
Aalto CS-E5520 Spring 2019 – Lehtinen !1

Path Tracing

Aalto CS-E5520 Spring 2019
Jaakko Lehtinen

B
rid

ag
e

2
re

al
-ti

m
e

pa
th

 tr
ac

er

Aalto CS-E5520 Spring 2019 – Lehtinen

Today

!2

• Path Tracing
– Intro: nested vs. multidimensional integrals  

and pixel filtering
– Recursive sampling of rendering equation  

using Monte Carlo
– Direct light sampling

• Bells and whistles

Aalto CS-E5520 Spring 2019 – Lehtinen

What can it do ~today? (pre-RTX, though)

!3

• Path Tracing + Deep Learning for noise removal

SIGGRAPH 2017

https://research.nvidia.com/publication/interactive-reconstruction-monte-carlo-image-sequences-using-recurrent-denoising

Aalto CS-E5520 Spring 2019 – Lehtinen

Monte Carlo Integration

!4

• Distribute samples in integration domain S according
to probability density function p(x)

• Then integral equals the expected value of f(x)/p(x)

Z

S
f(x) dx =

Z

S

f(x)

p(x)
p(x) dx= E{f(x)

p(x)
}p

Aalto CS-E5520 Spring 2019 – Lehtinen

Let’s Go Back to Pixel Filtering

!5

• Remember antialiasing theory from C3100?
• To reduce aliasing, we should ideally...?

Aalto CS-E5520 Spring 2019 – Lehtinen

Let’s Go Back to Pixel Filtering

!6

• Remember antialiasing theory from C3100?
• To reduce aliasing, we should ideally

1. Low-pass filter the radiance on the image plane before
sampling (convolve continuous radiance function + prefilter)

2. Then sample the low-pass filtered radiance at pixel centers

• But we found this was impossible so we turned to
supersampling (average many samples in pixel)
• There is a “proper” way to look at that as well, and here it is..

• (And separate tricks for textures)
• MIP-maps

Aalto CS-E5520 Spring 2019 – Lehtinen !7

Aalto CS-E5520 Spring 2019 – Lehtinen !8

Filter f(x-xj,y-yj) centered at pixel (xj, yj)

Aalto CS-E5520 Spring 2019 – Lehtinen !9

Filter f(x-xj,y-yj) centered at pixel (xj, yj)
times the underlying signal

Aalto CS-E5520 Spring 2019 – Lehtinen !10

Low-pass filtered continuous image
(convolution of f and input image; we can
actually never compute this exactly)

Aalto CS-E5520 Spring 2019 – Lehtinen !11

Samples at pixel centers

Aalto CS-E5520 Spring 2019 – Lehtinen !12

Samples evaluate convolution result at pixel centers

Aalto CS-E5520 Spring 2019 – Lehtinen !13

i.e., value for pixel at (xj,yj) is the integral 
of the filter times the underlying signal

Z
dxdy

Aalto CS-E5520 Spring 2019 – Lehtinen

Pixel Filtering

!14

• Prefilter convolution and sampling can be combined:

• Ij is the (discrete) intensity/radiance value of jth pixel
• Here xj,yj are the center of pixel j, f is the pixel filter

– Yes, it’s just a weighted average

Ij =

Z

screen
f(x� xj , y � yj)L(x, y) dx dy

Aalto CS-E5520 Spring 2019 – Lehtinen

Filter Normalization

!15

• In practice, we don’t care about normalizing the filters
analytically, but do it numerically instead

• Intuitive: when we evaluate the above using MC, we
sum the “filter weights” from each sample and divide
by the sum in the end
– Note that 1/N cancels out as it’s both above and below
– IMPORTANT do it this way; don’t rely on

Ij =

R
screen f(x� xj , y � yj)L(x, y) dx dyR

screen f(x� xj , y � yj) dx dy

Z
f(x, y) = 1

fM-N(x) =
1

6

8
><

>:

