
Aalto CS-E5520 Spring 2019 – Lehtinen !1

Path Tracing

Aalto CS-E5520 Spring 2019 
Jaakko Lehtinen

B
rid

ag
e 

2 
re

al
-ti

m
e 

pa
th

 tr
ac

er



Aalto CS-E5520 Spring 2019 – Lehtinen 

Today

!2

• Path Tracing 
– Intro: nested vs. multidimensional integrals  

and pixel filtering 
– Recursive sampling of rendering equation  

using Monte Carlo 
– Direct light sampling 

• Bells and whistles
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What can it do ~today? (pre-RTX, though)

!3

• Path Tracing + Deep Learning for noise removal

SIGGRAPH 2017

https://research.nvidia.com/publication/interactive-reconstruction-monte-carlo-image-sequences-using-recurrent-denoising
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Monte Carlo Integration

!4

• Distribute samples in integration domain S according 
to probability density function p(x) 

• Then integral equals the expected value of f(x)/p(x)

Z

S
f(x) dx =

Z

S

f(x)

p(x)
p(x) dx= E{f(x)

p(x)
}p
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Let’s Go Back to Pixel Filtering

!5

• Remember antialiasing theory from C3100? 
• To reduce aliasing, we should ideally...?
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Let’s Go Back to Pixel Filtering

!6

• Remember antialiasing theory from C3100? 
• To reduce aliasing, we should ideally 

1. Low-pass filter the radiance on the image plane before 
sampling (convolve continuous radiance function + prefilter) 

2. Then sample the low-pass filtered radiance at pixel centers 

• But we found this was impossible so we turned to 
supersampling (average many samples in pixel) 
• There is a “proper” way to look at that as well, and here it is.. 

• (And separate tricks for textures) 
• MIP-maps
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Filter f(x-xj,y-yj) centered at pixel (xj, yj)
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Filter f(x-xj,y-yj) centered at pixel (xj, yj) 
times the underlying signal



Aalto CS-E5520 Spring 2019 – Lehtinen !10

Low-pass filtered continuous image 
(convolution of f and input image; we can 
actually never compute this exactly)
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Samples at pixel centers
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Samples evaluate convolution result at pixel centers
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i.e., value for pixel at (xj,yj) is the integral 
of the filter times the underlying signal

Z
dxdy
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Pixel Filtering

!14

• Prefilter convolution and sampling can be combined: 

• Ij is the (discrete) intensity/radiance value of jth pixel 
• Here xj,yj are the center of pixel j, f is the pixel filter 

– Yes, it’s just a weighted average

Ij =

Z

screen
f(x� xj , y � yj)L(x, y) dx dy
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Filter Normalization

!15

• In practice, we don’t care about normalizing the filters 
analytically, but do it numerically instead 

• Intuitive: when we evaluate the above using MC, we 
sum the “filter weights” from each sample and divide 
by the sum in the end 
– Note that 1/N cancels out as it’s both above and below 
– IMPORTANT do it this way; don’t rely on 

Ij =

R
screen f(x� xj , y � yj)L(x, y) dx dyR

screen f(x� xj , y � yj) dx dy

Z
f(x, y) = 1



fM-N(x) =
1

6

8
><

>:

7|x|3 � 12|x|2 + 16
3 |x| < 1

� 7
3 |x|

3 + 12|x|2 � 20|x|+ 32
3 1  |x|  2

0, otherwise
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Common Pixel Filters, 1D profiles

!16

fbox(x) =

(
1, �0.5  x  0.5

0, otherwise
1-1 0 2-2

ftent(x) =

8
><

>:

x+ 1, �1  x  0

1� x, 0  x  1

0, otherwise
1-1 0 2-2

1-1 0 2-2Mitchell-Netravali filter with A=1/3, B=1/3

http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
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Extension to 2D

!17

• “Tensor product” or “separable” filters are constructed 
from the 1D filters by multiplication 

• You can also use a non-separable pyramid as a 2D 
filter, but there seems to be little point 

