WATERTOWER TYFE:BELINN SFECULARITY:0.75 TRANSFARENCY: 0 .00
—

g
s g
.

T

tb Tracmg
L

—
'4-_ 2

3 'l ,,tl"
o

-
- F /3
S ~

Ta e x

,.,
B 5
.

’l

mEae
Py m

uEm v E

...._
MOEEG T -

Aalto CS-E5520 Spring 2019

Jaakko Lehtinen

— ————

:!%jrldage 2 reel-u‘me path tracer

Today

» Path Tracing

—Intro: nested vs. multidimensional integrals
and pixel filtering

—Recursive sampling of rendering equation
using Monte Carlo

— Direct light sampling

* Bells and whistles

Aalto CS-E5520 Spring 2019 — Lehtinen

What can it do ~today? (pre-RTX, though)

 Path Tracing + Deep Learning for noise removal

Interactive Reconstruction of Monte Carlo Image Sequences using a
Recurrent Denoising Autoencoder

CHAKRAVARTY R. ALLA CHAITANYA, NVIDIA, University of Montreal and McGill University
ANTON S. KAPLANYAN, NVIDIA

CHRISTOPH SCHIED, NVIDIA and Karlsruhe Institute of Technology

MARCO SALVI, NVIDIA

AARON LEFOHN,
DEREK NOWROU;\E/;)X?-IRAI, McGill University SIGG RAPH 201 7

TIMO AILA, NVIDIA

(b) Edge-avoiding wavelets (c) SURE-based filter (d) Recurrent autoencoder (e) Reference

(a) Ispp noisy mput

Fig. 1. Left to right: (a) noisy image generated using path-traced global illumination with one indirect inter-reflection and 1 sample/pixel; (b) edge-avoiding
wavelet filter [Dammertz et al. 2010] (10.3ms at 720p, SSIM: 0.7737); (c) SURE-based filter [Li et al. 2012] (74.2ms, SSIM: 0.5960); (d) our recurrent denoising
autoencoder (54.9ms, SSIM: 0.8438); (e) reference path-traced image with 4096 samples/pixel.

https://research.nvidia.com/publication/interactive-reconstruction-monte-carlo-image-sequences-using-recurrent-denoising

Monte Carlo Integration

()
()

ot
/Sf(m)dx—E{p }p

 Distribute samples 1n integration domain S according
to probability density function p(x)

* Then integral equals the expected value of 1(x)/p(x)

Aalto CS-E5520 Spring 2019 — Lehtinen

Let's Go Back to Pixel Filtering

 Remember antialiasing theory from C31007?
* To reduce aliasing, we should 1deally...?

Aalto CS-E5520 Spring 2019 — Lehtinen

Let's Go Back to Pixel Filtering

 Remember antialiasing theory from C31007?
* To reduce aliasing, we should 1deally

1. Low-pass filter the radiance on the image plane before
sampling (convolve continuous radiance function + prefilter)

2. Then sample the low-pass filtered radiance at pixel centers

* But we found this was impossible so we turned to
supersampling (average many samples 1n pixel)
* There 1s a “proper” way to look at that as well, and here 1t 1s..
* (And separate tricks for textures)
e MIP-maps

Aalto CS-E5520 Spring 2019 — Lehtinen

=z
-

w A5 ¢

o

2
v.

Y

-t
-
e

¢ .
Nes o':..
- N
-
X N.ﬁ‘-)-ﬁ%w

e

-‘,'. ” ‘.l-w- iy

v

.
v T » \‘
oA 2 VTR
y -l T
7| v L .
’ ‘-
’ " . - . K . .K -
f, - L w 500 17. b re
- * - » - l\l
9 '. ! - Las) P
5 . y
3 -
s B

-

o .I.". J\‘

e DO N 27)
L S e N SN
ﬁ..‘»t.u.ms..a.? :

Ze

s .’ ... q %..\ - su
e, ﬁhnﬂﬁvﬁw N G

W,
‘.