7|x|3 � 12|x|2 + 16
3 |x| < 1

� 7
3 |x|

3 + 12|x|2 � 20|x|+ 32
3 1  |x|  2

0, otherwise

Aalto CS-E5520 Spring 2019 – Lehtinen

Common Pixel Filters, 1D profiles

!16

fbox(x) =

(
1, �0.5  x  0.5

0, otherwise
1-1 0 2-2

ftent(x) =

8
><

>:

x+ 1, �1  x  0

1� x, 0  x  1

0, otherwise
1-1 0 2-2

1-1 0 2-2Mitchell-Netravali filter with A=1/3, B=1/3

http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf

Aalto CS-E5520 Spring 2019 – Lehtinen

Extension to 2D

!17

• “Tensor product” or “separable” filters are constructed
from the 1D filters by multiplication

• You can also use a non-separable pyramid as a 2D
filter, but there seems to be little point

• OK, one more: Gaussian  
 

– Notes: sigma controls width; not normalized to unit integral!
– Never drops to zero. We usually cut the filter at 3*sigma or so.

f(x, y) = f(x)f(y)

f�
Gaussian(x) = exp{� x2

2�2
}

Aalto CS-E5520 Spring 2019 – Lehtinen

Down to Business: AO

!18

• What if each value of the original image is an integral?
• In assignment 1 you compute, for each primary hit P  
 
 
 
using Monte Carlo integration
– V is a function that is 1 if the ray of a certain length is

unblocked, 0 if it is blocked

Z

⌦
V (P,!) cos ✓ d!

Aalto CS-E5520 Spring 2019 – Lehtinen

Let’s Combine Pixel Filter with AO

!19

• Each pixel value given by

• (Normalization not shown)
• Two nested 2D integrals

– Outer one over the screen (2D)
– Inner one over the hemisphere at the point P hit by ray through

image coordinages x,y
• Again, 2D (hemisphere)

Ij =

Z

screen
f(x� xj , y � yj)

✓Z

⌦
V (P (x, y),!) cos ✓d!

◆
dx dy

Aalto CS-E5520 Spring 2019 – Lehtinen

Outer Integral

!20

image
plane

scene
geometry

eye rays

Ij =

Z

screen
f(x� xj , y � yj)

✓Z

⌦
V (P (x, y),!) cos ✓d!

◆
dx dy

Aalto CS-E5520 Spring 2019 – Lehtinen

Inner Integral, for each eye ray

!21

image
plane

scene
geometry

Ij =

Z

screen
f(x� xj , y � yj)

✓Z

⌦
V (P (x, y),!) cos ✓d!

◆
dx dy

AO rays

Aalto CS-E5520 Spring 2019 – Lehtinen

Inner Integral, for each eye ray

!22

image
plane

scene
geometry

Ij =

Z

screen
f(x� xj , y � yj)

✓Z

⌦
V (P (x, y),!) cos ✓d!

◆
dx dy

AO rays

Aalto CS-E5520 Spring 2019 – Lehtinen

Inner Integral, for each eye ray

!23

image
plane

scene
geometry

Ij =

Z

screen
f(x� xj , y � yj)

✓Z

⌦
V (P (x, y),!) cos ✓d!

◆
dx dy

AO rays

Aalto CS-E5520 Spring 2019 – Lehtinen

Inner Integral, for each eye ray

!24

image
plane

scene
geometry

Ij =

Z

screen
f(x� xj , y � yj)

✓Z

⌦
V (P (x, y),!) cos ✓d!

◆
dx dy

AO rays

for i=1 to #eyerays
pick (x,y)
P=castray(x,y)
for j=1 to #aorays
// shoot rays from P
// etc

end
end

Naive MC implementation:
(PDFs, accumulation not shown)

Aalto CS-E5520 Spring 2019 – Lehtinen

Inner Integral, for each eye ray

!25

image
plane

scene
geometry

Ij =

Z

screen
f(x� xj , y � yj)

✓Z

⌦
V (P (x, y),!) cos ✓d!