• OK, one more: Gaussian  
 
                                                            
– Notes: sigma controls width; not normalized to unit integral! 
– Never drops to zero. We usually cut the filter at 3*sigma or so.

f(x, y) = f(x)f(y)

f�
Gaussian(x) = exp{� x2

2�2
}
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Down to Business: AO

!18

• What if each value of the original image is an integral? 
• In assignment 1 you compute, for each primary hit P  
 
 
 
using Monte Carlo integration 
– V is a function that is 1 if the ray of a certain length is 

unblocked, 0 if it is blocked

Z

⌦
V (P,!) cos ✓ d!
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Let’s Combine Pixel Filter with AO

!19

• Each pixel value given by 

• (Normalization not shown) 
• Two nested 2D integrals 

– Outer one over the screen (2D) 
– Inner one over the hemisphere at the point P hit by ray through 

image coordinages x,y 
• Again, 2D (hemisphere)

Ij =

Z

screen
f(x� xj , y � yj)

✓Z

⌦
V (P (x, y),!) cos ✓d!

◆
dx dy
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Outer Integral

!20

image 
plane

scene 
geometry

eye rays

Ij =

Z

screen
f(x� xj , y � yj)

✓Z

⌦
V (P (x, y),!) cos ✓d!

◆
dx dy
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Inner Integral, for each eye ray

!21

image 
plane

scene 
geometry

Ij =

Z

screen
f(x� xj , y � yj)

✓Z

⌦
V (P (x, y),!) cos ✓d!

◆
dx dy

AO rays
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Inner Integral, for each eye ray

!22

image 
plane

scene 
geometry

Ij =

Z

screen
f(x� xj , y � yj)

✓Z

⌦
V (P (x, y),!) cos ✓d!

◆
dx dy

AO rays
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Inner Integral, for each eye ray

!23

image 
plane

scene 
geometry

Ij =

Z

screen
f(x� xj , y � yj)

✓Z

⌦
V (P (x, y),!) cos ✓d!

◆
dx dy

AO rays
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Inner Integral, for each eye ray

!24

image 
plane

scene 
geometry

Ij =

Z

screen
f(x� xj , y � yj)

✓Z

⌦
V (P (x, y),!) cos ✓d!

◆
dx dy

AO rays

for i=1 to #eyerays
pick (x,y)
P=castray(x,y)
for j=1 to #aorays
// shoot rays from P
// etc

end
end

Naive MC implementation: 
(PDFs, accumulation not shown)
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Inner Integral, for each eye ray

!25

image 
plane

scene 
geometry

Ij =

Z

screen
f(x� xj , y � yj)

✓Z

⌦
V (P (x, y),!) cos ✓d!

◆
dx dy

AO rays

Although you do 
this in assn1, it 
makes little sense

Naive MC implementation: 
(PDFs, accumulation not shown)
for i=1 to #eyerays
pick (x,y)
P=castray(x,y)
for j=1 to #aorays
// shoot rays from P
// etc

end
end
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Problems

!26

• Difficult to control number of rays cast in the pixel 
– You have two knobs to tweak 

• What if we had even further integrals...?
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Recap: Rendering Equation

!27

x

l

�

�

v y

L(x! v) =

Z

⌦
L(x l) fr(x, l! v) cos ✓ dl

E(x ! v)+

to know incoming radiance, 
must know outgoing radiance 

elsewhere => recursion!
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“Monte-Carlo Ray Tracing”

!28

• Cast a ray from the eye through each pixel 
• Cast N random rays from the hit point to evaluate 

hemispherical integral using random sampling
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“Monte-Carlo Ray Tracing”

!29

• Cast a ray from the eye through each pixel 
• Cast N random rays from the visible point  
• Recurse
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“Monte-Carlo Ray Tracing”

!30

• Cast a ray from the eye through each pixel 
• Cast N random rays from the visible point  
• Recurse
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“Monte-Carlo Ray Tracing”

!31

• Cast a ray from the eye through each pixel 
• Cast N random rays from the visible point  
• Recurse Combinatorial explosion!



