criticism are avoided.
– Step 4: Ranking of the ideas (by, e.g., voting)

28.3.2019
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Nominal group technique

+ A large number of ideas can be generated in a short period of time
+ Silent generation of ideas decreases blocking
+ Round-robin process ensures equal participation

- Not suitable for settings where consensus is required
- Can be time-consuming

28.3.2019
7



Delphi technique

q Goal: To obtain quantitative estimates about some future events (e.g.,
estimated probabilities, impacts, and time spans of negative trends for
Finland)

q Participants: Faciliator and a panel of experts
q Principles:

– Anonymous participation
– Structured gathering of information through questionnaires: numerical estimates and arguments

to support these estimates
– Iterative process: participants comment on each other’s estimates and are encouraged to revise

their own estimates in light of such comments
– Role of the facilitator: sends out the questionnaires, organizes the information, identifies

common and conflicting viewpoints, works toward synthesis

28.3.2019
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Example: Decision analysis based real
world conflict analysis tools
q Workshop organized by the Finnish Operations Research Society

(FORS) Monday 5.10.2015

q Goal: to practice DA-based conflict analysis tools that Crisis
Management Initiative (CMI) uses regularly in its operations:

– Trend identification,
– Data collection,
– Visualization,
– Root-cause analysis.

28.3.2019
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Example cont’d

q Prior to the workshop,
each participant was
asked to

– List 3-5 negative trends for
Finland (title and brief
description)

– Provide time-spans for the
impacts of these trends
(<10 years, 10-20 years,
>20 years)

28.3.2019
10



Example cont’d

28.3.2019
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q Trends listed by the
participants were organized
by the workshop facilitators

– Similar trends combined
– Marginal trends eliminated

q A final list of 21 trends was
emailed to the participants
prior to the workshop

.

.

.



Example cont’d

q At the workshop, each
participant was asked to
evaluate

– The probability of each
trend being realized (scale
0-5)

– The impact that the trends
would have upon
realization (scale 0-5)

28.3.2019
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Example cont’d

q The participants were
also asked to assess
cross-impacts among
trends

– Which other trends does
this trend enhance?

28.3.2019
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Example cont’d

q Visualizations on
the probability
and impact
assessments
were shown to
the participants
to facilitate
discussion

28.3.2019
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Increased political
tension in EU

The retirement
bomb

Eating and
drinking habits

Brain
drain

Climate
change

Russia’s
actions



Example cont’d

q Cross-impacts
were visualized,
too

28.3.2019
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Russia’s
actions

Increased political
tension in EU

Bifurgation of Finns and
political radicalization

Refugees and immigration

The welfare
trap Specialization, digitalization, and

automation driving inequality

Socially excluded
youth

High
unemployment

Economic
stagnationFossile fuels

Climate
change

The retirement
bomb

Cuts on
education

Increasing
government debt



Example cont’d
q Goal of such analysis:

– To create a shared understanding of the problem
– To identify possible points of disagreement

q Next steps:
– Possible revision of estimates in light of the discussion
– The determination of policy actions to help mitigate / adapt to the most important negative

trends
– Agreement on which policy actions to pursue
– The implementation of these policy actions

28.3.2019
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Aggregation of preferences

q Consider N alternatives x1,…, xN

q Consider K decision makers DM1,… DMK with different
preferences about the alternatives

q How to aggregate the DMs’ preferences into a group choice?
– Voting
– MAVT

28.3.2019
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Plurality voting

q Each voter casts one vote to his/her most preferred candidate
q The candidate with the most votes wins
q Plurality voting with runoff:

- The winner must get over 50% of the votes
- If this condition is not met, alternatives with the least votes are eliminated
- Voting is continued until the condition is met
- E.g., Finnish presidential election: in the second round only two candidates

remain

28.3.2019
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Plurality voting

q Suppose, there are three alternatives A, B, C, and 9 voters
• 4 think that  A > B > C
• 3 think that  B > C > A
• 2 think that  C > B > A

28.3.2019
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Plurality voting

4 votes for A
3 votes for B
2 votes for C

A is the winner

Run-off

C eliminated

4 votes for A
3+2 = 5 votes for B

B is the winner



Example: Finnish Presidential elections

• Organized every 6 six years

• Plurality voting with runoff
• 2 most voted candidates to the 2nd round, unless some candidate

receives over 50 % of votes already on the 1st round

• 7-11 candidates in 1994-2018
• Some candidates can have moderate support, but strong opposition

• I.e., they are ranked 1st by some, but last or close to last by many other voters

28.3.2019
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Polls just before the 1st election round suggest
that candidate F is the strongest, but a 2nd will be
needed. The battle for the 2nd position will be tight

28.3.2019
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-4 months just before 1st election round



Time for 1st round vote!

• Based on polls, D and H are battling for the second position
• Supporters of A,B,C,E,F,G: who to vote?

• Supporters of F could vote against an unwanted 2nd round competitor (D or H)
• Supporters A,B,C,E,G could vote against or for D or H

• Your preferences are given on the piece of paper provided to
you

= F > D > G
• Go to https://presemo.aalto.fi/votingexample/ and vote!