Mﬁ?..,»a <
.wl'!wa’c.".. 1’:’ T A.u.’.%'.hr. L

‘a“.h“.,.f'. '.4.: M.s .»1. e .
S i
g

. ﬂ\ O N .&...t
- -
X
Y
f

&mﬂmmw«ﬂw’n g

0D, Oy
Tt ¥y

e
.W...\..\.... & .wv b

- 2S T &
Y e
e .\&&b

)

A \Auﬁ
a8

—
.
-

Filter f(x-x;,y-y;) centered at pixel (x;, y))

([oo
o 'Q'\Q
s A

b o

Filter f(x-x;,y-y;) centered at pixel (x;, y))
times the underlying signal

Low-pa ared co
(convolution of f and
actually never compu

e Cal

e O ¢ & e
e © O 6 e o

(U
O
O
O
O
O
()
O
(O

® O OCLEOEROINO" & o o
® ONmere o o o o
®© 6 00 0o o6 o
® O 6w 0 ¢ & o &
@ e 0 ¢ ¢ e o
e O O ¢ ST

%
=

Samples evaluate cc.>|ution r nters

.’.Q" \-"hr' A
W dad

i.e., value for pixel at (x;,y)) is the integral
of the filter times the underlying signal

Pixel Filtering

* Prefilter convolution and sampling can be combined:

ij/ fl@—xzj,y—y;) L(z,y) de dy

» [; 1s the (discrete) intensity/radiance value of jth pixel
* Here Xx;,y; are the center of pixel j, T 1s the pixel filter

— Yes, it s just a weighted average

Aalto CS-E5520 Spring 2019 — Lehtinen

14

Filter Normalization

* In practice, we don’t care about normalizing the filters
analytically, but do 1t numerically instead

fscreen f(ﬂ? — &Y — yj) L(Qf,:g) dajdy

I —
: fscreen f(x—xj,y—yj)dxdy

* Intuitive: when we evaluate the above using MC, we
sum the “filter weights” from each sample and divide
by the sum 1n the end

—Note that 1/N cancels out as 1t’s both above and below
—IMPORTANT do it this way; don’t rely on / flz,y) =1

Aalto CS-E5520 Spring 2019 — Lehtinen

15

Common Pixel Filters, 1D profiles

1, —05<x<0.5

0, otherwise

foox(x) = {

2 1 0 1 2
r+1, —-1<zxz<0
ftent(ﬂi): l—2o, 0< <1
0, otherwise
2 1 0 1 2
. T|x]? — 12z + £ z| < 1
fvn(z) = : — Lz + 12|z = 20|z| + £ 1< |z| <2
0, otherwise
-2 -1 0 1 2

Mitchell-Netravali filter with A=1/3, B=1/3
Aalto CS-E5520 Spring 2019 — Lehtinen

16

http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf

Extension to 2D

 “Tensor product” or “separable” filters are constructed
from the 1D filters by multiplication

flz,y) = f(z)f(y)

* You can also use a non-separable pyramid as a 2D
filter, but there seems to be little point

* OK, one more: Gaussian

5172

fGaussian(x) — eXp{ 20_2}

—Notes: sigma controls width; not normalized to unit integral!

—Never drops to zero. We usually cut the filter at 3*sigma or so.
Aalto CS-E5520 Spring 2019 — Lehtinen 17

Down to Business: AO

* What 1f each value of the original image 1s an integral?
* In assignment 1 you compute, for each primary hit P

/ V(P,w) cosfdw
Q

using Monte Carlo integration

—V 1s a function that 1s 1 1f the ray of a certain length 1s
unblocked, 0 1f 1t 1s blocked

Aalto CS-E5520 Spring 2019 — Lehtinen 18

Let’'s Combine Pixel Filter with AO

» Each pixel value given by

[, = / flx —z;,y —yj) (/ V(P(x,y),w) COSQdCd) dzx dy
screen Q)

* (Normalization not shown)
* Two nested 2D integrals

—Outer one over the screen (2D)

—Inner one over the hemisphere at the point P hit by ray through
image coordinages X,y
» Again, 2D (hemisphere)

