Modeling Securities and Investment in Continuous Time:

Aalto/ Professor Suominen

Preliminary notes (updated during the course)

Agenda and References

Pre-requisite: Derivatives course based on Hull, Options Futures and Other Derivatives, 7th Edition.
p. 1-22 Wiener Processes and Ito's Lemma (Hull Ch. 12)
p. 23-38 Modeling Stock Price and Black \& Scoles Model (Hull Ch. 13)
p. 39-46 Martingales and Risk Neutral Pricing (Hull Ch. 27)
p. 47-56 Term Structure of Interest Rates and Black \& Scholes revisited (Hull Ch 30, notes)
P. 57-72 Wealth Evolution and Continuous Time Financial Markets (notes, Additional readings: Merton, Continuous Time Finance)

1. Wiener Processes and Ito's Lemma

Markov Processes DEFINITION

- In a Markov process future movements in a variable depend only on where we are, not the history of how we got where we are
- We assume that stock prices follow Markov processes

Properties of Markov processes

- In Markov processes changes in successive periods of time are independent
- Variances of the process are additive

A Wiener Process DEFINITION

- We consider a variable z whose value changes continuously
- The change in a small interval of time $d t$ is $d z$
- The variable follows a Wiener process if

1. $d z=\varepsilon \sqrt{d t}$ where ε is a random drawing from $\phi(0,1)$
2. The values of $d z$ for any 2 different (nonoverlapping) periods of time are independent

Properties of a Wiener Process

- Mean of $[z(T)-z(0)]$ is 0
- Variance of $[z(T)-z(0)]$ is T
- Standard deviation of $[z(T)-z(0)]$ is \sqrt{T}

Generalized Wiener Processes

- A Wiener process has a drift rate (i.e. average change per unit time) of 0 and a variance rate of 1
- In a generalized Wiener process the drift rate and the variance rate can be set equal to any chosen constants

Generalized Wiener Processes (continued)

The variable x follows a generalized Wiener process with a drift rate of a and a variance rate of b^{2} if

$$
d x=a d t+b d z
$$

Generalized Wiener Processes (continued)

$$
d x=a d t+b \varepsilon \sqrt{d t}
$$

- Mean change in x in time T is $a T$
- Variance of change in x in time T is $b^{2} T$
- Standard deviation of change in x in time T is $b \sqrt{T}$

Example

- A stock price starts at 40 and has a probability distribution of $\phi(40,10)$ at the end of the year
- If we assume the stochastic process is Markov with no drift then the process is

$$
d S=10 d z
$$

- If the stock price were expected to grow by $\$ 8$ on average during the year, so that the yearend distribution is $\phi(48,10)$, the process is

$$
d S=8 d t+10 d z
$$

Ito Process DEFINITION

- In an Ito process the drift rate and the variance rate are functions of time

$$
d x=a(x, t) d t+b(x, t) d z
$$

- The discrete time equivalent

$$
\Delta x=a(x, t) \Delta t+b(x, t) \varepsilon \sqrt{\Delta t}
$$

is only true in the limit as Δt tends to zero

Why a Generalized Wiener Process is not Appropriate for Stocks

- For a stock price we can conjecture that its expected percentage change in a short period of time remains constant, not its expected absolute change in a short period of time
- We can also conjecture that our uncertainty as to the size of future stock price movements is proportional to the level of the stock price

An Ito Process for Stock Prices

$$
d S=\mu S d t+\sigma S d z
$$

where μ is the expected return σ is the volatility.

The discrete time equivalent is

$$
\Delta S=\mu S \Delta t+\sigma S \varepsilon \sqrt{\Delta t}
$$

Ito's Lemma

- If we know the stochastic process followed by x, Ito's lemma tells us the stochastic process followed by some function $G(x, t)$
- Since a derivative security is a function of the price of the underlying and time, Ito's lemma plays an important part in the analysis of derivative securities

Ignoring Terms of Higher Order Than Δt

In ordinary calculus we have

$$
\Delta G=\frac{\partial G}{\partial x} \Delta x+\frac{\partial G}{\partial t} \Delta t
$$

In stochastic calculus this becomes

$$
\Delta G=\frac{\partial G}{\partial x} \Delta x+\frac{\partial G}{\partial t} \Delta t+1 / 2 \frac{\partial^{2} G}{\partial x^{2}} \Delta x^{2}
$$

because Δx has a component which is of order $\sqrt{\Delta t}$

Substituting for Δx

Suppose

$$
d x=a(x, t) d t+b(x, t) d z
$$

so that

$$
\Delta x=a \Delta t+b \varepsilon \sqrt{\Delta t}
$$

Then ignoring terms of higher order than Δt

$$
\Delta G=\frac{\partial G}{\partial x} \Delta x+\frac{\partial G}{\partial t} \Delta t+1 / 2 \frac{\partial^{2} G}{\partial x^{2}} b^{2} \varepsilon^{2} \Delta t
$$

