

Switched-Capacitor Power Converters ELEC-L3520

Kalle Spoof

Department of Electronics and Nanoengineering Aalto University, School of Electrical Engineering kalle.spoof@aalto.fi

3.4.2019

Lecture Overview

Background

Performance Metrics

DC-DC Converter Types

Charge Pump Topologies

Losses in SC Power Converters

Conclusion

ELEC-L3520 3.4.2019 2/37

Outline

Lecture Overview

- Background
- **Performance Metrics**
- **DC-DC Converter Types**
- **Charge Pump Topologies**
- Losses in SC Power Converters

Conclusion

ELEC-L3520 3.4.2019 3/37

Lecture Overview

Background and context: Low power systems

- ► Power management → circuit requirements
- Other DC-DC power converter types
- Switched capacitor power converters
 - Charge transfer
 - Charge pump topologies
- Loss mechanisms in SC power converters

Outline

Lecture Overview

Background

Performance Metrics

DC-DC Converter Types

Charge Pump Topologies

Losses in SC Power Converters

Conclusion

ELEC-L3520 3.4.2019 5/37

Energy Harvesting Systems

- Power conditioning optimizes power harvesting
- Harvested energy is stored as usable voltage
- Power management optimizes power consumption

Power Management Algorithms

Dynamic power management, DPM

- Go to standby when possible
- Good for burst operation (e.g. RF TX)

Dynamic voltage/frequency scaling, DVFS

- ► Lower operating frequency during non-maximal processor load → saves power
- \blacktriangleright Lower supply voltage with frequency \rightarrow saves energy

Power Management Algorithms

DC-DC Power Converters

- Circuit Level Power Management
- Regulate DC-input to reference voltage
 - Reference can be higher or lower
 - Same or reverse polarity
- Feed-back controller
- Efficiency!
- Varying line and output conditions
- Variable or multiple output levels (DVFS)

Outline

Lecture Overview

- Background
- **Performance Metrics**
- **DC-DC Converter Types**
- **Charge Pump Topologies**
- Losses in SC Power Converters

Conclusion

ELEC-L3520 3.4.2019 10/37

Efficiency

$$\eta = \frac{P_{out}}{P_{in}} * 100\% = \frac{P_{out}}{P_{out} - P_{loss}} * 100\%$$

- Most critical metric for power converters
- Loss mechanisms for SC power converters introduced later

ELEC-L3520 3.4.2019 11/37

Line Regulation

Ability to maintaining desired V_{out}, when V_{in} fluctuates
 Essential for energy harvesting systems

Line Regulation =
$$\left(\frac{\Delta V_{out}}{\Delta V_{in}}\right)\Big|_{I_{out}=const} \left[\frac{mV}{V}\right]$$

Load Regulation

Load Regulation =
$$(\frac{\Delta V_{out}}{\Delta I_{out}}) \Big|_{V_{in}=const} [\frac{mV}{A}]$$

- V_{out} typically decreases as I_{out} increases
- Ability to maintain constant Vout with varying load conditions

Reference Tracking Speed

Reference Tracking Speed =
$$\left(\frac{\Delta T}{\Delta V_{out}}\right)\Big|_{I_{out}=const} \left[\frac{s}{V}\right]$$

How fast variable output tracks to new V_{ref}

ELEC-L3520 3.4.2019 14/37

Other desired properties

- Monolithic solution
- Small die area
- Reconfigurability
- Noise

Outline

Lecture Overview

Background

Performance Metrics

DC-DC Converter Types

Charge Pump Topologies

Losses in SC Power Converters

Conclusion

ELEC-L3520 3.4.2019 16/37

Linear regulators and LDOs

- Error amplifier + item Pass transistor as VCVS
- No switching noise
- Only step-down output
- η drops as V_{out} increases

Switch Mode

- Good efficiency (> 90%)
- Buck and Boost possible
- Duty-cycle PWM feedback
- Energy stored on the inductor released at different voltage
- Variable output possible but difficult

Switched Capacitor

- Charge pump
- Feedback controller
- Monolithic solutions
- Variable V_{out} with reconfigurability
 - Highly efficient at these discrete voltages

Outline

Lecture Overview

Background

Performance Metrics

DC-DC Converter Types

Charge Pump Topologies

Losses in SC Power Converters

Conclusion

ELEC-L3520 3.4.2019 20/37

Charge Transfer

- Basic mechanism of charge pumps
- Based on conservation of charge

$$V_{\textit{final}} = \frac{Q_{\textit{tot}}}{C_1 + C_2} = (\frac{C_1}{C_1 + C_2})V_1 + (\frac{C_2}{C_1 + C_2})V_2$$