Aalto CS-E5520 Spring 2019 — Lehtinen 19

Outer Integral

[; = / flx —zj,y —y;) </ V(P(x,y),w) cos@dw) dx dy
screen Q)

geometry

Aalto CS-E5520 Spring 2019 — Lehtinen 20

Inner Integral, for each eye ray

[; = / flx —zj,y —y;) </ V(P(x,y),w) cos@dw) dx dy
screen 0

Image
plane

scene
geometry

Aalto CS-E5520 Spring 2019 — Lehtinen 21

Inner Integral, for each eye ray

[; = / flx —zj,y —y;) </ V(P(x,y),w) cos@dw) dx dy
screen 0

Image
plane

scene
geometry

Aalto CS-E5520 Spring 2019 — Lehtinen 22

Inner Integral, for each eye ray

[; = / flx —zj,y —y;) </ V(P(x,y),w) cos@dw) dx dy
screen 0

Image
plane

scene
geometry

Aalto CS-E5520 Spring 2019 — Lehtinen 23

Inner Integral, for each eye ray

I :/ flx —zj,y —y;) </ V(P(x,y),w)cos@dw) dx dy
screen Q)

image Naive MC implementation:
plane (PDFs, accumulation not shown)

for 1i=1 to #eyerays
pick (xX,Y)
P=castray(x,Vv)
for j=1 to #aorays
// shoot rays from P
// etc
end
end

scene
geometry

Aalto CS-E5520 Spring 2019 — Lehtinen 24

Inner Integral, for each eye ray

I :/ flx —x5,y —y;) (/ V(P(x,y),w)cosé’dw) dzx dy
screen Q)

image Naive MC implementation:
plane (PDFs, accumulation not shown)

for 1i=1 to #eyerays
pick (xX,Y)
P=castray(x,Vv)
for j=1 to #aorays
// shoot rays from P

// etc
end
end
Although you do
SCene this in assn1, it

eomet .
J Y makes little sense

Aalto CS-E5520 Spring 2019 — Lehtinen 25

Problems

 Difficult to control number of rays cast 1n the pixel

—You have two knobs to tweak

 What if we had even further integrals...?

Aalto CS-E5520 Spring 2019 — Lehtinen

26

Recap: Rendering Equation

Lix —v) = / L(x <1 f.(x,]1 = v) cosfdl
: + F(x — V)

to know incoming radiance,
must know outgoing radiance
elsewhere => recursion!

Aalto CS-E5520 Spring 2019 — Lehtinen 27

"Monte-Carlo Ray Tracing”

» Cast a ray from the eye through each pixel

» Cast N random rays from the hit point to evaluate
hemispherical integral using random sampling

T &&=

S
el I R

Aalto CS-E5520 Spring 2019 — Lehtinen

28

"Monte-Carlo Ray Tracing”

» Cast a ray from the eye through each pixel
» Cast N random rays from the visible point
* Recurse

T &&=

sl
1T =

Aalto CS-E5520 Spring 2019 — Lehtinen

29

"Monte-Carlo Ray Tracing”

» Cast a ray from the eye through each pixel
» Cast N random rays from the visible point
* Recurse

T &&=

sl
1T =

Aalto CS-E5520 Spring 2019 — Lehtinen

30

"Monte-Carlo Ray Tracing”

» Cast a ray from the eye through each pixel
» Cast N random rays from the visible point
 Recurse Combinatorial explosion!

T &&=

S
el I R

Aalto CS-E5520 Spring 2019 — Lehtinen 31

Combinatorial Explosion

» Sample indirect 1llumination with 100 rays

» Each ray results in N more rays.. grows exponentially

* For N=100
—1 eye ray
— 100 1ndirect rays at primary hit
—10 000 1ndirect rays at the secondary hits
—1 000 000 at the tertiary hits
—You get the picture

Aalto CS-E5520 Spring 2019 — Lehtinen

32

Back to AO: Better Way

» Rather than 2D x 2D, one integral over 4D domain:

[; = / g(x,y,w)dr dydw
screen X {2

with integrand

g(z,y,w) = f(x — 25,y —y;) V(P(z,y),w) cosd

Aalto CS-E5520 Spring 2019 — Lehtinen

33

Back to AO: Better Way

» Rather than 2D x 2D, one integral over 4D domain:

[; = / g(x,y,w)dr dydw
screen X {2

with integrand
9(z,y,w) = flx —zj,y —y;) V(P(z,y),w) cosb

 This 1s strictly equivalent; just another point of view
—Think of 1D vs. 2D integrals

Aalto CS-E5520 Spring 2019 — Lehtinen

34

Nested 1D + 1D, naive

/(/fwdy)

Aalto CS-E5520 Spring 2019 — Lehtinen

First pick x,
then pick a
bunch of ys

Repeat

35

Nested 1D + 1D, treat as 2D

/(/f(w,y)dy> dx 2//1”(%?/) dzdy
© o O

O O
O O Draw 2D
O O samples (x,y)
from 2D pdf

O ‘ P

O

O o
O O

Aalto CS-E5520 Spring 2019 — Lehtinen 36

Visually: One sample is Two Rays

[; = g(x,y,w)dr dydw

screen X {2
Better MC implementation:
Image
plane res = 0
:§7% for i=1 to #samples
N pick sample (x,y,w out)
LS = *

P=castray(x,Vv)
V=castray(P,w out)
res += g(x,y,V)/pdf
end
res = res/#samples

AO ray

scene
geometry

Aalto CS-E5520 Spring 2019 — Lehtinen 37

Visually: One sample is Two Rays

[; = g(x,y,w)dr dydw

screen X €2

Better MC implementation:

Image

plane res = 0

for i=1 to #samples
pick sample (x,y,w out)
pdf=p(x,y)*p(w_out)
P=castray(x,Vv)
V=castray(P,w out)
res += g(x,y,V)/pdf

end

res = res/#samples

AO ray

scene
geometry

Aalto CS-E5520 Spring 2019 — Lehtinen 38

Implementation Detalls

» Naturally, 1f your pixel filters overlap, you use the
same samples for updating all the pixels with nonzero
filter responses

res[k] = weight[k] = 0 for all pixels k
for each pixel k
for i=1 to #samplesperpixel

pick sample (x,y,omega) // e.g. 4D Sobol’
pdf=p(x,y) *p(omega) // usually p(x,y) ==
P=castray(x,Vy) // find primary hit

V=castray(P,omega).length()>D // evaluate AO shadow term
for each pixel j where £ j(xX,y) 1s nonzero

res[j] += £ j(x,y)*cos(theta)*V/pdf

weight[]J] += f_J(x,Y)/pP(%X,Y)

end
end Filter of jth pixel
end (7T — T — T S .
res[k] = res[k]/weidht[k] j%(72%) =f(J7y y])

Monte Carlo Path Tracing

» Trace only one secondary ray per recursion
—Otherwise number of rays explodes!

* But send many primary rays per pixel (antialiasing)

Aalto CS-E5520 Spring 2019 — Lehtinen

40

Monte Carlo Path Tracing

» Trace only one secondary ray per recursion
—Otherwise number of rays explodes!

* But send many primary rays per pixel (antialiasing)

T Will treat next time!

7 = LS

Aalto CS-E5520 Spring 2019 — Lehtinen 41

Monte Carlo Path Tracing

* The 1dea 1s just the same as before with AO+filter

—Instead of thinking about nested integrals over hemispheres at
each bounce, let’s think of one integral over the Cartesian
product of all the hemispheres

—For n bounces, the domain is screen x {2 X ... X)
N——— ———

—Each sample 1s a path = sequence of rays ntimes

Wi 1 path=

2N 1 sample !

o }

Aalto CS-E5520 Spring 2019 — Lehtinen 42

http://en.wikipedia.org/wiki/Cartesian_product
http://en.wikipedia.org/wiki/Cartesian_product

Example: 1 Indirect Bounce

* Nested version (P1, P> are ray hit points)

\\ Light
image “~\ source
plane)

T(P27 CUQ)

Aalto CS-E5520 Spring 2019 — Lehtinen

43

Example: 1 Indirect Bounce

* Nested version (P1, P> are ray hit points)