◆
dx dy

AO rays

Although you do
this in assn1, it
makes little sense

Naive MC implementation:
(PDFs, accumulation not shown)
for i=1 to #eyerays
pick (x,y)
P=castray(x,y)
for j=1 to #aorays
// shoot rays from P
// etc

end
end

Aalto CS-E5520 Spring 2019 – Lehtinen

Problems

!26

• Difficult to control number of rays cast in the pixel
– You have two knobs to tweak

• What if we had even further integrals...?

Aalto CS-E5520 Spring 2019 – Lehtinen

Recap: Rendering Equation

!27

x

l

�

�

v y

L(x! v) =

Z

⌦
L(x l) fr(x, l! v) cos ✓ dl

E(x ! v)+

to know incoming radiance,
must know outgoing radiance

elsewhere => recursion!

Aalto CS-E5520 Spring 2019 – Lehtinen

“Monte-Carlo Ray Tracing”

!28

• Cast a ray from the eye through each pixel
• Cast N random rays from the hit point to evaluate

hemispherical integral using random sampling

Aalto CS-E5520 Spring 2019 – Lehtinen

“Monte-Carlo Ray Tracing”

!29

• Cast a ray from the eye through each pixel
• Cast N random rays from the visible point
• Recurse

Aalto CS-E5520 Spring 2019 – Lehtinen

“Monte-Carlo Ray Tracing”

!30

• Cast a ray from the eye through each pixel
• Cast N random rays from the visible point
• Recurse

Aalto CS-E5520 Spring 2019 – Lehtinen

“Monte-Carlo Ray Tracing”

!31

• Cast a ray from the eye through each pixel
• Cast N random rays from the visible point
• Recurse Combinatorial explosion!

Aalto CS-E5520 Spring 2019 – Lehtinen

Combinatorial Explosion

!32

• Sample indirect illumination with 100 rays
• Each ray results in N more rays.. grows exponentially
• For N=100

– 1 eye ray
– 100 indirect rays at primary hit
– 10 000 indirect rays at the secondary hits
– 1 000 000 at the tertiary hits
– You get the picture

Aalto CS-E5520 Spring 2019 – Lehtinen

Back to AO: Better Way

!33

• Rather than 2D x 2D, one integral over 4D domain:  
 
 
 
 
with integrand

Ij =

Z

screen⇥⌦
g(x, y,!) dx dy d!

g(x, y,!) = f(x� xj , y � yj)V (P (x, y),!) cos ✓

Aalto CS-E5520 Spring 2019 – Lehtinen

Back to AO: Better Way

!34

• Rather than 2D x 2D, one integral over 4D domain:  
 
 
 
 
with integrand

• This is strictly equivalent; just another point of view
– Think of 1D vs. 2D integrals

Ij =

Z

screen⇥⌦
g(x, y,!) dx dy d!

g(x, y,!) = f(x� xj , y � yj)V (P (x, y),!) cos ✓

Aalto CS-E5520 Spring 2019 – Lehtinen

Nested 1D + 1D, naive

!35

Z ✓Z
f(x, y)dy

◆
dx

First pick x,
then pick a
bunch of ys

Repeat

Aalto CS-E5520 Spring 2019 – Lehtinen

Nested 1D + 1D, treat as 2D

!36

Z ✓Z
f(x, y)dy

◆
dx

Draw 2D
samples (x,y)
from 2D pdf

=

Z Z
f(x, y) dxdy

Aalto CS-E5520 Spring 2019 – Lehtinen

Visually: One sample is Two Rays

!37

scene
geometry

AO ray

res = 0
for i=1 to #samples
pick sample (x,y,w_out)
pdf=p(x,y)*p(w_out)
P=castray(x,y)
V=castray(P,w_out)
res += g(x,y,V)/pdf

end
res = res/#samples

Ij =

Z

screen⇥⌦
g(x, y,!) dx dy d!