Aalto CS-E5520 Spring 2019 – Lehtinen 

Combinatorial Explosion

!32

• Sample indirect illumination with 100 rays 
• Each ray results in N more rays.. grows exponentially 
• For N=100 

– 1 eye ray 
– 100 indirect rays at primary hit 
– 10 000 indirect rays at the secondary hits 
– 1 000 000 at the tertiary hits 
– You get the picture
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Back to AO: Better Way

!33

• Rather than 2D x 2D, one integral over 4D domain:  
 
 
 
 
with integrand

Ij =

Z

screen⇥⌦
g(x, y,!) dx dy d!

g(x, y,!) = f(x� xj , y � yj)V (P (x, y),!) cos ✓
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Back to AO: Better Way

!34

• Rather than 2D x 2D, one integral over 4D domain:  
 
 
 
 
with integrand 

• This is strictly equivalent; just another point of view 
– Think of 1D vs. 2D integrals

Ij =

Z

screen⇥⌦
g(x, y,!) dx dy d!

g(x, y,!) = f(x� xj , y � yj)V (P (x, y),!) cos ✓
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Nested 1D + 1D, naive

!35

Z ✓Z
f(x, y)dy

◆
dx

First pick x, 
then pick a 
bunch of ys 

Repeat
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Nested 1D + 1D, treat as 2D

!36

Z ✓Z
f(x, y)dy

◆
dx

Draw 2D 
samples (x,y) 
from 2D pdf

=

Z Z
f(x, y) dxdy
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Visually: One sample is Two Rays

!37

scene 
geometry

AO ray

res = 0
for i=1 to #samples
pick sample (x,y,w_out)
pdf=p(x,y)*p(w_out)
P=castray(x,y)
V=castray(P,w_out)
res += g(x,y,V)/pdf

end
res = res/#samples

Ij =

Z

screen⇥⌦
g(x, y,!) dx dy d!

eye ray

Better MC implementation:
image 
plane
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Visually: One sample is Two Rays

!38

image 
plane

scene 
geometry

AO ray

Better MC implementation:

Ij =

Z

screen⇥⌦
g(x, y,!) dx dy d!

eye ray

res = 0
for i=1 to #samples
pick sample (x,y,w_out)
pdf=p(x,y)*p(w_out)
P=castray(x,y)
V=castray(P,w_out)
res += g(x,y,V)/pdf

end
res = res/#samples
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Implementation Details

!39

• Naturally, if your pixel filters overlap, you use the 
same samples for updating all the pixels with nonzero 
filter responses

res[k] = weight[k] = 0 for all pixels k
for each pixel k             
for i=1 to #samplesperpixel
pick sample (x,y,omega)        // e.g. 4D Sobol’
pdf=p(x,y)*p(omega)            // usually p(x,y) == 1
P=castray(x,y)                 // find primary hit
V=castray(P,omega).length()>D  // evaluate AO shadow term
for each pixel j where f_j(x,y) is nonzero
res[j] += f_j(x,y)*cos(theta)*V/pdf
weight[j] += f_j(x,y)/p(x,y)

end
end

end
res[k] = res[k]/weight[k]

fj(x, y) = f(x� xj , y � yj)
Filter of jth pixel
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Monte Carlo Path Tracing

!40

• Trace only one secondary ray per recursion 
– Otherwise number of rays explodes! 

• But send many primary rays per pixel (antialiasing)



Aalto CS-E5520 Spring 2019 – Lehtinen 

Monte Carlo Path Tracing

!41

• Trace only one secondary ray per recursion 
– Otherwise number of rays explodes! 