Lo(z,y) = L(Pw;)

/ / E(T(Pz,wg) — Pg)fr(PQ,CUQ — —wl) COS (92(10.)2
Q(P1) [/Q(P2)

fr(P1,w1 — eye) cos B1dwq

\\ Light
image “~\ source
plane)

T(P27 CUQ)

/ Aalto CS-E5520 Spring 2019 — Lehtinen 44

Example: 1 Indirect Bounce

 Flat version, 4D integral

LQ(xay) —

/ E(T(PQ,CUQ) %PQ) X
Q(Pl)XQ(PQ)

cos 61 cos 65 dwidws

Light
source

7Q(P27 CUQ)

Aalto CS-E5520 Spring 2019 — Lehtinen

fT(P27w2 — _wl)fr(Pl,wl — eye) X

This really is
just as simple
as going from
two nested 1D

integrals to a 2D

area integral!
45

Full Solution

» The full lighting solution 1s a sum over paths of all
lengths

L(z,y) =Y Li(z,y), with Lo(z,y) = E(Py < eye)
1=0

* Notice how we’ve “unwrapped” the recursive
rendering equation into a sum of terms

—n bounce lighting is an integral over screen x) x ... X ()
N——— ———

ntimes

—This 1s really the same as directly evaluating the terms of the
Neumann series E + TE + TTE + ...

Aalto CS-E5520 Spring 2019 — Lehtinen

46

Sampling Paths

* “Local path sampling” proceeds bounce to bounce,
always importance sampling according to local BRDF

» That 1s, for each sample (path):
—First sample screen (x, y), then trace ray
— At primary hit, choose outgoing direction w; , trace ray
— At secondary hit, choose outgoing direction wo
—Apply local PDFs at each step.. justification below

* Denote the full path z = (x,y, w1, ws, .. .)

~Then p(z) = p(z,y) p(w1) p(w2) . . -
—(This assumes independent choices at each bounce)

— Easy to implement Aalto CS-E5520 Spring 2019 — Lehtinen 47

Brute Force Path Tracing, Eye Part

Lix —v) = / Lz <1 fr(x,1 = v) cosfdl
. + F(x — V)

for each pixel

Lout = 0, w=0

for i=1 to #samples
generate xi,yl 1inside pixel with p(x,V)
ray 1 = generatecameraray(xi,yl)
Lout += f(xi,yi) * trace(ray i)/p(x,Yy)
w += £f(x1i,yi)/p(X,Y) (Assuming, for

simplicity, that only one

endfor . S
pixel filter is nonzero.

L(pixel) = Lout/w Look back a few slides
endfor for full treatment.)

Aalto CS-E5520 Spring 2019 — Lehtinen 48

Brute Force Path Tracing

Lix—>v)= [L(x+1) f.(z,]1 - v) cosfdl
Q
+ F(x — v)
trace(ray)
hit =

intersect(scene, ray)
result = emission(hit,-dir(ray))
// sample outgoing direction
[w,pdf] = sampleReflection(hit,dir(ray))

// recursively estimate incoming radiance, apply BRDF
result += BRDF (hit,-dir(ray),w)*

cos(theta)*

trace(ray(hit,w))/pdf
return result

// 0 if no light

// when we apply the PDF like this, we are implicitly
// multiplying them for all bounces like shown before

Aalto CS-E5520 Spring 2019 — Lehtinen

49

Notes

» sampleReflection() chooses a direction with
which to estimate reflectance integral for indirect part

—I.e. importance sample according to BRDF

Aalto CS-E5520 Spring 2019 — Lehtinen

Jason Lawrence

50

Why “Brute Force™?

* We’re waiting for the sampler to hit the light on 1ts own
—Often not a good 1dea
—But sometimes we can’t do too much else

—Think of an architectural model where all the light comes
through several specular bounces through windows

* In simple cases we can help by adding an explicit direct
light sampling step to each bounce

Aalto CS-E5520 Spring 2019 — Lehtinen 51

Sun

Window Q

Shadow ray

Except now! See this
Symposium on Rendering paper
from Weta Digital (slides)

Aalto CS-E5520 Spring 2019 — Lehtinen

52

https://jo.dreggn.org/home/2015_mnee.pdf
https://jo.dreggn.org/home/2015_mnee_talk.pdf

Brute Force Path Tracing

» Trace only one secondary ray per recursion
—Otherwise number of rays explodes!