The $\varepsilon^{2} \Delta t$ Term

Since $\varepsilon \approx \phi(0,1) \quad E(\varepsilon)=0$

$$
\begin{aligned}
& E\left(\varepsilon^{2}\right)-[E(\varepsilon)]^{2}=1 \\
& E\left(\varepsilon^{2}\right)=1
\end{aligned}
$$

It follows that $E\left(\varepsilon^{2} \Delta t\right)=\Delta t$
Hence:

$$
\Delta G=\frac{\partial G}{\partial x} \Delta x+\frac{\partial G}{\partial t} \Delta t+\frac{1}{2} \frac{\partial^{2} G}{\partial x^{2}} b^{2} \Delta t
$$

Taking Limits

Taking limits $\quad d G=\frac{\partial G}{\partial x} d x+\frac{\partial G}{\partial t} d t+1 / 2 \frac{\partial^{2} G}{\partial x^{2}} b^{2} d t$
Substituting $\quad d x=a d t+b d z$
We obtain $\quad d G=\left(\frac{\partial G}{\partial x} a+\frac{\partial G}{\partial t}+1 / 2 \frac{\partial^{2} G}{\partial x^{2}} b^{2}\right) d t+\frac{\partial G}{\partial x} b d z$
This is Ito's Lemma

Application of Ito's Lemma to a Stock Price Process

The stock price process is

$$
d S=\mu S d t+\sigma S d z
$$

For a function G of S and t

$$
d G=\left(\frac{\partial G}{\partial S} \mu S+\frac{\partial G}{\partial t}+1 / 2 \frac{\partial^{2} G}{\partial S^{2}} \sigma^{2} S^{2}\right) d t+\frac{\partial G}{\partial S} \sigma S d z
$$

For a function G of S and t

Example 1
 $$
d G=\left(\frac{\partial G}{\partial S} \mu S+\frac{\partial G}{\partial t}+1 / 2 \frac{\partial^{2} G}{\partial S^{2}} \sigma^{2} S^{2}\right) d t+\frac{\partial G}{\partial S} \sigma S d z
$$

1. The forward price of a stock for a contract maturing at time T

$$
\mathrm{G}=\mathrm{S} \mathrm{e}^{\mathrm{r}(\mathrm{~T}-\mathrm{t})}
$$

$$
\begin{aligned}
& \frac{\partial \mathrm{G}}{\partial \mathrm{t}}= \\
& \frac{\partial \mathrm{G}}{\partial \mathrm{~S}}= \\
& \frac{\partial^{2} \mathrm{G}}{\partial \mathrm{~S}^{2}}= \\
& => \\
& \mathrm{dG}=
\end{aligned}
$$

For a function G of S and t

Example 2

$$
d G=\left(\frac{\partial G}{\partial S} \mu S+\frac{\partial G}{\partial t}+1 / 2 \frac{\partial^{2} G}{\partial S^{2}} \sigma^{2} S^{2}\right) d t+\frac{\partial G}{\partial S} \sigma S d z
$$

$2 . G=\ln S$

$$
\begin{aligned}
& \frac{\partial G}{\partial S}= \\
& \frac{\partial^{2} G}{\partial S^{2}}= \\
& \frac{\partial G}{\partial t}=
\end{aligned}
$$

$\mathrm{dG}=$

Learnings

- Defitions of
- Markov process,
- Wiener process
- Ito process
- Ito's lemma
- How to apply Ito's lemma

2. A Model of Stock Price

The Stock Price Assumption

- Consider a stock whose price is S
- In a short period of time of length Δt t, the change in the stock price is

$$
\Delta S=\mu S \Delta t+\sigma S \varepsilon \sqrt{\Delta t}
$$

- μ is expected return and σ is volatility

Properties of Lognormality

- It follows from this assumption (recall example 2) that

$$
\begin{equation*}
\ln S_{T}-\ln S_{0} \approx \phi\left[\left(\mu-\frac{\sigma^{2}}{2}\right) T, \sigma \sqrt{T}\right] \tag{1}
\end{equation*}
$$

or

$$
\ln S_{T} \approx \phi\left[\ln S_{0}+\left(\mu-\frac{\sigma^{2}}{2}\right) T, \sigma \sqrt{T}\right]
$$