eye ray

Better MC implementation:
image
plane

Aalto CS-E5520 Spring 2019 – Lehtinen

Visually: One sample is Two Rays

!38

image
plane

scene
geometry

AO ray

Better MC implementation:

Ij =

Z

screen⇥⌦
g(x, y,!) dx dy d!

eye ray

res = 0
for i=1 to #samples
pick sample (x,y,w_out)
pdf=p(x,y)*p(w_out)
P=castray(x,y)
V=castray(P,w_out)
res += g(x,y,V)/pdf

end
res = res/#samples

Aalto CS-E5520 Spring 2019 – Lehtinen

Implementation Details

!39

• Naturally, if your pixel filters overlap, you use the
same samples for updating all the pixels with nonzero
filter responses

res[k] = weight[k] = 0 for all pixels k
for each pixel k
for i=1 to #samplesperpixel
pick sample (x,y,omega) // e.g. 4D Sobol’
pdf=p(x,y)*p(omega) // usually p(x,y) == 1
P=castray(x,y) // find primary hit
V=castray(P,omega).length()>D // evaluate AO shadow term
for each pixel j where f_j(x,y) is nonzero
res[j] += f_j(x,y)*cos(theta)*V/pdf
weight[j] += f_j(x,y)/p(x,y)

end
end

end
res[k] = res[k]/weight[k]

fj(x, y) = f(x� xj , y � yj)
Filter of jth pixel

Aalto CS-E5520 Spring 2019 – Lehtinen

Monte Carlo Path Tracing

!40

• Trace only one secondary ray per recursion
– Otherwise number of rays explodes!

• But send many primary rays per pixel (antialiasing)

Aalto CS-E5520 Spring 2019 – Lehtinen

Monte Carlo Path Tracing

!41

• Trace only one secondary ray per recursion
– Otherwise number of rays explodes!

• But send many primary rays per pixel (antialiasing)

Will treat next time!

Aalto CS-E5520 Spring 2019 – Lehtinen

Monte Carlo Path Tracing

!42

• The idea is just the same as before with AO+filter
– Instead of thinking about nested integrals over hemispheres at

each bounce, let’s think of one integral over the Cartesian
product of all the hemispheres

– For n bounces, the domain is
– Each sample is a path = sequence of rays

screen⇥ ⌦⇥ . . .⇥ ⌦| {z }
ntimes

image
plane

1 path = 
1 sample

http://en.wikipedia.org/wiki/Cartesian_product
http://en.wikipedia.org/wiki/Cartesian_product

Aalto CS-E5520 Spring 2019 – Lehtinen

Example: 1 Indirect Bounce

!43

• Nested version (P1, P2 are ray hit points)

image
plane

P1

P2

r(P2,!2)

Light
source

Aalto CS-E5520 Spring 2019 – Lehtinen

Example: 1 Indirect Bounce

!44

• Nested version (P1, P2 are ray hit points)

fr(P1,!1 ! eye) cos ✓1d!1

Z

⌦(P1)

L(P1 !1)z }| {"Z

⌦(P2)
E(r(P2,!2) ! P2)fr(P2,!2 ! �!1) cos ✓2d!2

#

image
plane

P1

P2

r(P2,!2)

Light
source

L2(x, y) =

Aalto CS-E5520 Spring 2019 – Lehtinen

Example: 1 Indirect Bounce

!45

• Flat version, 4D integral

fr(P2,!2 ! �!1)fr(P1,!1 ! eye) cos ✓1 cos ✓2 d!1d!2

fr(P2,!2 ! �!1)fr(P1,!1 ! eye) cos ✓1 cos ✓2 d!1d!2

⇥

⇥

image
plane

P1

P2

r(P2,!2)

Light
source

L2(x, y) =

Z

⌦(P1)⇥⌦(P2)

E(r(P2,!2) ! P2)

This really is
just as simple
as going from
two nested 1D

integrals to a 2D
area integral!