* But send many primary rays per pixel (antialiasing)

Aalto CS-E5520 Spring 2019 — Lehtinen

53

Path Tracing w/ Light Sampling

» At each hit, also sample a light and shoot a shadow ray
* The standard way of doing path tracing
* Also called “next event estimation”

Aalto CS-E5520 Spring 2019 — Lehtinen 54

Importance of Sampling the Light

Without explicit With explicit
light sampling light sampling

1 path
per pixel

4 paths
per pixel

Aalto CS-E5520 Spring 2019 — Lehtinen

95

Path Tracing w/ Light Sampling

Light
source

Shadow
rays

Aalto CS-E5520 Spring 2019 — Lehtinen

56

Interpretation of Shadow Rays

» Recall: the full lighting solution 1s a sum over paths of
all lengths

L(z,y) =Y Li(z,y), with Lo(z,y) = E(Py < eye)
1=0

* Notice how we’ve “unwrapped” the recursive
rendering equation into a sum of terms

—n bounce lighting is an integral over screen x) x ... X ()
N——— ———
(brute force PT)

ntimes
—But now we’ve replaced the final hemisphere with lights by
solid-angle-to-area conversion: screen X w X w ... X lights

Aalto CS-E5520 Spring 2019 — Lehtinen 57

Path Tracing Pseudocode

Lix—>v)= [L(x+1) f.(z,]1 - v) cosfdl
§ + F(x — v)

trace(ray)
hit = intersect(scene, ray)
if ray is from camera // only add “very direct” light here

result = emission(hit,-dir(ray))

[yv,pdfl] = sampleLightsource() // pick shadow ray dest.

// G(hit,y) contains the usual cosine/r”"2 of the
// hemisphere-to-area variable change
result += V(hit,y)*E(y,y->hit)*BRDF*cos*G(hit,y)/pdfl
[w,pdf] = sampleReflection(hit,dir(ray)) // like before
result += BRDF(hit,-dir(ray),w)*

cos(theta)*

trace(ray(hit,w))/pdf
return result

Aalto CS-E5520 Spring 2019 — Lehtinen

58

Notes 2

* sampleLightsource() picks a point on the light
source and evaluates 1ts PDF
—You’re doing this 1n the first part of your radiosity assignment
—..and we saw this already on the first MC lecture

—We’re (again) applying the solid angle-to-area variable change
(1.e. we’re integrating over the surface of the light source)

 When you have multiple light sources, you pick one at
random, and build this into the PDF

—Simple: just multiply the light source p(y) with the probability
of picking that particular light source

Aalto CS-E5520 Spring 2019 — Lehtinen 59

Picking Lights

» It makes sense to importance sample the light you pick

* E.g. doesn’t make sense to sample dim, far-away lights
as often as bright, nearby ones!

Aalto CS-E5520 Spring 2019 — Lehtinen 60

One Small Problem

Aalto CS-E5520 Spring 2019 — Lehtinen

61

One Small Problem

* Yes, 1t doesn’t terminate 1f you just keep going

—Fortunately, there’s still something we can do!

Aalto CS-E5520 Spring 2019 — Lehtinen

62

Russian Roulette

 The usual MC estimate 1s E{@}p

p(x)

—f/p 1s a random variable because x 1s a random variable

Aalto CS-E5520 Spring 2019 — Lehtinen

63

Russian Roulette

 The usual MC estimate 1s E{@}p

p(x)

—f/p 1s a random variable because x 1s a random variable

 Let’s multiply this by another specially constructed
random variable R

—~R(x)=0 with probability a(z) , and R = 1/(1 — «) otherwise
— Also assume « and x are uncorrelated (independent). Then:

B, _ piry pr2\2y = pl

p(z) / p(z) p(z)

This step requires independence Aalto CS-E5520 Spring 2019 — Lehtinen 64

E{

Russian Roulette: What is Going On?