Charge Pump Startup

- Voltage replicator configuration
- Charge transfer doesn't match V_{out} to V_{in} instantly

Voltage Inverter

- C₁ discharges with I_{out} during phase 2
- Equal recharge in steady state
- Average I_{in} = average I_{out}
- Conversion gain, $CG = V_{out}/V_{in} = -1$

Voltage Inverter $\triangle V$

- ΔV measures output swing during one cycle
- ▶ I_{Cout} changes from $-I_{out}$ to I_{out} between the phases
- Step change in Vout equal to 2Iout ESRCout
- Vout changes also due to discharge

$$\blacktriangleright \Delta V = 2I_{out} * ESR_{Cout} + \frac{I_{out}}{2f_s C_{out}}$$

Voltage Doubler

(a)

alto University

Engineering

- C_p charged to V_{in} during phase 1
- \blacktriangleright $V_{out} = V_{in} + V_p$ during phase 2

$$CG = 2, I_{in,ave} = 2I_{out}$$
$$\Delta V = 2I_{out} * ESR_{Cout} + \frac{I_{out}}{2f_eC_{out}}$$

ELEC-L3520 3.4.2019 25/37

Step-Down Charge Pump

Caps in series during charge, parallel during discharge

- Charge delivered to output during both phases
- ΔV significantly improved

$$\blacktriangleright \Delta V = \frac{I_{out}}{2f_s C_{out}}$$

Outline

Lecture Overview

Background

Performance Metrics

DC-DC Converter Types

Charge Pump Topologies

Losses in SC Power Converters

Conclusion

ELEC-L3520 3.4.2019 27/37

Redistribution Loss

 Energy lost when capacitors at different voltages are connected together

$$V_{final} = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2}$$
$$E_{loss} = \frac{1}{2} C_1 V_1^2 + \frac{1}{2} C_2 V_2^2 - \frac{1}{2} (C_1 + C_2) V_{final}^2$$

Redistribution Loss in Voltage Doubler

- When caps are connected, top plate of C_p is at 2V_{in}
- V_{Cout} is lower: it has been discharged by I_{out}
- Charge distribution every cycle!

Vout before and after redistribution, Vout1 and Vout2

Redistribution Loss in Voltage Doubler KQL:

$$C_{\rho}V_{in} + C_{out}V_{out1} = C_{\rho}(V_{out2} - V_{in}) + C_{out}V_{out2}$$

Discharging with *I*out:

$$C_{out}(V_{out2} - V_{out1}) = I_{out}T_s$$

Leads to:

$$V_{out2} = 2V_{in} - rac{I_{out}}{C_{
ho}f_s}$$

$$V_{out1} = 2V_{in} - \frac{I_{out}}{C_p f_s} - \frac{I_{out}}{C_{out} f_s}$$
$$P_{loss} = \frac{1}{2} f_s [C_p V_{in}^2 + C_{out} V_{out1}^2 - C_p (V_{out2} - V_{out1})^2 C_{out} V_{out2}^2]$$

Conduction Loss

Switches have Ron

$$P_{loss} = (\sum_{k}^{n} ESR_{C_{p}} + \sum_{j}^{m} R_{on}) f_{s} \int_{nT}^{nT + DT} idt$$

Is minimized with larger W transistors

ELEC-L3520 3.4.2019 31/37

Switching Loss

- Energy is required to charge switch transistor parasitic capacitances
- C_{GS} dominates and is set by dimensions

$$P_{loss,C_{GS}} = f_s \sum_i C_{GS,i} V_{GS,i}^2 = f_s C_{ox} \sum_i W_i L_i V_{GS,i}^2$$

Conduction and Switching Loss Optimization

- Larger devices (smaller Ron) have larger CGS
- Different optimal width for each switch
- Defined $\frac{\delta P_{tot}}{\delta W_i} = 0$
- *W*_{opt} is affected by path configuration, input and output voltages, *I*_{out} and *f*_s

Reversion Loss

ELEC-L3520 3.4.2019 34/37

Outline

Lecture Overview

Background

Performance Metrics

DC-DC Converter Types

Charge Pump Topologies

Losses in SC Power Converters

Conclusion

ELEC-L3520 3.4.2019 35/37

Conclusion

- DVFS requires multiple output voltage levels
- SC solution have advantages over linear regulators and switched mode power converters
- SC power converters use charge pumps based on charge transfer
 - Introductory charge pump topologies covered
- Loss mechanisms
 - Redistribution
 - Conduction
 - Switching
 - Reversion

Homework

- Shortly explain the operation of the cross coupled voltage doubler. What are its main benefits?
- Shortly explain what can be done to mitigate reversion power loss in the cross coupled voltage doubler.

