Modeling Securities and Investment
in Continuous Time:

Aalto/ Professor Suominen

Preliminary notes (updated during the course)
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Agenda and References

Pre-requisite: Derivatives course based on Hull, Options Futures and
Other Derivatives, 7th Edition.

p. 1-22  Wiener Processes and Ito’s Lemma (Hull Ch. 12)
p. 23-38 Modeling Stock Price and Black & Scoles Model (Hull Ch. 13)
p. 39-46 Martingales and Risk Neutral Pricing (Hull Ch. 27)

p. 47-56 Term Structure of Interest Rates and Black & Scholes revisited
(Hull Ch 30, notes)

P.57-72 Wealth Evolution and Continuous Time Financial Markets (notes,
Additional readings: Merton, Continuous Time Finance)
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1. Wiener Processes
and I1to’s Lemma
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Markov Processes
DEFINITION

* In a Markov process future
movements in a variable depend only
on where we are, not the history of
how we got where we are

» We assume that stock prices follow
Markov processes
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Properties of Markov
processes

* In Markov processes changes in
successive periods of time are
independent

* Variances of the process are additive

4/10/19



A Wiener Process
DEFINITION

 We consider a variable z whose value changes
continuously

* The change in a small interval of time dr is dz
* The variable follows a Wiener process if

1. dz=¢&~dt where ¢ isarandom drawing from ¢(0,1)

2. The values of dz for any 2 different (non-
overlapping) periods of time are independent
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Properties of a Wiener
Process

e Meanof [z(T)—z(0)] isO

 Variance of [z(T)—z(0)] iIs T
» Standard deviation of [z (T') -z (0)] is VT
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Generalized Wiener Processes

* A Wiener process has a drift rate
(i.e. average change per unit time)
of 0 and a variance rate of 1

* In a generalized Wiener process
the drift rate and the variance rate
can be set equal to any chosen
constants
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Generalized Wiener Processes
(continued)

The variable x follows a generalized
Wiener process with a drift rate of a
and a variance rate of b? if

dx=adt+bdz
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Generalized Wiener Processes
(continued)

dx=a dt+b eJdt

« Mean change inx intime T'is aT
« Variance of change in x in time T is b*T

« Standard deviation of change in x in time
TS pT
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Example

* A stock price starts at 40 and has a probability
distribution of ¢(40,10) at the end of the year

 |f we assume the stochastic process is Markov
with no drift then the process is

dS = 10dz

« |f the stock price were expected to grow by $8
on average during the year, so that the year-
end distribution is ¢$(48,10), the process is

dS =8dt + 10dz
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Ito Process
DEFINITION

* In an lto process the drift rate and the
variance rate are functions of time

dx=a(x,t)dt+b(x,t)dz

* The discrete time equivalent

Ax = a(x,0)At +b(x,1) e At
is only true in the limit as Ar tends to zero
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Why a Generalized Wiener Process
is not Appropriate for Stocks

* For a stock price we can conjecture that its
expected percentage change in a short period
of time remains constant, not its expected
absolute change in a short period of time

 We can also conjecture that our uncertainty as
to the size of future stock price movements is
proportional to the level of the stock price
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An Ito Process for Stock Prices

dS = uSdt + o Sdz

where u is the expected return o
IS the volatility.

The discrete time equivalent is
AS = ,uSAtJrGSa‘\E
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Ito’s Lemma

* |f we know the stochastic process
followed by x, Ito’'s lemma tells us the
stochastic process followed by some
function G (x, )

« Since a derivative security is a function of
the price of the underlying and time, Ito’s
lemma plays an important part in the
analysis of derivative securities
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Ignoring Terms of Higher Order
Than At

In ordinary calculus we have

AGzﬁ—GAx+a—GAt

o x Ot

In stochastic calculus this becomes

2
AGzﬁ—GA x+é,—GAt+1/z oG A x°

O x Ot O x°

because Ax has a component whichis
of order /At
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Substituting for Ax

Suppose
dx = a(x,t)dt +b(x,t)dz
so that

Ax=a At+b At
Then 1gnoring terms of higher order than Az

2
AGzé)—GAer@—GAHI/zé) Cj
Ox Ot Ox

b*s* At
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The €2Af Term

Since e=¢(0,1) E(g)=0
E(e")-[E(e)] =1
E(e*) =1

It follows that E(&°At) = At

Hence:

2
AGzé—GAera—GAH Lo szAt

O X Ot 2 Ox*
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Taking Limits

2
Taking limits dG = 5_de + a—Gdt + oG

ox Ot Ox”
Substituting dx=adt+bdz

b*dt

2
We obtain dG = ﬁ—GaJrﬁ—G#/zé7 (Z;b2 dt+§—dez
Ox Ot Ox Ox

This 1s [to's Lemma
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Application of Ito’s Lemma
to a Stock Price Process

The stock price process is
dS=uSdt+oS dz
For afunction G of S and ¢

2
dG = a—GuS+a—G+1/za (jozS2 dt+8—GGSdZ
oS Ot oS oS
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For a function G of S and ¢
oG 0

2
Example 1 dGZ(gHS+ a?+%ZS§GZS2)dt+Z_§GSdZ

1. The forward price of a stock for a contract

maturing at time T
G=Se""

oG
==
oG
=
0°G
0S?
=>

dG =
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For a function G of S and ¢

dG = aGuS G /8_G ’s? dt+a—GGSd
oS o 0S? oS

Example 2

2.G=1InS

oG

oS
o0°G

OS”
oG

ot

dG =
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Learnings

» Defitions of
— Markov process,
— Wiener process
— |to process

 |to’s lemma
— How to apply Ito’s lemma
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2. A Model of Stock Price



The Stock Price Assumption

* Consider a stock whose price is S

 |n a short period of time of length At, the
change in the stock price is

AS = ,LISAZ-I-GSE\/KI

e L is expected return and o is volatility
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Properties of Lognormality

* |t follows from this assumption (recall example 2)
that

lnST—lnSOz(I)Hu—jj ,G\/_:| (1)

or

InsS, q{lns +(u—7j ,c\/_}

» Since the logarithm of S, is normal, S, is
lognormally distributed
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The Lognormal Distribution

E(S,)=S, "

var(s,) = S,2e* (e° T - 1)
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Continuously Compounded Return: n

S, =8,¢e"
1S
T S,

~¢ _02 O . |
n=ao u 5 7 using (1)
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The Expected Return

* The expected value of the stock price is

E[nT]+lGZT

E[SoenT ] =S,e 2 =S,."

* The expected annual return on the stock is
T )

E|In(S,/S,)|=p-0c?/2
ln:E(ST /So): = H
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Intuition why E(S) # S(E(n))
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* When x is normally distributed with voIatiIity o)
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3.The Black-Scholes
Model



The Concepts Underlying Black-
Scholes

« The option price and the stock price depend on
the same underlying source of uncertainty

« We can form a portfolio consisting of the stock
and the option which eliminates this source of
uncertainty

« The portfolio is instantaneously riskless and must
instantaneously earn the risk-free rate

* This leads to the Black-Scholes differential
equation for the value of option: function f (an
example of all possible functions G)
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Black-Scholes Differential Equation

AS =uS At +o0S Az

oS Ot oS* oS

We set up a portfolio consisting of

Af = ( fyS+ of + 1 fazSszt+ﬁaSAz

—1: derivative

of

+——: shares
oS
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The Derivation of the Black-Scholes
Differential Equation continued

The value of the portfolio IT 1s given by

.9 g
IEAFTE

The change 1n 1ts value 1n time A¢ 1s given by

All =—-Af+—— ﬁf
ﬁS
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The Derivation of the Black-Scholes
Differential Equation

The return on the portfolio must be the risk-free

rate. Hence
All =r T1A¢

Note: The value of the portfolio 1T does
not depend on z, hence no risk

We substitute for Af and AS 1n these equations

to get the Black-Scholes differential equation:

af

+rS —— o +1 0% S?
Ot oS
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The Differential Equation

* Any security whose price is dependent on the
stock price satisfies the differential equation

* The particular security being valued is determined

by the boundary conditions of the differential
equation

 In an option the boundary condition is
f=max(S - K;0), when¢=T
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The solution 1s:
Black-Scholes Formula

c=8,N(d,)-K e " 'N(d,)
p=Ke" N(=d,)—=S, N(=d,)
In(S, / K)+(r+02/2)T

VT

2
dzzln(SO/K);r\(/% G /2)T:dl—cﬁ

where d, =
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The Differential Equation for
Forward Contract

* In a forward contract the boundary condition
IS f=8S -K whent=

* The solution to the equation is
f=8 -Kerd-1)

Exercise: Check!
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