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Agenda and References
Pre-requisite: Derivatives course based on Hull, Options Futures and 
Other Derivatives, 7th Edition. 

p. 1-22     Wiener Processes and Ito’s Lemma (Hull Ch. 12)

p. 23-38    Modeling Stock Price and Black & Scoles Model (Hull Ch. 13)

p. 39-46    Martingales and Risk Neutral Pricing (Hull Ch. 27)

p. 47-56   Term Structure of Interest Rates and Black & Scholes revisited  
(Hull Ch 30, notes)

P. 57-72   Wealth Evolution and Continuous Time Financial Markets (notes, 
Additional readings: Merton, Continuous Time Finance) 
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1.  Wiener Processes 
and Ito’s Lemma
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Markov Processes
DEFINITION

• In a Markov process future 
movements in a variable depend only 
on where we are, not the history  of 
how we got where we are

• We assume that stock prices follow 
Markov processes
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Properties of Markov 
processes

• In Markov processes changes in 
successive periods of time are 
independent

• Variances of the process are additive
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A Wiener Process
DEFINITION

• We consider a variable z whose value changes 
continuously 

• The change in a small interval of time dt is dz
• The variable follows a Wiener process if

1.   
2. The values of dz for any 2 different (non-
overlapping) periods of time are independent

 (0,1)dz dte e f=  where   is a random drawing from 
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Properties of a Wiener 
Process

• Mean of  [z (T ) – z (0)]  is 0
• Variance of  [z (T ) – z (0)]  is T
• Standard deviation of [z (T ) – z (0)]  is T
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Generalized Wiener Processes

• A Wiener process has a drift rate 
(i.e. average change per unit time) 
of 0 and a variance rate of 1

• In a generalized Wiener process 
the drift rate and the variance rate 
can be set equal to any chosen 
constants
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Generalized Wiener Processes
(continued)

The variable x follows a generalized 
Wiener process with a drift rate of a
and a variance rate of b2 if  

dx=adt+bdz



4/10/19

Generalized Wiener Processes
(continued)

• Mean change in x in time T is aT
• Variance of change in x in time T is b2T
• Standard deviation of change in x in time 
T is 

  dx a dt b dte= +

b T
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Example
• A stock price starts at 40 and has a probability 

distribution of f(40,10) at the end  of the year
• If we assume the stochastic process is Markov 

with no drift  then the process is 
dS  = 10dz 

• If the stock price were expected to grow by $8 
on average during the year, so that the year-
end distribution is f(48,10), the process is 

dS = 8dt + 10dz
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Ito Process 
DEFINITION

• In an Ito process the drift rate and the 
variance rate are functions of time

dx=a(x,t)dt+b(x,t)dz

• The discrete time equivalent

is only true in the limit as Dt tends to zero 
( , ) ( , )x a x t t b x t teD = D + D
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Why a Generalized Wiener Process 
is not Appropriate for Stocks

• For a stock price we can conjecture that its 
expected percentage change in a short period 
of time remains constant, not its expected 
absolute change in a short period of time

• We can also conjecture that our uncertainty as 
to the size of future stock price movements is 
proportional to the level of the stock price



4/10/19

An Ito Process for Stock Prices

where µ is the expected return s
is the volatility.

The discrete time equivalent is

dS Sdt Sdzµ s= +

S S t S tµ s eD = D + D
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Ito’s Lemma 
• If we know the stochastic process 

followed by x, Ito’s lemma tells us the 
stochastic process followed by some 
function G (x, t )

• Since a derivative security is a function of 
the price of the underlying and time, Ito’s 
lemma plays an important part in the 
analysis of derivative securities
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Ignoring Terms of Higher Order 
Than Dt
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Substituting for Dx
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The e2Dt Term
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Taking Limits
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Application of Ito’s Lemma
to a Stock Price Process
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Example 1
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Example 2
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Learnings
• Defitions of 

– Markov process, 
– Wiener process
– Ito process

• Ito’s lemma 
– How to apply Ito’s lemma
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2. A Model of Stock Price
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The Stock Price Assumption

• Consider a stock whose price is S
• In a short period of time of length Δt, the 

change in the stock price is 

• µ is expected return and s is volatility

S S t S tµ s eD = D + D
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Properties of Lognormality
• It follows from this assumption (recall example 2)  

that 

• Since the logarithm of ST is normal, ST is 
lognormally distributed
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The Lognormal Distribution
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Continuously Compounded Return: h
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The Expected Return

• The expected value of the stock price is 

• The expected annual return on the stock is 
µ – s2/2
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Intuition why E(S) ≠ S(E(η))

• When x is normally distributed with volatility σ
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3.The Black-Scholes
Model
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The Concepts  Underlying Black-
Scholes

• The option price and the stock price depend on 
the same underlying source of uncertainty

• We can form a portfolio consisting of the stock 
and the option which eliminates this source of 
uncertainty

• The portfolio is instantaneously riskless and must 
instantaneously earn the risk-free rate

• This leads to the Black-Scholes differential 
equation for the value of option: function f (an 
example of all possible functions G)
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Black-Scholes Differential Equation
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The value of the portfolio  is given by
ƒ      ƒ       

The change in its value in time   is given by
ƒ      ƒ       

S
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The Derivation  of the Black-Scholes 
Differential Equation continued
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The Derivation  of the Black-Scholes 
Differential Equation 

2
2 2
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The Differential Equation
• Any security whose price is dependent  on the 

stock price satisfies the differential equation
• The particular security being valued is determined 

by the boundary conditions of the differential 
equation

• In an option the boundary condition is
ƒ = max(S  – K;0), when t =T
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The solution is:
Black-Scholes Formula
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The Differential Equation for 
Forward Contract

• In a forward contract the boundary condition 
is ƒ = S  – K when t =T

• The solution to the equation is
ƒ = S – K e–r (T – t )

Exercise: Check!