• But send many primary rays per pixel (antialiasing)

Will treat next time!
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Monte Carlo Path Tracing

!42

• The idea is just the same as before with AO+filter 
– Instead of thinking about nested integrals over hemispheres at 

each bounce, let’s think of one integral over the Cartesian 
product of all the hemispheres 

– For n bounces, the domain is  
– Each sample is a path = sequence of rays

screen⇥ ⌦⇥ . . .⇥ ⌦| {z }
ntimes

image 
plane

1 path = 
1 sample

http://en.wikipedia.org/wiki/Cartesian_product
http://en.wikipedia.org/wiki/Cartesian_product
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Example: 1 Indirect Bounce

!43

• Nested version (P1, P2 are ray hit points)

image 
plane

P1

P2

r(P2,!2)

Light 
source
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Example: 1 Indirect Bounce

!44

• Nested version (P1, P2 are ray hit points)

fr(P1,!1 ! eye) cos ✓1d!1

Z

⌦(P1)

L(P1 !1)z }| {"Z

⌦(P2)
E(r(P2,!2) ! P2)fr(P2,!2 ! �!1) cos ✓2d!2

#

image 
plane

P1

P2

r(P2,!2)

Light 
source

L2(x, y) =
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Example: 1 Indirect Bounce

!45

• Flat version, 4D integral

fr(P2,!2 ! �!1)fr(P1,!1 ! eye) cos ✓1 cos ✓2 d!1d!2

fr(P2,!2 ! �!1)fr(P1,!1 ! eye) cos ✓1 cos ✓2 d!1d!2

⇥

⇥

image 
plane

P1

P2

r(P2,!2)

Light 
source

L2(x, y) =

Z

⌦(P1)⇥⌦(P2)

E(r(P2,!2) ! P2)

This really is 
just as simple 
as going from 
two nested 1D 

integrals to a 2D 
area integral!
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Full Solution

!46

• The full lighting solution is a sum over paths of all 
lengths 

• Notice how we’ve “unwrapped” the recursive 
rendering equation into a sum of terms 
– n bounce lighting is an integral over  

– This is really the same as directly evaluating the terms of the 
Neumann series E + TE + TTE + ...

L(x, y) =
1X

i=0

Li(x, y), with L0(x, y) = E(P1  eye)

screen⇥ ⌦⇥ . . .⇥ ⌦| {z }
ntimes
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Sampling Paths

!47

• “Local path sampling” proceeds bounce to bounce, 
always importance sampling according to local BRDF 

• That is, for each sample (path): 
– First sample screen (x, y), then trace ray 
– At primary hit, choose outgoing direction       , trace ray 
– At secondary hit, choose outgoing direction  
– Apply local PDFs at each step.. justification below 

• Denote the full path  
– Then 
– (This assumes independent choices at each bounce) 
– Easy to implement

!1

!2

x̄ = (x, y,!1,!2, . . .)

p(x̄) = p(x, y) p(!1) p(!2) . . .
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Brute Force Path Tracing, Eye Part

!48

for each pixel
Lout = 0, w=0
for i=1 to #samples
generate xi,yi inside pixel with p(x,y)
ray_i = generatecameraray(xi,yi)
Lout += f(xi,yi) * trace(ray_i)/p(x,y)
w += f(xi,yi)/p(x,y)

endfor
L(pixel) = Lout/w

endfor

L(x! v) =

Z

⌦
L(x l) fr(x, l! v) cos ✓ dl

E(x ! v)+

(Assuming, for 
simplicity, that only one 

pixel filter is nonzero. 
Look back a few slides 

for full treatment.)
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Brute Force Path Tracing

!49

trace(ray)
hit = intersect(scene, ray)
result = emission(hit,-dir(ray))  // 0 if no light
// sample outgoing direction
[w,pdf] = sampleReflection(hit,dir(ray))
// recursively estimate incoming radiance, apply BRDF
result += BRDF(hit,-dir(ray),w)*

  cos(theta)*
  trace(ray(hit,w))/pdf

return result
// when we apply the PDF like this, we are implicitly
// multiplying them for all bounces like shown before

L(x! v) =

Z

⌦
L(x l) fr(x, l! v) cos ✓ dl

E(x ! v)+
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Notes

!50

• sampleReflection() chooses a direction with 
which to estimate reflectance integral for indirect part 
– I.e. importance sample according to BRDF

Ja
so

n 
La

w
re

nc
e
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Why “Brute Force”?