- Since the logarithm of S_{T} is normal, S_{T} is lognormally distributed

The Lognormal Distribution

$$
\begin{aligned}
& E\left(S_{T}\right)=S_{0} e^{\mu T} \\
& \operatorname{var}\left(S_{T}\right)=S_{0}^{2} e^{2 \mu T}\left(e^{\sigma^{2} T}-1\right)
\end{aligned}
$$

Continuously Compounded Return: η

$$
\begin{aligned}
& S_{T}=S_{0} e^{\eta T} \\
& \eta=\frac{1}{T} \ln \frac{S_{T}}{S_{0}} \\
& \eta \approx \phi\left(\mu-\frac{\sigma^{2}}{2}, \frac{\sigma}{\sqrt{T}}\right)
\end{aligned}
$$

The Expected Return

- The expected value of the stock price is

$$
E\left[S_{0} e^{\eta T}\right]=S_{0} e^{E[\eta T]+\frac{1}{2} \sigma^{2} T}=S_{0} e^{\mu T}
$$

- The expected annual return on the stock is

$$
\mu-\sigma^{2} / 2
$$

$$
\begin{aligned}
& E\left[\ln \left(S_{T} / S_{0}\right)\right]=\mu-\sigma^{2} / 2 \\
& \ln \left[E\left(S_{T} / S_{0}\right)\right]=\mu
\end{aligned}
$$

Intuition why $\mathbf{E}(\mathbf{S}) \neq \mathbf{S}(\mathbf{E}(\mathfrak{\eta}))$

- When x is normally distributed with volatility σ

$$
E\left[e^{x}\right]=e^{E[x]+\frac{1}{2} \sigma^{2}}
$$

3.The Black-Scholes Model

The Concepts Underlying BlackScholes

- The option price and the stock price depend on the same underlying source of uncertainty
- We can form a portfolio consisting of the stock and the option which eliminates this source of uncertainty
- The portfolio is instantaneously riskless and must instantaneously earn the risk-free rate
- This leads to the Black-Scholes differential equation for the value of option: function f (an example of all possible functions G)

Black-Scholes Differential Equation

$$
\begin{aligned}
\Delta S= & \mu S \Delta t+\sigma S \Delta z \\
\Delta f= & \left(\frac{\partial f}{\partial S} \mu S+\frac{\partial f}{\partial t}+1 / 2 \frac{\partial^{2} f}{\partial S^{2}} \sigma^{2} S^{2}\right) \Delta t+\frac{\partial f}{\partial S} \sigma S \Delta z \\
& \text { We set up a portfolio consisting of } \\
& \quad-1: \text { derivative } \\
& \quad+\frac{\partial f}{\partial S}: \text { shares }
\end{aligned}
$$

The Derivation of the Black-Scholes
 Differential Equation continued

The value of the portfolio Π is given by

$$
\Pi=-f+\frac{\partial f}{\partial S} S
$$

The change in its value in time Δt is given by

$$
\Delta \Pi=-\Delta f+\frac{\partial f}{\partial S} \Delta S
$$

The Derivation of the Black-Scholes Differential Equation

The return on the portfolio must be the risk-free rate. Hence

$$
\Delta \Pi=r \Pi \Delta t
$$

Note: The value of the portfolio π does not depend on z, hence no risk

We substitute for Δf and ΔS in these equations
to get the Black-Scholes differential equation:

$$
\frac{\partial f}{\partial t}+r S \frac{\partial f}{\partial S}+1 / 2 \sigma^{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}=r f
$$

The Differential Equation

- Any security whose price is dependent on the stock price satisfies the differential equation
- The particular security being valued is determined by the boundary conditions of the differential equation
- In an option the boundary condition is

$$
f=\max (S-K ; 0), \text { when } t=T
$$

The solution is:

Black-Scholes Formula

$c=S_{0} N\left(d_{1}\right)-K e^{-r T} N\left(d_{2}\right)$
$p=K e^{-r T} N\left(-d_{2}\right)-S_{0} N\left(-d_{1}\right)$
where $\quad d_{1}=\frac{\ln \left(S_{0} / K\right)+\left(r+\sigma^{2} / 2\right) T}{\sigma \sqrt{T}}$

$$
d_{2}=\frac{\ln \left(S_{0} / K\right)+\left(r-\sigma^{2} / 2\right) T}{\sigma \sqrt{T}}=d_{1}-\sigma \sqrt{T}
$$

The Differential Equation for

Forward Contract

- In a forward contract the boundary condition is $\quad f=S-K$ when $t=T$
- The solution to the equation is

$$
f=S-K \mathrm{e}^{-r(T-t)}
$$

Exercise: Check!