Aalto CS-E5520 Spring 2019 – Lehtinen

Full Solution

!46

• The full lighting solution is a sum over paths of all
lengths

• Notice how we’ve “unwrapped” the recursive
rendering equation into a sum of terms
– n bounce lighting is an integral over

– This is really the same as directly evaluating the terms of the
Neumann series E + TE + TTE + ...

L(x, y) =
1X

i=0

Li(x, y), with L0(x, y) = E(P1 eye)

screen⇥ ⌦⇥ . . .⇥ ⌦| {z }
ntimes

Aalto CS-E5520 Spring 2019 – Lehtinen

Sampling Paths

!47

• “Local path sampling” proceeds bounce to bounce,
always importance sampling according to local BRDF

• That is, for each sample (path):
– First sample screen (x, y), then trace ray
– At primary hit, choose outgoing direction , trace ray
– At secondary hit, choose outgoing direction
– Apply local PDFs at each step.. justification below

• Denote the full path
– Then
– (This assumes independent choices at each bounce)
– Easy to implement

!1

!2

x̄ = (x, y,!1,!2, . . .)

p(x̄) = p(x, y) p(!1) p(!2) . . .

Aalto CS-E5520 Spring 2019 – Lehtinen

Brute Force Path Tracing, Eye Part

!48

for each pixel
Lout = 0, w=0
for i=1 to #samples
generate xi,yi inside pixel with p(x,y)
ray_i = generatecameraray(xi,yi)
Lout += f(xi,yi) * trace(ray_i)/p(x,y)
w += f(xi,yi)/p(x,y)

endfor
L(pixel) = Lout/w

endfor

L(x! v) =

Z

⌦
L(x l) fr(x, l! v) cos ✓ dl

E(x ! v)+

(Assuming, for
simplicity, that only one

pixel filter is nonzero.
Look back a few slides

for full treatment.)

Aalto CS-E5520 Spring 2019 – Lehtinen

Brute Force Path Tracing

!49

trace(ray)
hit = intersect(scene, ray)
result = emission(hit,-dir(ray)) // 0 if no light
// sample outgoing direction
[w,pdf] = sampleReflection(hit,dir(ray))
// recursively estimate incoming radiance, apply BRDF
result += BRDF(hit,-dir(ray),w)*

 cos(theta)*
 trace(ray(hit,w))/pdf

return result
// when we apply the PDF like this, we are implicitly
// multiplying them for all bounces like shown before

L(x! v) =

Z

⌦
L(x l) fr(x, l! v) cos ✓ dl

E(x ! v)+

Aalto CS-E5520 Spring 2019 – Lehtinen

Notes

!50

• sampleReflection() chooses a direction with
which to estimate reflectance integral for indirect part
– I.e. importance sample according to BRDF

Ja
so

n
La

w
re

nc
e

Aalto CS-E5520 Spring 2019 – Lehtinen

Why “Brute Force”?

!51

• We’re waiting for the sampler to hit the light on its own
– Often not a good idea
– But sometimes we can’t do too much else
– Think of an architectural model where all the light comes

through several specular bounces through windows

• In simple cases we can help by adding an explicit direct
light sampling step to each bounce

Aalto CS-E5520 Spring 2019 – Lehtinen

This Doesn’t Work!

!52

Window

Sun

Shadow ray

Except now! See this
Symposium on Rendering paper

from Weta Digital (slides)

https://jo.dreggn.org/home/2015_mnee.pdf
https://jo.dreggn.org/home/2015_mnee_talk.pdf

Aalto CS-E5520 Spring 2019 – Lehtinen

Brute Force Path Tracing

!53

• Trace only one secondary ray per recursion
– Otherwise number of rays explodes!