!51

• We’re waiting for the sampler to hit the light on its own 
– Often not a good idea 
– But sometimes we can’t do too much else 
– Think of an architectural model where all the light comes 

through several specular bounces through windows 

• In simple cases we can help by adding an explicit direct 
light sampling step to each bounce
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This Doesn’t Work!

!52

Window

Sun

Shadow ray

Except now! See this 
Symposium on Rendering paper 

from Weta Digital (slides)

https://jo.dreggn.org/home/2015_mnee.pdf
https://jo.dreggn.org/home/2015_mnee_talk.pdf
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Brute Force Path Tracing

!53

• Trace only one secondary ray per recursion 
– Otherwise number of rays explodes! 

• But send many primary rays per pixel (antialiasing)
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Path Tracing w/ Light Sampling

!54

• At each hit, also sample a light and shoot a shadow ray 
• The standard way of doing path tracing 
• Also called “next event estimation”
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Importance of Sampling the Light
Without explicit  
light sampling

With explicit  
light sampling

1 path 
per pixel

4 paths 
per pixel

!55

✔

✔
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Path Tracing w/ Light Sampling

!56

image 
plane

Light 
source

P1

P2

P3

Path

Shadow 
rays
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Interpretation of Shadow Rays

!57

• Recall: the full lighting solution is a sum over paths of 
all lengths 

• Notice how we’ve “unwrapped” the recursive 
rendering equation into a sum of terms 
– n bounce lighting is an integral over  

(brute force PT) 
– But now we’ve replaced the final hemisphere with lights by 

solid-angle-to-area conversion:

L(x, y) =
1X

i=0

Li(x, y), with L0(x, y) = E(P1  eye)

screen⇥ ⌦⇥ . . .⇥ ⌦| {z }
ntimes

screen⇥ ! ⇥ ! . . .⇥ lights
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Path Tracing Pseudocode

!58

trace(ray)
hit = intersect(scene, ray)
if ray is from camera // only add “very direct” light here
result = emission(hit,-dir(ray))

[y,pdf1] = sampleLightsource()     // pick shadow ray dest.
// G(hit,y) contains the usual cosine/r^2 of the  
// hemisphere-to-area variable change
result += V(hit,y)*E(y,y->hit)*BRDF*cos*G(hit,y)/pdf1
[w,pdf] = sampleReflection(hit,dir(ray)) // like before
result += BRDF(hit,-dir(ray),w)*

  cos(theta)*
  trace(ray(hit,w))/pdf

return result

L(x! v) =

Z

⌦
L(x l) fr(x, l! v) cos ✓ dl

E(x ! v)+
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Notes 2

!59

• sampleLightsource() picks a point on the light 
source and evaluates its PDF 
– You’re doing this in the first part of your radiosity assignment 
– ..and we saw this already on the first MC lecture 
– We’re (again) applying the solid angle-to-area variable change 

(i.e. we’re integrating over the surface of the light source) 

• When you have multiple light sources, you pick one at 
random, and build this into the PDF 
– Simple: just multiply the light source p(y) with the probability 

of picking that particular light source
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Picking Lights

!60

• It makes sense to importance sample the light you pick 

• E.g. doesn’t make sense to sample dim, far-away lights 
as often as bright, nearby ones!
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One Small Problem

!61
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One Small Problem

!62

• Yes, it doesn’t terminate if you just keep going 
– Fortunately, there’s still something we can do!
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Russian Roulette

!63

• The usual MC estimate is 

– f/p is a random variable because x is a random variable

E{f(x)
p(x)

}p
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Russian Roulette

!64

• The usual MC estimate is 

– f/p is a random variable because x is a random variable 

• Let’s multiply this by another specially constructed 
random variable R 
– R(x)=0 with probability          , and                           otherwise 
– Also assume    and x are uncorrelated (independent). Then:

E{f(x)
p(x)

}p

↵(x)

E{R · f(x)
p(x)

} = E{R}E{f(x)
p(x)

} = E{f(x)
p(x)

}

↵

This step requires independence

R = 1/(1� ↵)
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Russian Roulette: What is Going On?