28.3.2019
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ranking of D: 2; ranking of F: 1; ranking of g: 3; vote according to preferences



Do voters actually vote tactically?

28.3.2019
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1st round results



Condorcet

q All voters rank-order the alternatives
q Each pair of alternatives is compared - the one with more votes is

the winner
q If an alternative wins all its one-to-one comparisons, it is the

Condorcet winner
q There might not be a Condorcet winner – some other rule must be

applied, e.g.,
– Copeland’s method: the winner is the alternative with the most wins in one-to-one

comparisons
– Eliminate the alternative(s) with the least votes and recompute

28.3.2019
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Condorcet - example

q 33 voters and alternatives A, B, C
• 17 voters: A>B>C
• 1 voter: A>C>B
• 15 voters: B>C>A
• 0 voters: C>B>A, C>A>B, B>A>C

qA is the Condorcet winner, because it wins both one-on-one
comparisons
• 17+1=18>15 out of 33 favor A over B and 18 favor A over C

28.3.2019
25



Condorcet completion

q There might not be a Condorcet winner
– Copeland’s completion method: the winner is the alternative with the most wins in

one-to-one comparisons

5 voters and 5 alternatives A, B, C, D, E
- 1 voter: A>B>C>D>E
- 1 voter: A>D>E>C>B
- 2 voters: D>E>B>C>A
- 1 voter: C>B>A>D>E

D wins more one-on-one comparisons
than other alternatives

28.3.2019
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A B C D E wins
A 2 2 3 3 2
B 3 3 2 2 2
C 3 2 2 2 1
D 2 3 3 5 3
E 2 3 3 0 2

2+1=



Condorcet completion

qAnother possibility for Condorcet completion: Eliminate the one
with least wins and recompute results

qFirst C is eliminated
• B,D,E lose one win

qB and E with one win are elimitated
• A and D remain

qA wins D by 3 votes to 2

28.3.2019
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A B C D E wins
A 2 2 3 3 2
B 3 3 2 2 2
C 3 2 2 2 1
D 2 3 3 5 3
E 2 3 3 0 2

1

1
2



Borda
q Each voter gives

– n-1 points to the most preferred alternative,
– n-2 points to the second most preferred,
– …
– 0 points to the least preferred alternative

q The alternative with the highest total number of points wins

28.3.2019
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4 state that A > B > C
3 state that B > C > A
2 state that C > B > A

A : 4·2 + 3·0 + 2·0 =  8 points
B : 4·1 + 3·2 + 2·1 = 12 points
C : 4·0 + 3·1 + 2·2 = 7 points



Approval voting

q Each voter casts one vote for each alternative he/she approves

q The alternative with the highest number of votes is the winner

q “If you want to vote against some, cast your votes to all others”

28.3.2019
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Problems with voting: The Condorcet
paradox (1/2)
q Consider the following rank-orderings of three alternatives

q Paired comparisons:
– A is preferred to B by 2 out of 3 voters
– B is preferred to C by 2 out of 3 voters
– C is preferred to A by 2 out of 3 voters

28.3.2019
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DM1 DM2 DM3

A 1 3 2

B 2 1 3

C 3 2 1



Problems with voting: The Condorcet
paradox (2/2)
q Three voting orders:

1. (A-B) → A wins, (A-C) → C is the winner
2. (B-C) → B wins, (B-A) → A is the winner
3. (A-C) → C wins, (C-B) → B is the winner

q No matter what the outcome is, the majority of voters would prefer some
other alternative:

– If C wins, 2 out of 3 voters would change it to B
– …But B would be changed to A by 2 out of 3 voters
– …And then A would be changed to C by 2 out of 3 voters…
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DM1 DM2 DM3

A 1 3 2

B 2 1 3

C 3 2 1

The outcome depends on the order in which votes are cast!



Problems with voting: tactical voting
q DM1 knows the preferences of the other

voters and the voting order (A-B, winner-C)
q If DM2 and DM3 vote according to their true

preferences, then the favourite of DM1 (A)
cannot win:
q 1st round: A gets 2 votes
q 2nd round: A loses to C

q Could DM1 avoid the selection of C, her
worst outcome?
q 1st round: vote for B; B wins 2-1
q 2nd round: vote for B; B wins 2-1
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DM1 DM2 DM3

A 1 3 2

B 2 1 3

C 3 2 1



Social choice function

q Assume that the preferences of DMi are represented by a
complete and transitive weak preference order Ri:

DMi thinks that x is at least as good as y Û x Ri y

q What is the social choice function f that determines the collective
preference R=f(R1,…,RK) of a group of K decision-makers?

– Voting procedures are examples of social choice functions

28.3.2019
34



Requirements on the social choice
function

1. Universality: For any set of Ri, the social choice function should yield a
unique and complete preference ordering R for the group

2. Independence of irrelevant alternatives: The group’s preference between
two alternatives (x and y) does not change if we remove an alternative from
the analysis or add an alternative to the analysis.

3. Pareto principle: If all group members prefer x to y, the group should prefer
x to y

4. Non-dictatorship: There is no DMi such that x Ri y ⇒ x R y
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The big problem with voting: Arrow’s
theorem
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There is no complete and transitive social
choice function f such that conditions 1-4
would always be satisfied.