• But send many primary rays per pixel (antialiasing)

Aalto CS-E5520 Spring 2019 – Lehtinen

Path Tracing w/ Light Sampling

!54

• At each hit, also sample a light and shoot a shadow ray
• The standard way of doing path tracing
• Also called “next event estimation”

Aalto CS-E5520 Spring 2019 – Lehtinen

Importance of Sampling the Light
Without explicit  
light sampling

With explicit  
light sampling

1 path 
per pixel

4 paths 
per pixel

!55

✔

✔

Aalto CS-E5520 Spring 2019 – Lehtinen

Path Tracing w/ Light Sampling

!56

image
plane

Light
source

P1

P2

P3

Path

Shadow
rays

Aalto CS-E5520 Spring 2019 – Lehtinen

Interpretation of Shadow Rays

!57

• Recall: the full lighting solution is a sum over paths of
all lengths

• Notice how we’ve “unwrapped” the recursive
rendering equation into a sum of terms
– n bounce lighting is an integral over  

(brute force PT)
– But now we’ve replaced the final hemisphere with lights by

solid-angle-to-area conversion:

L(x, y) =
1X

i=0

Li(x, y), with L0(x, y) = E(P1 eye)

screen⇥ ⌦⇥ . . .⇥ ⌦| {z }
ntimes

screen⇥ ! ⇥ ! . . .⇥ lights

Aalto CS-E5520 Spring 2019 – Lehtinen

Path Tracing Pseudocode

!58

trace(ray)
hit = intersect(scene, ray)
if ray is from camera // only add “very direct” light here
result = emission(hit,-dir(ray))

[y,pdf1] = sampleLightsource() // pick shadow ray dest.
// G(hit,y) contains the usual cosine/r^2 of the  
// hemisphere-to-area variable change
result += V(hit,y)*E(y,y->hit)*BRDF*cos*G(hit,y)/pdf1
[w,pdf] = sampleReflection(hit,dir(ray)) // like before
result += BRDF(hit,-dir(ray),w)*

 cos(theta)*
 trace(ray(hit,w))/pdf

return result

L(x! v) =

Z

⌦
L(x l) fr(x, l! v) cos ✓ dl

E(x ! v)+

Aalto CS-E5520 Spring 2019 – Lehtinen

Notes 2

!59

• sampleLightsource() picks a point on the light
source and evaluates its PDF
– You’re doing this in the first part of your radiosity assignment
– ..and we saw this already on the first MC lecture
– We’re (again) applying the solid angle-to-area variable change

(i.e. we’re integrating over the surface of the light source)

• When you have multiple light sources, you pick one at
random, and build this into the PDF
– Simple: just multiply the light source p(y) with the probability

of picking that particular light source

Aalto CS-E5520 Spring 2019 – Lehtinen

Picking Lights

!60

• It makes sense to importance sample the light you pick

• E.g. doesn’t make sense to sample dim, far-away lights
as often as bright, nearby ones!

Aalto CS-E5520 Spring 2019 – Lehtinen

One Small Problem

!61

Aalto CS-E5520 Spring 2019 – Lehtinen

One Small Problem

!62

• Yes, it doesn’t terminate if you just keep going
– Fortunately, there’s still something we can do!

Aalto CS-E5520 Spring 2019 – Lehtinen

Russian Roulette

!63

• The usual MC estimate is

– f/p is a random variable because x is a random variable

E{f(x)
p(x)

}p

Aalto CS-E5520 Spring 2019 – Lehtinen

Russian Roulette

!64

• The usual MC estimate is

– f/p is a random variable because x is a random variable

• Let’s multiply this by another specially constructed
random variable R
– R(x)=0 with probability , and otherwise
– Also assume and x are uncorrelated (independent). Then:

E{f(x)
p(x)

}p

↵(x)

E{R · f(x)
p(x)

} = E{R}E{f(x)
p(x)

} = E{f(x)
p(x)

}

↵

This step requires independence

R = 1/(1� ↵)

Aalto CS-E5520 Spring 2019 – Lehtinen

Russian Roulette: What is Going On?