!65

• R(x)=0 with probability          , and                 otherwise 

• We’ve given ourselves permission to sometimes replace 
the value of the integrand with zero without introducing 
bias to the result 
– When we don’t set it to zero, we multiply the result by  

• This means, for instance, that we can probabilistically 
terminate light paths without tracing them to infinity

↵(x) R = 1/↵

E{R · f(x)
p(x)

} = E{R}E{f(x)
p(x)

} = E{f(x)
p(x)

}

1/↵
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Path Tracing w/ RR

!66

trace(ray)
hit = intersect(scene, ray)
if ray is from camera // only add “very direct” light here
result = emission(hit,-dir(ray))

[y,pdf1] = sampleLightsource()     // pick shadow ray dest.
result += E(y,y->hit)*BRDF*cos*G(hit,y)/pdf1
[w,pdf] = sampleReflection(hit,dir(ray))
// russian roulette with alpha=0.5
terminate = uniformrandom() < 0.5
if !terminate
result += BRDF(hit,-dir(ray),w)*

  cos(theta)*
  trace(ray(hit,w))/pdf/0.5   // 1/0.5 =mult. by 2!

return result

L(x! v) =

Z

⌦
L(x l) fr(x, l! v) cos ✓ dl

E(x ! v)+
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“Path Space”

!67

• Earlier we wrote n-bounce lighting as a simultaneous 
integral over n hemispheres 

• We can just as well integrate over surfaces instead 
– We just need to add in the geometry terms like before 

• 1/r2, visibility, the other cosine 

• The space of paths of length n is then simply  
 
 
 
with S being the set of 2D surfaces of the scene 

• See Eric Veach’s PhD

S ⇥ . . .⇥ S| {z }
n times

http://graphics.stanford.edu/papers/veach_thesis/
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What Does It Look Like?

!68

• Jacco Bikker’s Brigade Real Time GPU Path Tracer 
(video) 
– Multiple GPUs + post processing for removing noise 
– A few years old already, but gets the point across 

• See http://raytracey.blogspot.co.nz/2012/08/real-time-
path-traced-brigade-demo-at.html

http://raytracey.blogspot.co.nz/2012/08/real-time-path-traced-brigade-demo-at.html
http://raytracey.blogspot.co.nz/2012/08/real-time-path-traced-brigade-demo-at.html
http://raytracey.blogspot.co.nz/2012/08/real-time-path-traced-brigade-demo-at.html
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Bigger Picture
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• We are shooting rays from the camera, propagating 
them along, and kind of hoping we will find light 
– Actively try to hit it by the light source samples 

• What about more  
difficult cases? 
– In a caustic, the light 

propagates through a  
series of specular refractions  
and reflections before  
hitting a diffuse surface

wikipedia
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Problem With Caustics
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• Think of an almost pointlike light shining through a 
sequence of curved mirrors onto a receiver

small, bright light

mirror mirror

diffuse

eye
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Problem With Caustics
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• The point hit by the eye ray effectively sees a pointlight 
in the direction of the last mirror

“pointlight”

mirror mirror

diffuse

eye

small, bright light
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Problem With Caustics
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• The point hit by the eye ray effectively sees a pointlight 
in the direction of the last mirror 
–How does the cosine importance sampler know that?

“pointlight”

mirror mirror

diffuse

eye

small, bright light

???
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Problem With Caustics
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• All we can do is shoot shadow rays towards the light 
– Not very helpful here!

small, bright light

mirror mirror

diffuse

eye
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Problem With Caustics
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• All we can do is shoot shadow rays towards the light 
– Not very helpful here!

small, bright light

mirror mirror

diffuse

eye

To be continued…