Arrow’s theorem – an example

q Borda criterion:

q Suppose that the DMs’ preferences do not change. A ballot between
alternatives 1 and 2 gives

q Independence of irrelevant alternatives is not satisfied!
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DM1 DM2 DM3 DM4 DM5 Total

x1 3 3 1 2 1 10

x2 2 2 3 1 3 11

x3 1 1 2 0 0 4

x4 0 0 0 3 2 5

Alternative x2
is the winner!

DM1 DM2 DM3 DM4 DM5 Total

x1 1 1 0 1 0 3

x2 0 0 1 0 1 2

Alternative x1
is the winner!



Aggregation of values

Theorem (Harsanyi 1955, Keeney 1975):

Let vk(·) be a cardinal value function describing the preferences of DMk. There
exists a K-dimensional differentiable (ordinal) function VG() with positive partial
derivatives describing group preferences ≻௚ in the definition space such that

a ≻௚bÛ VG[v1(a),…,vK(a)] ³ VG[v1(b),…,vK(b)]
and conditions 1-4 are satisfied.

Note: Voting procedures use only ordinal information (i.e., rank ordering) about
the DMs’ preferences – strength of preference should be considered, too
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MAVT in group decision support

q From MAVT, we already know how to
combine cardinal value functions into an
overall value function:

∑=(ݔ)ீܸ ௞ܹ ௞ܸ
ே(ݔ)௄

௞ୀଵ , ௞ܹ ≥ 0,∑ ௞ܹ
௄
௞ୀଵ = 1.

q This can be done for multiattribute
cardinal value functions as well:

∑=(ݔ)ீܸ ௞ܹ
௄
௞ୀଵ ∑ ௞௜ேݒ௞௜ݓ ௡(௜ݔ)

௜ୀଵ
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ଵଵேݒ (ଵݔ) ଵଶேݒ (ଶݔ) ଶଵேݒ (ଵݔ) ଶଶேݒ (ଵݔ)

ଵܸ
ே(ݔ) ଶܸ

ே(ݔ)

VG(x)

DM1 DM2

ଵଵݓ ଵଶݓ ଶଵݓ

ଶܹଵܹ

ଶଶݓ



MAVT in group decision support
q Weights ଵܹ, ଶܹ measure the value difference

between the worst and best achievement
levels x0 , x* for DM1 and DM2, respectively

q How to compare these value differences –
i.e., how to make trade-offs between people?
q “Compared to my preference for apples over oranges,

how strong is yours?”

q Group weights ଵܹ = ଶܹ= 0.5 would mean
that the value differences are equally
valuable, but…

q Who gets to define x0 and x*?
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ଵଵேݒ (ଵݔ) ଵଶேݒ (ଶݔ) ଶଵேݒ (ଵݔ) ଶଶேݒ (ଵݔ)

ଵܸ
ே(ݔ) ଶܸ

ே(ݔ)

VG(x)

DM1 DM2

ଵଵݓ ଵଶݓ ଶଵݓ

ଶܹଵܹ

ଶଶݓ



MAVT for group decision support

q Example: for both DMs, vi’s are linear, DM1 has preferences
(1,0)~(0,2) and DM2 (2,0)~(0,1)

q Let x0=(0,0), x*=(2,4) for both DMs, and W1=W2 =0.5
- Then vk1

N=0.5x1, vk2
N=0.25x2 for both k=1,2

q VG(1,0)=0.5*0.25+0.5*0.1=0.175 > VG(0,1)=0.1625
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DM1

o (1,0)~(0,2) ⇒ V1
N (1,0)= V1

N (0,2)⇒
0.5w11=0.5w12 ⇒
w11=w12=0.5

o V1
N(1,0)=0.25, V1

N(0,1)=0.125

DM2

o (2,0)~(0,1) ⇒ V2
N (2,0)= V2

N(0,1)⇒
w21=0.25w22⇒
w21=0.2, w22=0.8

o V2
N(1,0)=0.1, V2

N(0,1)=0.2



MAVT for group decision support

q Interpretation of the result
- For DM1 (1,0)←(0,1) is an improvement. The ”group” values this more than

the value of change (0,1)←(1,0) for DM2

q Let x0=(0,0), x*=(4,2) for both DMs, and W1=W2 =0.5
- VG(1,0)=0.1625 < VG(0,1)=0.175

q Interpretation of the result
- (0,1)←(1,0) - which is an improvement for DM2 - is now more valuable for

the group than change (1,0)←(0,1)
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Summary
q Techniques for involving a group of experts or DMs can be helpful for

– Problem identification and definition,
– Generating objectives, attributes, and alternatives,
– Defining common terminology

q Individual preferences can be easily aggregated into a group
preference through voting procedures, but…

– Arrow’s impossibility theorem states that no ”good” voting procedure exists

q MAVT provides a sound method for aggregating preferences, but…
– The determination of group weights = interpersonal comparisons can be difficult
→ Aim at a joint model e.g. by exploiting incomplete preference information
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