» R(x)=0 with probability @(x), and R = 1/« otherwise

R- f(x) f(z) /(z)
P T PR T e

o We’ve given ourselves permission to sometimes replace
the value of the integrand with zero without introducing
bias to the result

—When we don’t set it to zero, we multiply the result by 1/«

» This means, for instance, that we can probabilistically
terminate light paths without tracing them to infinity

Aalto CS-E5520 Spring 2019 — Lehtinen 65

Path Tracing w/ RR

Lix—>v)= [L(x+1) f.(z,]1 - v) cosfdl
§ + F(x — V)

trace(ray)
hit = intersect(scene, ray)
if ray is from camera // only add “very direct” light here

result = emission(hit,-dir(ray))
// pick shadow ray dest.

[yv,pdfl] = sampleLightsource()
result += E(y,y->hit)*BRDF*cos*G(hit,y)/pdfl
[w,pdf] = sampleReflection(hit,dir(ray))

// russian roulette with alpha=0.5
terminate = uniformrandom() < 0.5

1f !terminate
result += BRDF(hit,-dir(ray),w)*
cos(theta) *
trace(ray(hit,w))/pd£f/0.5

return result _ _
Aalto CS-FRR20 Sprlng 2019 — | ehtinen

// 1/0.5 =mult. by 2!

[§18)

‘Path Space”

» Earlier we wrote n-bounce lighting as a simultaneous
integral over n hemispheres

* We can just as well integrate over surfaces instead
— We just need to add 1n the geometry terms like before

e 1/r2, visibility, the other cosine

* The space of paths of length n 1s then simply

Sx...x8§8
N— ———

n times

with S being the set of 2D surfaces of the scene
* See Eric Veach’s PhD

Aalto CS-E5520 Spring 2019 — Lehtinen

67

http://graphics.stanford.edu/papers/veach_thesis/

What Does It Look Like?

» Jacco Bikker’s Brigade Real Time GPU Path Tracer
(video)

—Multiple GPUs + post processing for removing noise

— A few years old already, but gets the point across

* See http://raytracey.blogspot.co.nz/2012/08/real-time-

path-traced-brigade-demo-at.html

Aalto CS-E5520 Spring 2019 — Lehtinen

68

http://raytracey.blogspot.co.nz/2012/08/real-time-path-traced-brigade-demo-at.html
http://raytracey.blogspot.co.nz/2012/08/real-time-path-traced-brigade-demo-at.html
http://raytracey.blogspot.co.nz/2012/08/real-time-path-traced-brigade-demo-at.html

Bigger Picture

* We are shooting rays from the camera, propagating
them along, and kind of hoping we will find light

—Actively try to hit it by the light source samples

« What about more
difficult cases?

—In a caustic, the light
propagates through a
series of specular refractions
and reflections before
hitting a diffuse surface

wikipedia

Aalto CS-E5520 Spri

Problem With Caustics

» Think of an almost pointlike light shining through a
sequence of curved mirrors onto a receiver

small, bright light

diffuse
O

/N

mirror

mirror

N

eye

Aalto CS-E5520 Spring 2019 — Lehtinen

70

Problem With Caustics

* The point hit by the eye ray effectively sees a pointlight
in the direction of the last mirror

small, bright light

diffuse
O
“pointlight”
O
. mirror
mirror \V
eye

Aalto CS-E5520 Spring 2019 — Lehtinen 71

Problem With Caustics

* The point hit by the eye ray effectively sees a pointlight
in the direction of the last mirror

—How does the cosine importance sampler know that?

small, bright light diffuse

O
“pointlight”

??7?
()

mirror

mirror \V

eye

Aalto CS-E5520 Spring 2019 — Lehtinen 72

Problem With Caustics

» All we can do 1s shoot shadow rays towards the light
—Not very helpful here!

small, bright light diffuse

O

/N

/\ mirror
mirror \ﬁ

eye

Aalto CS-E5520 Spring 2019 — Lehtinen

73

To be continued...