!65

• R(x)=0 with probability , and otherwise

• We’ve given ourselves permission to sometimes replace
the value of the integrand with zero without introducing
bias to the result
– When we don’t set it to zero, we multiply the result by

• This means, for instance, that we can probabilistically
terminate light paths without tracing them to infinity

↵(x) R = 1/↵

E{R · f(x)
p(x)

} = E{R}E{f(x)
p(x)

} = E{f(x)
p(x)

}

1/↵

Aalto CS-E5520 Spring 2019 – Lehtinen

Path Tracing w/ RR

!66

trace(ray)
hit = intersect(scene, ray)
if ray is from camera // only add “very direct” light here
result = emission(hit,-dir(ray))

[y,pdf1] = sampleLightsource() // pick shadow ray dest.
result += E(y,y->hit)*BRDF*cos*G(hit,y)/pdf1
[w,pdf] = sampleReflection(hit,dir(ray))
// russian roulette with alpha=0.5
terminate = uniformrandom() < 0.5
if !terminate
result += BRDF(hit,-dir(ray),w)*

 cos(theta)*
 trace(ray(hit,w))/pdf/0.5 // 1/0.5 =mult. by 2!

return result

L(x! v) =

Z

⌦
L(x l) fr(x, l! v) cos ✓ dl

E(x ! v)+

Aalto CS-E5520 Spring 2019 – Lehtinen

“Path Space”

!67

• Earlier we wrote n-bounce lighting as a simultaneous
integral over n hemispheres

• We can just as well integrate over surfaces instead
– We just need to add in the geometry terms like before

• 1/r2, visibility, the other cosine

• The space of paths of length n is then simply  
 
 
 
with S being the set of 2D surfaces of the scene

• See Eric Veach’s PhD

S ⇥ . . .⇥ S| {z }
n times

http://graphics.stanford.edu/papers/veach_thesis/

Aalto CS-E5520 Spring 2019 – Lehtinen

What Does It Look Like?

!68

• Jacco Bikker’s Brigade Real Time GPU Path Tracer
(video)
– Multiple GPUs + post processing for removing noise
– A few years old already, but gets the point across

• See http://raytracey.blogspot.co.nz/2012/08/real-time-
path-traced-brigade-demo-at.html

http://raytracey.blogspot.co.nz/2012/08/real-time-path-traced-brigade-demo-at.html
http://raytracey.blogspot.co.nz/2012/08/real-time-path-traced-brigade-demo-at.html
http://raytracey.blogspot.co.nz/2012/08/real-time-path-traced-brigade-demo-at.html

Aalto CS-E5520 Spring 2019 – Lehtinen

Bigger Picture

!69

• We are shooting rays from the camera, propagating
them along, and kind of hoping we will find light
– Actively try to hit it by the light source samples

• What about more  
difficult cases?
– In a caustic, the light 

propagates through a  
series of specular refractions  
and reflections before  
hitting a diffuse surface

wikipedia

Aalto CS-E5520 Spring 2019 – Lehtinen

Problem With Caustics

!70

• Think of an almost pointlike light shining through a
sequence of curved mirrors onto a receiver

small, bright light

mirror mirror

diffuse

eye

Aalto CS-E5520 Spring 2019 – Lehtinen

Problem With Caustics

!71

• The point hit by the eye ray effectively sees a pointlight
in the direction of the last mirror

“pointlight”

mirror mirror

diffuse

eye

small, bright light

Aalto CS-E5520 Spring 2019 – Lehtinen

Problem With Caustics

!72

• The point hit by the eye ray effectively sees a pointlight
in the direction of the last mirror
–How does the cosine importance sampler know that?

“pointlight”

mirror mirror

diffuse

eye

small, bright light

???

Aalto CS-E5520 Spring 2019 – Lehtinen

Problem With Caustics

!73

• All we can do is shoot shadow rays towards the light
– Not very helpful here!

small, bright light

mirror mirror

diffuse

eye

Aalto CS-E5520 Spring 2019 – Lehtinen

Problem With Caustics

!74

• All we can do is shoot shadow rays towards the light
– Not very helpful here!

small, bright light

mirror mirror

diffuse

eye

To be continued…

